Non-binary tree height - data-structures

Is there a way to find the height of a tree which is not necessarily binary? There are many algorithms for the height of a binary tree but none of them will work for a non-binary.

Yes, there is. A recursive approach could be something like:
public class TreeNode<T>{
private List<TreeNode<T>> children = new ArrayList<TreeNode<T>>();
private T data = null;
public TreeNode(T data){
this.data = data;
}
public List<TreeNode<T>> getChildren(){
return children;
}
public void setChild(TreeNode<T> children){
this.children.add(children);
}
public Integer getHeight(TreeNode<T> root){
if(root == null) return 0;
Integer h=0;
for(TreeNode<T> n : root.getChildren()){
h = Math.max(h, getHeight(n));
}
return h+1;
}
}
Test:
public static void main(String[] args){
TreeNode<Integer> root = new TreeNode<Integer>(50);
TreeNode<Integer> c1 = new TreeNode<Integer>(100);
TreeNode<Integer> c2= new TreeNode<Integer>(10);
TreeNode<Integer> c3 = new TreeNode<Integer>(-5);
TreeNode<Integer> c4 = new TreeNode<Integer>(0);
TreeNode<Integer> c5 = new TreeNode<Integer>(33);
TreeNode<Integer> c6 = new TreeNode<Integer>(1);
TreeNode<Integer> c7 = new TreeNode<Integer>(2);
TreeNode<Integer> c8 = new TreeNode<Integer>(3);
TreeNode<Integer> c9 = new TreeNode<Integer>(300);
TreeNode<Integer> c10 = new TreeNode<Integer>(350);
root.setChild(c1);
root.setChild(c2);
c2.setChild(c3);
c3.setChild(c4);
c3.setChild(c5);
c3.setChild(c6);
c3.setChild(c7);
c3.setChild(c8);
c1.setChild(c9);
c1.setChild(c10);
System.out.print("Pre order: \n");
root.dfs(root, 0);
System.out.print("\nPost order: \n");
root.dfs(root, 1);
System.out.print("\nBFS: \n");
root.bfs(root);
System.out.println();
System.out.print("\nHeigth: \n");
System.out.println(root.getHeight(root));
}
Result:
Heigth:
4
EDIT: Returns 4, instead of 3 as stated earlier

The definition is the same for any tree. The height of a tree is the height of any of its children (plus one). So if you have three children you check all three of them and take the greatest + 1 as your height, recursively.

It is possible. We can do by below approach.
package com.ds;
import java.util.Arrays;
public class TreeNode {
private Integer data;
private TreeNode[] children;
public TreeNode() {
super();
}
public TreeNode(Integer data) {
super();
this.data = data;
}
public void setChildren(TreeNode[] children) {
this.children = children;
}
public Integer maxDepth(TreeNode treeNode) {
Integer depth = 0;
if (treeNode.children != null) {
if (treeNode.children.length == 0) {
return depth;
} else {
for (int i = 0; i < treeNode.children.length; i++) {
depth = Math.max(depth, this.maxDepth(treeNode.children[i]));
}
return depth + 1;
}
} else {
return depth;
}
}
#Override
public String toString() {
return "TreeNode [data=" + data + ", children=" + Arrays.toString(children) + "]";
}
public static void main(String[] args) {
TreeNode t1 = new TreeNode(1);
TreeNode t2 = new TreeNode(2);
TreeNode t3 = new TreeNode(3);
TreeNode t4 = new TreeNode(4);
TreeNode t5 = new TreeNode(5);
TreeNode t6 = new TreeNode(6);
TreeNode t7 = new TreeNode(7);
TreeNode t8 = new TreeNode(8);
TreeNode t9 = new TreeNode(9);
TreeNode t10 = new TreeNode(10);
TreeNode t11 = new TreeNode(11);
TreeNode t12 = new TreeNode(12);
TreeNode t101 = new TreeNode(101);
TreeNode[] childOf1 = { t2, t3 };
TreeNode[] childOf2 = { t4, t5, t101 };
TreeNode[] childOf3 = { t6, t7 };
TreeNode[] childOf4 = { t8, t9 };
TreeNode[] childOf6 = { t10 };
TreeNode[] childOf10 = { t11, t12 };
t1.setChildren(childOf1);
t2.setChildren(childOf2);
t3.setChildren(childOf3);
t4.setChildren(childOf4);
t6.setChildren(childOf6);
t10.setChildren(childOf10);
TreeNode obj = new TreeNode();
Integer depth = obj.maxDepth(t1);
System.out.println("Depth- " + depth);
}
}

Generally, you can extend most of algorithms for binary tree to non-binary.
For example, for 2-tree:
h(node) = max(h(left-child-of(node)) , h(right-child-of(node)))+1
which can be extended to:
h(node) = max(h(for-all-child-of(node)) + 1

