I have a logical expression that I would like to evaluate.
The expression can be nested and consists of T (True) or F (False) and parenthesis.
The parenthesis "(" means "logical OR".
Two terms TF beside each others (or any other two combinations beside each others), should be ANDED (Logical AND).
For example, the expression:
((TFT)T) = true
I need an algorithm for solving this problem. I thought of converting the expression first to disjunctive or conjunctive normal form and then I can easily evaluate the expression. However, I couldn't find an algorithm that normalizes the expression. Any suggestions? Thank you.
The problem statement can be found here:
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=2&category=378&page=show_problem&problem=2967
Edit: I misunderstood part of the problem. In the given logical expression, the AND/OR operators alternate with every parenthesis "(". If we are to represent the expression by a tree, then the AND/OR operators depend on the the sub-tree's depth-level. However, it's initially given that the trees at the deepest level are AND-trees. My task is to evaluate the given expression possibly by constructing the tree.
Thanks for the answers below which clarified the correct requirement of the problem.
Scan the string from left to right. Every time you see a left parenthesis, add a new entry to a stack structure. When you see a right parenthesis, pop the top-most entry on the stack, evaluate it to T or F, pop the stack again, and append the computed value to the popped term. Continue until the end of the string, at which point you will have a string of T and F, and you evaluate it.
To evaluate a string of Ts and Fs, return T if all are T, and F otherwise. So we have...
evaluate(String expression)
1. subexpr = ""
2. for i := 1 to n do
3. if expression[i] == "(" then
4. stack.push(subexpr)
5. subexpr = ""
6. else if expression[i] == ")" then
7. result = evaluateSimple(subexpr)
8. subexpr = stack.pop() + result
9. else subexpr += expression[i]
10. return evaluate2(subexpr)
evaluate2(String expression)
1. for i := 1 to n do
2. if expression[i] == "F" then return "F"
3. return "T"
Or something like that should do it (EDIT: in fact, this does not correctly answer the question, even as asked; see the comments. Leaving this alone since it still gets one going in the right direction). Note that you could just have one function, evaluate, that does what evaluate2 does, but after the first loop, and only to subexpr. This avoids going through the unnecessary copy that would entail, but you'd have less code the other way.
After having looked at the original problem, I think you have misunderstood it.
This question is about an AND/OR tree where the nodes at the deepest level are AND nodes. The logical operatives at the other nodes are determined by this factor - we do not know if they are AND or OR nodes initially, we're only given that the nodes at the deepest level are AND nodes - so the nodes at the next higher level are OR nodes, and the next higher level are AND nodes, and so and so on... the logical operatives interchange between different depths of the tree. This will become clear if you look at the sample AND/OR tree they have provided.
The way I'd approach this problem is to first figure out the logical connective for the root node. This can be done with a single scan over the expression and keeping track of the number of parentheses. Note that each () corresponds to a new node in the tree (the next level of the tree). For an example, consider the expression:
((F(TF))(TF))
When you walk across this expression, first we encounter 3 opening parentheses, 2 closing, 1 opening and then finally 2 closing. If you take the maximum number of parentheses that were open at any given time during this walk, it'll be the maximum depth of this AND/OR tree (3 in the above example).
So what does this mean? If the depth of the tree is odd, then the root node is an AND node, otherwise the root is an OR node (because the connectives alternate).
Once you know the connective of the root node, you can evaluate this expression using a simple stack based machine. We need to keep in mind that every time we open or close a parentheses, we need to flip the connective. Here's how the above expression gets evaluated:
AND |- (•(F(TF))(TF))
Notice that the bullet indicates where we are at the expression (like top of the stack). Then we proceed like below:
OR |- ((•F(TF))(TF)) // flipped the connective because we jumped a node
OR |- ((F•(TF))(TF)) // nothing to evaluate on the current node, push F
AND |- ((F(•TF))(TF))
AND |- ((F(T•F))(TF))
AND |- ((F(TF•))(TF))
AND |- ((F(F•))(TF)) // Two booleans on top, T AND F = F (reduce)
OR |- ((F(F)•)(TF)) // Jumped out of a node, flip the sign
OR |- ((FF•)(TF)) // Completely evaluated node on top, (F) = F (reduce)
OR |- ((F•)(TF)) // Two booleans on top, F OR F = F (reduce)
AND |- ((F)•(TF))
AND |- (F•(TF))
OR |- (F(•TF))
OR |- (F(T•F))
OR |- (F(TF•))
OR |- (F(T•))
AND |- (F(T)•)
AND |- (FT•)
AND |- (F•)
So you get the final answer as F. This has some relation to shift-reduce parsing but the reductions in this case depend on the current depth of the AST we're operating at. I hope you'll be able to translate this idea into code (you'll need a stack and a global variable for keeping track of the current logical operative in force).