Related

Given Parent Array and Values Array. Find Best Possible Sum in a tree

Given Parent Array Such that parent[i]=j where j is the parent and Value array . Need to Find Best possible sum.
Root node will have -1 as parent.
Best Possible sum is maximum sum in one of the tree paths.
Ex)
Integer[] parent = new Integer[] { -1, 0, 0, 2, 3 };
Integer[] values = new Integer[] { 0, 4, 6, -11, 3 };
(0/0)----(1/4)
|
|
(2/6)
|
|
(3/-11)
|
|
(4/3)
Maximum sum here would be 6+0+4=10 for path 2-->0-->1.
I have tried solving it the dfs way. But not sure if it works for all cases. Below is my code. It gives all possible sum. we can take out max from that.
package com.programs.algo;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;
public class BestPossibleSum {
static class Node<T> {
T label;
T data;
List<Node<T>> nodes;
}
public static void main(String[] args) {
Integer[] parent = new Integer[] { -1, 0, 0, 1, 1, 3, 5 };
Integer[] values = new Integer[] { 0, 4, 6, -11, 3, 10, 11 };
List<Integer> list1 = new ArrayList<>(Arrays.asList(parent));
List<Integer> list2 = new ArrayList<>(Arrays.asList(values));
bestPossibleSum(list1, list2);
}
static List<Node<Integer>> tree = new ArrayList<>();
private static void bestPossibleSum(List<Integer> list1, List<Integer> list2) {
int adj[][] = new int[list1.size()][list1.size()];
createTree(list1, list2, adj);
List<Integer> traversedNodes = new ArrayList<>();
List<Integer> sumOfraversedNodes = new ArrayList<>();
for (int i = 0; i < adj.length; i++) {
dfs(tree.get(i), traversedNodes, sumOfraversedNodes);
traversedNodes.clear();
}
System.out.println(sumOfraversedNodes);
}
private static void dfs(Node<Integer> tree, List<Integer> traversedNodes, List<Integer> sums) {
if (!traversedNodes.contains(tree.label)) {
traversedNodes.add(tree.label);
sums.add(getSum(traversedNodes));
for (Node<Integer> child : tree.nodes) {
dfs(child, traversedNodes, sums);
}
}
}
private static Integer getSum(List<Integer> traversedNodes) {
System.out.println(traversedNodes);
return traversedNodes.stream().reduce(0, Integer::sum);
}
private static void createTree(List<Integer> parent, List<Integer> values, int[][] adj) {
for (int i = 0; i < parent.size(); i++) {
Node<Integer> node = new Node<>();
node.label = i;
node.data = values.get(i);
node.nodes = new ArrayList<>();
tree.add(i, node);
}
for (int i = 0; i < parent.size(); i++) {
if (parent.get(i) != -1) {
adj[parent.get(i)][i] = 1;
adj[i][parent.get(i)] = 1;
tree.get(parent.get(i)).nodes.add(tree.get(i));
}
}
tree.forEach(t -> {
System.out.println(t.label);
System.out.println(t.nodes.stream().map(m -> m.label).collect(Collectors.toList()));
});
// System.out.println(Arrays.deepToString(adj));
}
}
I would divide your question to 2 different issues:
Build tree from your data
Find the max sum
I wrote the code in PHP but you can convert it to any language you need (my JAVA skill are bit rusty...)
Build the Tree:
$parent = array( -1, 0, 0, 2, 3 );
$values = array(0, 4, 6, -11, 3 );
function getNode($id, $data) {
return array("id" => $id, "data" => $data, "childs" => array());
}
function addToTree($node, &$root, $parentsId) {
if ($parentsId == -1)
$root = $node;
else if ( $root["id"] == $parentsId)
$root["childs"][] = $node;
else
foreach($root["childs"] as &$child)
addToTree($node, $child, $parentsId);
}
$root = null;
for($i = 0; $i < count($parent); $i++) {
addToTree(getNode($i, $values[$i]), $root, $parent[$i]);
}
Now root if contain you "tree-like" data. Notice this code works only if the nodes given at the right order and it cannot support multi root (assume tree and not forest)
Find max path:
function maxPath($node) {
$sum = $node["data"];
foreach($node["childs"] as $child) {
$s = maxPath($child);
if ($s > 0) // if its not positive then don't take it
$sum += $s;
}
return $sum;
}
This recursive function will get your max-sum-path. Notice this will allow multi-child per node and also the path can have star-shape.
Posting Java code considering it as tree with left and right nodes.
https://www.geeksforgeeks.org/construct-a-binary-tree-from-parent-array-representation/
https://www.geeksforgeeks.org/find-maximum-path-sum-in-a-binary-tree/
private static int maxSum(Node<Integer> btree, Result result) {
if (btree == null)
return 0;
int l = maxSum(btree.left, result);
int r = maxSum(btree.right, result);
System.out.println(l + " " + r + " " + btree.data);
int maxSingle = Math.max(Math.max(l, r) + btree.label, btree.label);
int maxTop = Math.max(l + r + btree.label, maxSingle);
result.val = Math.max(maxTop, result.val);
return maxSingle;
}
private static Node<Integer> createBinaryTree(Integer[] parent, Node<Integer> root) {
Map<Integer, Node<Integer>> map = new HashMap<>();
for (int i = 0; i < parent.length; i++) {
map.put(i, new Node<>(i));
}
for (int i = 0; i < parent.length; i++) {
if (parent[i] == -1) {
root = map.get(i);
} else {
Node<Integer> par = map.get(parent[i]);
Node<Integer> child = map.get(i);
if (par.left == null) {
par.left = child;
} else {
par.right = child;
}
}
}
return root;
}
1 . convert the given parent array into graph with the following steps :
unordered_map<int,vector<pair<int,int>>> graph;
for(int i=0;i<n;i++){
if(parents[i]!=-1){
graph[parents[i]].push_back({i,values[i]});
graph[i].push_back({parents[i],values[parents[i]]});
}
}
2.apply DFS on each node and check the maximum Path Sum
vector<bool> vis(n,false);
int res=0;
for(int i=0;i<n;i++){
vis.clear();
dfs(i,vis,mp,values,res);
}
DFS function
void dfs(int src,vector&vis,unordered_map<int,
vector<pair<int,int>>>&graph,vector<int>&values,int res){
res+=values[src];
ans=max(ans,res);
vis[src]=true;
for(int i=0;i<graph[src].size();i++){
if(!vis[graph[src][i].first]){
dfs(graph[src][i].first,vis,graph,values,res);
}
}
vis[src]=false;
}
C++ code :
#include<bits/stdc++.h>
using namespace std;
int ans=INT_MIN;
void dfs(int src,vector<bool>&vis,unordered_map<int,
vector<pair<int,int>>>&graph,vector<int>&values,int res){
res+=values[src];
ans=max(ans,res);
vis[src]=true;
for(int i=0;i<graph[src].size();i++){
if(!vis[graph[src][i].first]){
dfs(graph[src][i].first,vis,graph,values,res);
}
}
vis[src]=false;
}
int maxPathSum(vector<int>&parents,vector<int>&values){
int n=parents.size();
unordered_map<int,vector<pair<int,int>>> mp;
for(int i=0;i<n;i++){
if(parents[i]!=-1){
mp[parents[i]].push_back({i,values[i]});
mp[i].push_back({parents[i],values[parents[i]]});
}
}
vector<bool> vis(n,false);
int res=0;
for(int i=0;i<n;i++){
vis.clear();
dfs(i,vis,mp,values,res);
}
return ans;
}
int main(){
vector<int> parent = {-1,0,0,2,3}; //{-1,0,1,2,0};
vector<int> values = {0,4,6,-11,3}; //{-2,10,10,-3,10};
cout<<maxPathSum(parent,values)<<endl;
return 0;
}
Today I got this problem in One of the company's hackerrank test.
Here is my solution. All test cases have been passed successfully
import java.io.*;
import java.math.*;
import java.security.*;
import java.text.*;
import java.util.*;
import java.util.concurrent.*;
import java.util.function.*;
import java.util.regex.*;
import java.util.stream.*;
import static java.util.stream.Collectors.joining;
import static java.util.stream.Collectors.toList;
class Result {
/*
* Complete the 'bestSumDownwardTreePath' function below.
*
* The function is expected to return an INTEGER.
* The function accepts following parameters:
* 1. INTEGER_ARRAY parent
* 2. INTEGER_ARRAY values
*/
static int bestPath = Integer.MIN_VALUE;
public static int bestSumDownwardTreePath(List<Integer> parent, List<Integer> values) {
if(parent.size() == 1) return values.get(0);
Map<Integer, List<Integer>> tree = new HashMap<>();
for(int i = 1; i < parent.size(); i++) {
List<Integer> temp = tree.getOrDefault(parent.get(i), null);
if(temp == null) {
temp = new ArrayList<>();
temp.add(i);
tree.put(parent.get(i), temp);
}
else {
temp.add(i);
}
}
findBestSum(parent, values, tree, 0, 0);
return bestPath;
}
public static void findBestSum(List<Integer> parent, List<Integer> values,
Map<Integer, List<Integer>> tree, int root, int sum) {
sum = sum + values.get(root);
bestPath = Math.max(bestPath, sum);
sum = Math.max(0, sum);
if(tree.get(root) == null) return;
for(Integer child: tree.get(root)) {
findBestSum(parent, values, tree, child, sum);
}
}
}
public class Solution {
public static void main(String[] args) throws IOException {
BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(System.getenv("OUTPUT_PATH")));
int parentCount = Integer.parseInt(bufferedReader.readLine().trim());
List<Integer> parent = IntStream.range(0, parentCount).mapToObj(i -> {
try {
return bufferedReader.readLine().replaceAll("\\s+$", "");
} catch (IOException ex) {
throw new RuntimeException(ex);
}
})
.map(String::trim)
.map(Integer::parseInt)
.collect(toList());
int valuesCount = Integer.parseInt(bufferedReader.readLine().trim());
List<Integer> values = IntStream.range(0, valuesCount).mapToObj(i -> {
try {
return bufferedReader.readLine().replaceAll("\\s+$", "");
} catch (IOException ex) {
throw new RuntimeException(ex);
}
})
.map(String::trim)
.map(Integer::parseInt)
.collect(toList());
int result = Result.bestSumDownwardTreePath(parent, values);
bufferedWriter.write(String.valueOf(result));
bufferedWriter.newLine();
bufferedReader.close();
bufferedWriter.close();
}
}