Finally, thank you for introducing that site. You might also like this site.
From reading the problem description at the site you linked to, I think you may have misunderstood the problem. Whether you need to "logical AND" or "logical OR" the terms depends on how many levels down you are from the root node.
You can easily solve this problem by parsing the expression into a syntax tree, and then walking the tree recursively, evaluating each sub-expression until you get back up to the root node.
I solved this problem using a different technique than the ones mentioned. And I got it Accepted by the online system judge.
After figuring out the operator at the first level of the tree (Thanks to #Asiri Rathnayake for his idea), I recursively construct the expression tree. During the construction, I scan the string. If the character is '(', then I create a node with the current operator value and add it to the tree. Then, I alternate the operator and go for a deeper recursion level. If the character is 'T', then I create a node with value "True", add it to the tree and continue scanning. If the character is 'F', then I create a node with the value "False", add it to the tree and continue scanning. Finally, if the character is ')', then I return to one level up of the recursion.
At the end, I will have the expression tree completed. Now, all I need to do is a simple evaluation for the tree using basic recursive function.
Below is my C++ code:
#include<iostream>
#include<string>
#include<vector>
#include<algorithm>
using namespace std;
struct Node {
char value;
vector<Node*> children;
};
void ConstructTree (int &index, string X, Node *&node, int op)
{
for(; index<X.size(); index++)
{
if(X[index]=='T')
{
Node *C= new Node;
C->value='T';
node->children.push_back(C);
}
else if(X[index]=='F')
{
Node* C= new Node;
C->value='F';
node->children.push_back(C);
}
else if(X[index]=='(')
{
if(op==0)
{
Node* C= new Node;
C->value='O';
node->children.push_back(C);
}
else
{
Node* C= new Node;
C->value='A';
node->children.push_back(C);
}
index++;
ConstructTree(index,X,node->children[node->children.size()-1],1-op);
}
else
return;
}
}
bool evaluateTree(Node* node)
{
if(node->value=='T')
return true;
else if(node->value=='F')
return false;
else if(node->value=='O')
{
for(int i=0; i<node->children.size(); i++)
if(evaluateTree(node->children[i])==true)
return true;
return false;
}
else if(node->value=='A')
{
for(int i=0; i<node->children.size(); i++)
if(evaluateTree(node->children[i])==false)
return false;
return true;
}
}
int main()
{
string X;
int testCase=1;
while(cin>>X)
{
if(X=="()")
break;
int index=0;
int op=-1;
int P=0;
int max=0;
for(int i=0; i<X.size(); i++)
{
if(X[i]=='(')
P++;
if(X[i]==')')
P--;
if(P>max)
max=P;
}
if(max%2==0)
op=0; //OR
else
op=1; //AND
Node* root = new Node;
if(op==0)
root->value='O';
else
root->value='A';
index++;
ConstructTree(index,X,root,1-op);
if(evaluateTree(root))
cout<<testCase<<". true"<<endl;
else
cout<<testCase<<". false"<<endl;
testCase++;
}
}
Related
I am looking for a non-recursive Depth first search algorithm to find all simple paths between two points in undirected graphs (cycles are possible).
I checked many posts, all showed recursive algorithm.
seems no one interested in non-recursive version.
a recursive version is like this;
void dfs(Graph G, int v, int t)
{
path.push(v);
onPath[v] = true;
if (v == t)
{
print(path);
}
else
{
for (int w : G.adj(v))
{
if (!onPath[w])
dfs(G, w, t);
}
}
path.pop();
onPath[v] = false;
}
so, I tried it as (non-recursive), but when i check it, it computed wrong
void dfs(node start,node end)
{
stack m_stack=new stack();
m_stack.push(start);
while(!m_stack.empty)
{
var current= m_stack.pop();
path.push(current);
if (current == end)
{
print(path);
}
else
{
for ( node in adj(current))
{
if (!path.contain(node))
m_stack.push(node);
}
}
path.pop();
}
the test graph is:
(a,b),(b,a),
(b,c),(c,b),
(b,d),(d,b),
(c,f),(f,c),
(d,f),(f,d),
(f,h),(h,f).
it is undirected, that is why there are (a,b) and (b,a).
If the start and end nodes are 'a' and 'h', then there should be two simple paths:
a,b,c,f,h
a,b,d,f,h.
but that algorithm could not find both.
it displayed output as:
a,b,d,f,h,
a,b,d.
stack become at the start of second path, that is the problem.
please point out my mistake when changing it to non-recursive version.
your help will be appreciated!