Insertion Sort for Singly Linked List [EXTERNAL]

I'm not sure where to start, but this is messy. Basically I need to write an Insertion Sort method for singly linked list - which causes enough problems, because usually for Insertion Sort - you're supposed to go through array/list elements backwards - which implementing into a singly linked list seems pointless, because the point of it - is that you're only capable of going forwards in the list and in addition to that -> I need to execute "swap" operations externally, which I do not completely understand how to perform that while using list structure.
This is my ArrayClass and Swap method that I used:
class MyFileArray : DataArray
{
public MyFileArray(string filename, int n, int seed)
{
double[] data = new double[n];
length = n;
Random rand = new Random(seed);
for (int i = 0; i < length; i++)
{
data[i] = rand.NextDouble();
}
if (File.Exists(filename)) File.Delete(filename);
try
{
using (BinaryWriter writer = new BinaryWriter(File.Open(filename,
FileMode.Create)))
{
for (int j = 0; j < length; j++)
writer.Write(data[j]);
}
}
catch (IOException ex)
{
Console.WriteLine(ex.ToString());
}
}
public FileStream fs { get; set; }
public override double this[int index]
{
get
{
Byte[] data = new Byte[8];
fs.Seek(8 * index, SeekOrigin.Begin);
fs.Read(data, 0, 8);
double result = BitConverter.ToDouble(data, 0);
return result;
}
}
public override void Swap(int j, double a)
{
Byte[] data = new Byte[16];
BitConverter.GetBytes(a).CopyTo(data, 0);
fs.Seek(8 * (j + 1), SeekOrigin.Begin);
fs.Write(data, 0, 8);
}
}
And this is my Insertion Sort for array:
public static void InsertionSort(DataArray items)
{
double key;
int j;
for (int i = 1; i < items.Length; i++)
{
key = items[i];
j = i - 1;
while (j >= 0 && items[j] > key)
{
items.Swap(j, items[j]);
j = j - 1;
}
items.Swap(j, key);
}
}
Now I somehow have to do the same exact thing - however using Singly Linked List, I'm given this kind of class to work with (allowed to make changes):
class MyFileList : DataList
{
int prevNode;
int currentNode;
int nextNode;
public MyFileList(string filename, int n, int seed)
{
length = n;
Random rand = new Random(seed);
if (File.Exists(filename)) File.Delete(filename);
try
{
using (BinaryWriter writer = new BinaryWriter(File.Open(filename,
FileMode.Create)))
{
writer.Write(4);
for (int j = 0; j < length; j++)
{
writer.Write(rand.NextDouble());
writer.Write((j + 1) * 12 + 4);
}
}
}
catch (IOException ex)
{
Console.WriteLine(ex.ToString());
}
}
public FileStream fs { get; set; }
public override double Head()
{
Byte[] data = new Byte[12];
fs.Seek(0, SeekOrigin.Begin);
fs.Read(data, 0, 4);
currentNode = BitConverter.ToInt32(data, 0);
prevNode = -1;
fs.Seek(currentNode, SeekOrigin.Begin);
fs.Read(data, 0, 12);
double result = BitConverter.ToDouble(data, 0);
nextNode = BitConverter.ToInt32(data, 8);
return result;
}
public override double Next()
{
Byte[] data = new Byte[12];
fs.Seek(nextNode, SeekOrigin.Begin);
fs.Read(data, 0, 12);
prevNode = currentNode;
currentNode = nextNode;
double result = BitConverter.ToDouble(data, 0);
nextNode = BitConverter.ToInt32(data, 8);
return result;
}
To be completely honest - I'm not sure neither how I'm supposed to implement Insertion Sort nor How then translate it into an external sort. I've used this code for not external sorting previously:
public override void InsertionSort()
{
sorted = null;
MyLinkedListNode current = headNode;
while (current != null)
{
MyLinkedListNode next = current.nextNode;
sortedInsert(current);
current = next;
}
headNode = sorted;
}
void sortedInsert(MyLinkedListNode newnode)
{
if (sorted == null || sorted.data >= newnode.data)
{
newnode.nextNode = sorted;
sorted = newnode;
}
else
{
MyLinkedListNode current = sorted;
while (current.nextNode != null && current.nextNode.data < newnode.data)
{
current = current.nextNode;
}
newnode.nextNode = current.nextNode;
current.nextNode = newnode;
}
}
So if someone could maybe give some kind of tips/explanations - or maybe if you have ever tried this - code examples how to solve this kind of problem, would be appreciated!
I actually have solved this fairly recently.
Here's the code sample that you can play around with, it should work out of the box.
public class SortLinkedList {
public static class LinkListNode {
private Integer value;
LinkListNode nextNode;
public LinkListNode(Integer value, LinkListNode nextNode) {
this.value = value;
this.nextNode = nextNode;
}
public Integer getValue() {
return value;
}
public void setValue(Integer value) {
this.value = value;
}
public LinkListNode getNextNode() {
return nextNode;
}
public void setNextNode(LinkListNode nextNode) {
this.nextNode = nextNode;
}
#Override
public String toString() {
return this.value.toString();
}
}
public static void main(String...args) {
LinkListNode f = new LinkListNode(12, null);
LinkListNode e = new LinkListNode(11, f);
LinkListNode c = new LinkListNode(13, e);
LinkListNode b = new LinkListNode(1, c);
LinkListNode a = new LinkListNode(5, b);
print(sort(a));
}
public static void print(LinkListNode aList) {
LinkListNode iterator = aList;
while (iterator != null) {
System.out.println(iterator.getValue());
iterator = iterator.getNextNode();
}
}
public static LinkListNode sort(LinkListNode aList){
LinkListNode head = new LinkListNode(null, aList);
LinkListNode fringePtr = aList.getNextNode();
LinkListNode ptrBeforeFringe = aList;
LinkListNode findPtr;
LinkListNode prev;
while(fringePtr != null) {
Integer valueToInsert = fringePtr.getValue();
findPtr = head.getNextNode();
prev = head;
while(findPtr != fringePtr) {
System.out.println("fringe=" + fringePtr);
System.out.println(findPtr);
if (valueToInsert <= findPtr.getValue()) {
LinkListNode tmpNode = fringePtr.getNextNode();
fringePtr.setNextNode(findPtr);
prev.setNextNode(fringePtr);
ptrBeforeFringe.setNextNode(tmpNode);
fringePtr = ptrBeforeFringe;
break;
}
findPtr = findPtr.getNextNode();
prev = prev.getNextNode();
}
fringePtr = fringePtr.getNextNode();
if (ptrBeforeFringe.getNextNode() != fringePtr) {
ptrBeforeFringe = ptrBeforeFringe.getNextNode();
}
}
return head.getNextNode();
}
}
From a high level, what you are doing is you are keeping track of a fringe ptr, and you are inserting a node s.t. the it is in the correct spot in the corresponding sublist.
For instance, suppose I have this LL.
3->2->5->4
The first iteration, I have fringePtr at 2, and I want to insert 2 somewhere in the sublist that's before the fringe ptr, so I basically traverse starting from head going to the fringe ptr until the value is less than the current value. I also have a previous keeping track of the previous ptr (to account for null, I have a sentinel node at the start of my traversal so I can insert it at the head).
Then, when I see that it's less than the current, I know I need to insert it next to the previous, so I have to:
use a temporary ptr to keep track of my previous's current next.
bind previuos's next to my toInsert node.
bind my toInsert node's next to my temp node.
Then, to continue, you just advance your fringe ptr and try again, basically building up a sublist that is sorted as you move along until fringe hits the end.
i.e. the iterations will look like
1. 3->2->5->4
^
2. 2->3->5->4
^
3. 2->3->5->4
^
4. 2->3->4->5 FIN.

heap data structure via pointers

Suggest an efficient way to find last position in heap satisfying the following conditions:
1) via pointers not via array
2) where we can insert or delete node
I could find it in O(n) time complexity but suggest a way which is of O(logn) or O(1) time complexity.
I'm assuming here that you mean a binary heap.
If you know how many nodes are in the heap, you can find the last node in O(log n) time by converting the count to binary, and then following the path of bits from high to low. That is, take the left node if the bit is 0, and the right node if the bit is 1.
For example, if there are three nodes in the heap, the binary representation of the count is 11. The root is always the first node, leaving you with 1. Then you take the right branch to get the last node.
Say there are 5 nodes in the heap:
1
2 3
4 5
In binary, that's 101. So you take the root. The next digit is 0 so you take the left branch. The next digit is 1, so you take the right branch, leaving you at node 5.
If you want the next available slot, you add 1 to the count and do the same thing. So 6 would be 110. You take the root, then the right branch, and the left child of 3 is where you'd add the new node.
You can do the same kind of thing with any d-ary heap, except that instead of converting to binary you convert to base d. So if your heap nodes each have up to three children, you'd convert the count to base 3, and use essentially the same logic as above.
An alternative is to maintain a reference to the last node in the heap, updating it every time you modify the heap. Or, if you want to know where the next node would be placed, you maintain a reference to the first node that doesn't have two children. That's O(1), but requires bookkeeping on every insertion or deletion.
I am answering my own question, There is no need to keep track of next pointer while inserting in heap (heap via pointers), even there is no need to keep track of parent, i am attaching running java code for heap, all possible method are included in it, getMin() = O(1), insert() = O(logn), extractMin = O(logn), decreasePriorityOfHead = O(logn), I have implemented it for generic code so it would be helpful to understand generic concept also.
class MinHeap<E extends Comparable<E>> {
private DoublyNode<E> root;
private int size = 0;
public DoublyNode<E> getRoot() {
return root;
}
public void setRoot(DoublyNode<E> root) {
this.root = root;
}
public int getSize() {
return size;
}
public void setSize(int size) {
this.size = size;
}
public MinHeap() {
}
public MinHeap(E data) {
this.root = new DoublyNode<E>(data);
this.size++;
}
private class NodeLevel<E extends Comparable<E>> {
private int level;
private DoublyNode<E> node;
public int getLevel() {
return level;
}
public void setLevel(int level) {
this.level = level;
}
public DoublyNode<E> getNode() {
return node;
}
public void setNode(DoublyNode<E> node) {
this.node = node;
}
public NodeLevel(DoublyNode<E> node, int level) {
this.node = node;
this.level = level;
}
}
public void insert(E data) {
if (this.size == 0) {
this.root = new DoublyNode<E>(data);
this.size++;
return;
}
DoublyNode<E> tempRoot = this.root;
Integer insertingElementPosition = this.size + 1;
char[] insertingElementArray = Integer.toBinaryString(
insertingElementPosition).toCharArray();
DoublyNode<E> newNode = new DoublyNode<E>(data);
int i;
for (i = 1; i < insertingElementArray.length - 1; i++) {
if (newNode.getData().compareTo(tempRoot.getData()) < 0) {
this.swap(newNode, tempRoot);
}
char c = insertingElementArray[i];
if (c == '0') {
tempRoot = tempRoot.getLeft();
} else {
tempRoot = tempRoot.getRight();
}
}
// newNode.setParent(tempRoot);
if (newNode.getData().compareTo(tempRoot.getData()) < 0) {
this.swap(newNode, tempRoot);
}
if (insertingElementArray[i] == '0') {
tempRoot.setLeft(newNode);
} else {
tempRoot.setRight(newNode);
}
this.size++;
}
public void swap(DoublyNode<E> node1, DoublyNode<E> node2) {
E temp = node1.getData();
node1.setData(node2.getData());
node2.setData(temp);
}
public E getMin() {
if (this.size == 0) {
return null;
}
return this.root.getData();
}
public void heapifyDownWord(DoublyNode<E> temp) {
if (temp == null) {
return;
}
DoublyNode<E> smallerChild = this.getSmallerChild(temp);
if (smallerChild == null) {
return;
}
if (smallerChild.getData().compareTo(temp.getData()) < 0) {
this.swap(temp, smallerChild);
this.heapifyDownWord(smallerChild);
}
}
public DoublyNode<E> getSmallerChild(DoublyNode<E> temp) {
if (temp.getLeft() != null && temp.getRight() != null) {
return (temp.getLeft().getData()
.compareTo(temp.getRight().getData()) < 0) ? temp.getLeft()
: temp.getRight();
} else if (temp.getLeft() != null) {
return temp.getLeft();
} else {
return temp.getRight();
}
}
public E extractMin() {
if (this.root == null) {
return null;
}
E temp = this.root.getData();
if (this.root.getLeft() == null && this.root.getRight() == null) {
this.root = null;
this.size--;
return temp;
}
DoublyNode<E> parentOfLastData = this.getParentOfLastData();
if (parentOfLastData.getRight() != null) {
this.root.setData(parentOfLastData.getRight().getData());
parentOfLastData.setRight(null);
} else {
this.root.setData(parentOfLastData.getLeft().getData());
parentOfLastData.setLeft(null);
}
this.heapifyDownWord(this.root);
return temp;
}
public DoublyNode<E> getParentOfLastData() {
if (this.size == 0) {
return null;
}
DoublyNode<E> tempRoot = this.root;
Integer insertingElementPosition = this.size;
char[] insertingElementArray = Integer.toBinaryString(
insertingElementPosition).toCharArray();
int i;
for (i = 1; i < insertingElementArray.length - 1; i++) {
char c = insertingElementArray[i];
if (c == '0') {
tempRoot = tempRoot.getLeft();
} else {
tempRoot = tempRoot.getRight();
}
}
return tempRoot;
}
public DoublyNode<E> getParentOfLastEmptyPosition() {
if (this.size == 0) {
return null;
}
DoublyNode<E> tempRoot = this.root;
Integer insertingElementPosition = this.size + 1;
char[] insertingElementArray = Integer.toBinaryString(
insertingElementPosition).toCharArray();
System.out.println(insertingElementArray.toString());
int i;
for (i = 1; i < insertingElementArray.length - 1; i++) {
char c = insertingElementArray[i];
if (c == '0') {
tempRoot = tempRoot.getLeft();
} else {
tempRoot = tempRoot.getRight();
}
}
return tempRoot;
}
public void print() {
if (this.root == null) {
System.out.println("Heap via pointer is empty!");
return;
}
System.out.println("\n Heap via pointer is:- ");
Queue<NodeLevel<E>> dataQueue = new Queue<NodeLevel<E>>();
Queue<Space> spaceQueue = new Queue<Space>();
dataQueue.enQueue(new NodeLevel<E>(this.root, 1));
int heightOfTree = this.getHeightOfHeap();
Double powerHeghtBST = Math.pow(heightOfTree, 2);
spaceQueue.enQueue(new Space(powerHeghtBST.intValue(), false));
while (!dataQueue.isEmpty()) {
Space space = spaceQueue.deQueue();
NodeLevel<E> nodeLevel = dataQueue.deQueue();
while (space.isNullSpace()) {
space.printNullSpace();
spaceQueue.enQueue(space);
space = spaceQueue.deQueue();
}
space.printFrontSpace();
System.out.print(nodeLevel.getNode().getData().printingData());
space.printBackSpace();
if (nodeLevel.getNode().getLeft() != null) {
dataQueue.enQueue(new NodeLevel<E>(nodeLevel.getNode()
.getLeft(), nodeLevel.getLevel() + 1));
spaceQueue.enQueue(new Space(space.getSpaceSize() / 2, false));
} else {
spaceQueue.enQueue(new Space(space.getSpaceSize() / 2, true));
}
if (nodeLevel.getNode().getRight() != null) {
dataQueue.enQueue(new NodeLevel<E>(nodeLevel.getNode()
.getRight(), nodeLevel.getLevel() + 1));
spaceQueue.enQueue(new Space(space.getSpaceSize() / 2, false));
} else {
spaceQueue.enQueue(new Space(space.getSpaceSize() / 2, true));
}
if (!dataQueue.isEmpty()
&& nodeLevel.getLevel() + 1 == dataQueue.getFrontData()
.getLevel()) {
System.out.println("\n");
}
}
}
public int getHeightOfHeap() {
if (this.size == 0) {
return 0;
}
Double height = Math.log(this.size) / Math.log(2) + 1;
return height.intValue();
}
public void changePriorityOfHeapTop(E data) {
if (this.root == null) {
return;
}
this.root.setData(data);
this.heapifyDownWord(this.root);
}
}
interface Comparable<T> extends java.lang.Comparable<T> {
/**
* this methos returns a string of that data which to be shown during
* printing tree
*
* #return
*/
public String printingData();
}
public class PracticeMainClass {
public static void main(String[] args) {
MinHeap<Student> minHeap1 = new MinHeap<Student>();
minHeap1.insert(new Student(50, "a"));
minHeap1.insert(new Student(20, "a"));
minHeap1.insert(new Student(60, "a"));
minHeap1.insert(new Student(30, "a"));
minHeap1.insert(new Student(40, "a"));
minHeap1.insert(new Student(70, "a"));
minHeap1.insert(new Student(10, "a"));
minHeap1.insert(new Student(55, "a"));
minHeap1.insert(new Student(35, "a"));
minHeap1.insert(new Student(45, "a"));
minHeap1.print();
minHeap1.getMin();
minHeap1.print();
System.out
.println("\nminimum is:- " + minHeap1.getMin().printingData());
minHeap1.print();
System.out.println("\nminimum is:- "
+ minHeap1.extractMin().printingData());
minHeap1.print();
minHeap1.changePriorityOfHeapTop(new Student(75, "a"));
minHeap1.print();
}
}
class DoublyNode<E extends Comparable<E>> {
private E data;
private DoublyNode<E> left;
private DoublyNode<E> right;
// private DoublyNode<E> parent;
public DoublyNode() {
}
public DoublyNode(E data) {
this.data = data;
}
public E getData() {
return data;
}
public void setData(E data) {
this.data = data;
}
public DoublyNode<E> getLeft() {
return left;
}
public void setLeft(DoublyNode<E> left) {
this.left = left;
}
public DoublyNode<E> getRight() {
return right;
}
public void setRight(DoublyNode<E> right) {
this.right = right;
}
// public DoublyNode<E> getParent() {
// return parent;
// }
// public void setParent(DoublyNode<E> parent) {
// this.parent = parent;
// }
}
class Space {
private boolean isNullSpace = false;
private String frontSpace;
private String backSpace;
private String nullSpace;
private int spaceSize;
public boolean isNullSpace() {
return isNullSpace;
}
public void setNullSpace(boolean isNullSpace) {
this.isNullSpace = isNullSpace;
}
public int getSpaceSize() {
return spaceSize;
}
public void setSpaceSize(int spaceSize) {
this.spaceSize = spaceSize;
}
public Space(int spaceSize, boolean isNullSpace) {
this.isNullSpace = isNullSpace;
this.spaceSize = spaceSize;
if (spaceSize == 0) {
this.frontSpace = "";
this.backSpace = "";
this.nullSpace = " ";
} else if (spaceSize == 1) {
this.frontSpace = " ";
this.backSpace = "";
this.nullSpace = " ";
} else if (spaceSize == 2) {
this.frontSpace = " ";
this.backSpace = "";
this.nullSpace = " ";
} else {
this.frontSpace = String.format("%" + (spaceSize) + "s", " ");
this.backSpace = String.format("%" + (spaceSize - 2) + "s", " ");
this.nullSpace = String.format("%" + 2 * (spaceSize) + "s", " ");
}
}
public void printFrontSpace() {
System.out.print(this.frontSpace);
}
public void printBackSpace() {
System.out.print(this.backSpace);
}
public void printNullSpace() {
System.out.print(this.nullSpace);
}
}
class Queue<E> {
private Node<E> front;
private Node<E> rear;
private int queueSize = 0;
public Queue() {
}
public Queue(E data) {
this.front = new Node(data);
this.rear = this.front;
}
public void enQueue(E data) {
if (this.rear == null) {
this.rear = new Node(data);
this.front = this.rear;
} else {
Node newNode = new Node(data);
this.rear.setNext(newNode);
this.rear = newNode;
}
this.queueSize++;
}
public E deQueue() {
E returnValue;
if (this.front == null) {
return null;
} else if (this.front == this.rear) {
returnValue = this.front.getData();
this.front = null;
this.rear = null;
} else {
returnValue = this.front.getData();
this.front = this.front.getNext();
}
this.queueSize--;
return returnValue;
}
public void print() {
Node temp = this.front;
System.out.print("\n Queue is:- ");
if (temp == null) {
System.out.println(" Empty! ");
}
while (temp != null) {
System.out.print(temp.getData() + ",");
temp = temp.getNext();
}
}
public int getQueueSize() {
return queueSize;
}
public E getFrontData() {
if (this.front == null) {
System.out.println("queue is empty!");
return null;
}
return this.front.getData();
}
public E getRearData() {
if (this.rear == null) {
System.out.println("queue is empty!");
return null;
}
return this.rear.getData();
}
public boolean isEmpty() {
return this.front == null;
}
}
class Node<E> {
private E data;
private Node next;
public Node(E data) {
this.data = data;
}
public E getData() {
return data;
}
public void setData(E data) {
this.data = data;
}
public Node getNext() {
return next;
}
public void setNext(Node next) {
this.next = next;
}
}
class Student implements Comparable<Student> {
private int id;
private String name;
#Override
public int compareTo(Student student) {
if (this.id == student.id) {
return 0;
} else if (this.id < student.id) {
return -1;
} else {
return 1;
}
}
public Student(int id, String name) {
this.id = id;
this.name = name;
}
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
#Override
public String printingData() {
// String printingData = "{ id: "+this.id+" name: "+this.name+" }";
String printingData = String.valueOf(this.id);
return printingData;
}
}
Output of this code is:-
Heap via pointer is:-
10
30 20
35 40 70 60
55 50 45
Heap via pointer is:-
10
30 20
35 40 70 60
55 50 45
minimum is:- 10
Heap via pointer is:-
10
30 20
35 40 70 60
55 50 45
minimum is:- 10
Heap via pointer is:-
20
30 45
35 40 70 60
55 50
Heap via pointer is:-
30
35 45
50 40 70 60
55 75

A* search algorithm infinite loop

Like the title says, This A* search algorithm never stops searching. I'm trying to create a working A* search algorithm for point-click walking in a 2D tile-based game, some tiles are walk-able and some tiles are solid.
PathFinder.java:
public class PathFinder {
public static List<Node> findPath(Map map, int sx, int sy, int dx, int dy) {
if(map.getTile(dx, dy).isSolid()) return null;
Node startNode = new Node(new Vector2i(sx, sy), null, 0, 0);
Vector2i goal = new Vector2i(dx, dy);
List<Node> open = new ArrayList<>();
HashSet<Node> closed = new HashSet<>();
open.add(startNode);
while(open.size() > 0) {
Node currentNode = open.get(0);
for(int i = 1; i < open.size(); i++) {
if(open.get(i).fCost < currentNode.fCost ||
open.get(i).fCost == currentNode.fCost && open.get(i).hCost < currentNode.hCost) {
currentNode = open.get(i);
}
}
open.remove(currentNode);
closed.add(currentNode);
if(currentNode.tile == goal){
System.out.println("returning path!");
return retracePath(startNode, currentNode);
}
for(Tile tile : map.getNeighbors(currentNode)) {
Vector2i neighbor = new Vector2i(tile.getTileX(), tile.getTileY());
if(tile.isSolid() || getNodeInHashSetForPosition(neighbor, closed) != null) {
continue;
}
double gCost = currentNode.gCost + getNodeDistance(currentNode.tile, neighbor);
if(currentNode.gCost < gCost || !vecInList(neighbor, open)) {
double hCost = getNodeDistance(neighbor, goal);
Node node = new Node(neighbor, currentNode, gCost, hCost);
if(!open.contains(node)) {
open.add(node);
}
}
}
}
return null;
}
private static List<Node> retracePath(Node startNode, Node endNode) {
List<Node> path = new ArrayList<>();
Node currentNode = endNode;
while(currentNode != startNode) {
path.add(currentNode);
currentNode = currentNode.parent;
}
List<Node> finalPath = new ArrayList<>();
for(int i = path.size() - 1; i > 0; i--) {
finalPath.add(path.get(i));
}
return finalPath;
}
private static boolean vecInList(Vector2i vec, List<Node> list) {
for(Node n : list) {
if(n.tile.equals(vec)) return true;
}
return false;
}
private static boolean vecInList(Vector2i vec, HashSet<Node> list) {
for(Node n : list) {
if(n.tile.equals(vec)) return true;
}
return false;
}
private static Node getNodeInHashSetForPosition(Vector2i position, HashSet<Node> hashSet) {
for(Node n : hashSet) {
if(n.tile.equals(position)) return n;
}
return null;
}
private static double getNodeDistance(Vector2i nodeA, Vector2i nodeB) {
int dstX = Math.abs(nodeA.x - nodeB.x);
int dstY = Math.abs(nodeA.y - nodeB.y);
if(dstX > dstY) return 14 * dstY + 10 * (dstX - dstY);
return (14 * dstX) + (10 * (dstY - dstX));
}
}
Node.java
public class Node {
public Vector2i tile;
public Node parent;
public double fCost, gCost, hCost; //a cost is like the distance it takes to get to that point. these are used to find the lowest cost way to get from start point A to end point B.
//gCost is the sum of all of our node to node, or tile to tile, distances.
//hCost is the direct distance from the start node to the end node.
//fCost is the total cost for all the ways we calculate to get to the end node/tile.
public Node(Vector2i tile, Node parent, double gCost, double hCost) { //NODE CONSTRUCTOR STARt
this.tile = tile;
this.parent = parent;
this.gCost = gCost;
this.hCost = hCost;
this.fCost = this.gCost + this.hCost;
}//NODE CONSTRUCTOR END
}
change the following:
if(!open.contains(node)) {
to:
if(!veckInList(neighbor, open) {

BlackBerry - TreeField with CheckBoxField?

Is it possible to add a CheckBoxField to a TreeField in BlackBerry ?
If yes, how do I do it?
Same trick as with ListBox CheckBoxes:
alt text http://img441.imageshack.us/img441/5120/checkboxtree.jpg
class CBTreeField extends VerticalFieldManager implements TreeFieldCallback,
DrawStyle {
boolean[] mBooleanValues = new boolean[] {};
String[] mStringValues = new String[] {};
public boolean getNodeBooleanValue(int node) {
return mBooleanValues[node];
}
public void setNodeBooleanValue(int node, boolean value) {
mBooleanValues[node] = value;
}
TreeField mRootField = null;
public CBTreeField(String rootString, boolean rootBoolean) {
mRootField = new TreeField(this, TreeField.FOCUSABLE);
add(mRootField);
mStringValues = insertAt(mStringValues, 0, rootString);
mBooleanValues = insertAt(mBooleanValues, 0, rootBoolean);
}
public int addSiblingNode(int previousSibling, String stringValue,
boolean booleanValue, Object cookie) {
int index = mRootField.addSiblingNode(previousSibling, cookie);
mBooleanValues = insertAt(mBooleanValues, index, booleanValue);
mStringValues = insertAt(mStringValues, index, stringValue);
return index;
}
public int addChildNode(int parent, String stringValue,
boolean booleanValue, Object cookie) {
int index = mRootField.addChildNode(parent, cookie);
mBooleanValues = insertAt(mBooleanValues, index, booleanValue);
mStringValues = insertAt(mStringValues, index, stringValue);
return index;
}
static boolean[] insertAt(boolean[] inArray, int index, boolean value) {
int newLen = inArray.length + 1;
boolean[] outArray = new boolean[newLen];
for (int i = 0, j = 0; i < newLen; i++, j++) {
outArray[i] = (i != index) ? inArray[j] : value;
if (i == index)
j++;
}
return outArray;
}
static String[] insertAt(String[] inArray, int index, String value) {
int newLen = inArray.length + 1;
String[] outArray = new String[newLen];
for (int i = 0, j = 0; i < newLen; i++, j++) {
outArray[i] = (i != index) ? inArray[j] : value;
if (i == index)
j++;
}
return outArray;
}
public void drawTreeItem(TreeField treeField, Graphics g, int node, int y,
int width, int indent) {
String check = String
.valueOf(mBooleanValues[node] ?
Characters.BALLOT_BOX_WITH_CHECK : Characters.BALLOT_BOX);
g.drawText(check, indent, y, DrawStyle.LEFT);
g.drawText(mStringValues[node], indent + 20, y, DrawStyle.RIGHT
| ELLIPSIS);
}
protected void makeMenu(Menu menu, int instance) {
super.makeMenu(menu, instance);
menu.add(new MenuItem("Change value", 0, 0) {
public void run() {
int node = mRootField.getCurrentNode();
mBooleanValues[node] = !mBooleanValues[node];
invalidate();
}
});
}
}
sample of use:
class Scr extends MainScreen {
public Scr() {
CBTreeField tree = new CBTreeField("root", false);
add(tree);
int ch01 = tree.addChildNode(0, "child 0-1", true, null);
int ch02 = tree.addChildNode(0, "child 0-2", false, null);
int ch03 = tree.addChildNode(0, "child 0-3", false, null);
int ch011 = tree.addChildNode(ch01, "child 0-1-1", false, null);
int ch012 = tree.addChildNode(ch01, "child 0-1-2", true, null);
int ch031 = tree.addChildNode(ch03, "child 0-3-1", true, null);
}
}

Resources