I think dfs is a pretty complicated algorithm especially in its iterative form. The most important part of the iterative version is the insight, that in the recursive version not only the current node, but also the current neighbour, both are stored on the stack. With this in mind, in C++ the iterative version could look like:
//graph[i][j] stores the j-th neighbour of the node i
void dfs(size_t start, size_t end, const vector<vector<size_t> > &graph)
{
//initialize:
//remember the node (first) and the index of the next neighbour (second)
typedef pair<size_t, size_t> State;
stack<State> to_do_stack;
vector<size_t> path; //remembering the way
vector<bool> visited(graph.size(), false); //caching visited - no need for searching in the path-vector
//start in start!
to_do_stack.push(make_pair(start, 0));
visited[start]=true;
path.push_back(start);
while(!to_do_stack.empty())
{
State ¤t = to_do_stack.top();//current stays on the stack for the time being...
if (current.first == end || current.second == graph[current.first].size())//goal reached or done with neighbours?
{
if (current.first == end)
print(path);//found a way!
//backtrack:
visited[current.first]=false;//no longer considered visited
path.pop_back();//go a step back
to_do_stack.pop();//no need to explore further neighbours
}
else{//normal case: explore neighbours
size_t next=graph[current.first][current.second];
current.second++;//update the next neighbour in the stack!
if(!visited[next]){
//putting the neighbour on the todo-list
to_do_stack.push(make_pair(next, 0));
visited[next]=true;
path.push_back(next);
}
}
}
}
No warranty it is bug-free, but I hope you get the gist and at least it finds the both paths in your example.
The path computation is all wrong. You pop the last node before you process it's neighbors. Your code should output just the last node.
The simplest fix is to trust the compiler to optimize the recursive solution sufficiently that it won't matter. You can help by not passing large objects between calls and by avoiding allocating/deallocating many objects per call.
The easy fix is to store the entire path in the stack (instead of just the last node).
A harder fix is that you have 2 types of nodes on the stack. Insert and remove. When you reach a insert node x value you add first remove node x then push to the stack insert node y for all neighbours y. When you hit a remove node x you need to pop the last value (x) from the path. This better simulates the dynamics of the recursive solution.
A better fix is to just do breadth-first-search since that's easier to implement in an iterative fashion.
Question: I have a single linked list (i.e. a list with only pointer to the next node). Additionally this is a circular linked list (in this example, the last node has a pointer to the first node). Every node in the list contains a char.
An example of such a list can be: a->b->c->b->a
Now how can I verify if this list is a pallindrome?
I have thought of the following solution:
Start from the head of list. Find the length of the list and then the mid node. Now start again from the head of the list and keep pushing elements in stack until the mid. Now traverse the list from the mid and pop element. If the value of the popped element is equal to the value of the current node. if not, return false. otherwise, continue until the stack is empty and we've verified all chars. CONS: uses extra stack space :(
Start from the head of list. Find the length of the list and then the mid node. now reverse the 2nd half of this list. and then using 2 pointers (one pointing to start and the other pointing to the mid+1'th element), check if the values are same. if not, return false. else continue until we reach the start node again. CONS: Changing original data structure.
Is there a more elegant way to approach this problem (which hopefully does not use O(n) extra space or changes original list)? I'm interested in the algorithm rather than any specific implementation.
Thanks
Since you're dealing with a single linked list, you must use a little extra space or a lot more extra time.
Your first approach sounds reasonable, but you can determine the length of the list and palindrome-ness in a single run.
We modify the so-called Floyd's Cycle-Finding Algorithm:
two pointers, "slow" and "fast", both start at the list head; the slow pointer advances one list element per iteration, the fast pointer two elements
in each step, the slow pointer pushes the current element on the stack
if the fast pointer reaches the end of the list, the slow pointer points to the middle of the list, so now:
the slow pointer advances to the end of the list, and in each step:
it pops one element from the stack and compares it to the current list element (if they are not equal, return false)
if the slow pointer reaches the end of the list, it is a palindrome
A little extra work is required for lists with an odd number of elements.
This is in pseudo-Haskell (I can't remember the exact syntax these days) and I've written for the non-circular case -- to fix that, just replace the clause matching against [] with whatever condition you use to identify you've come full circle.
p(xs) = q(xs, Just(xs)) != Nothing
q([], maybeYs) = maybeYs
q(x : xs, Nothing) = Nothing
q(x : xs, maybeYs) =
let maybeZs = q(xs, maybeYs) in
case maybeZs of
Nothing -> Nothing
Just (x :: zs) -> Just(zs)
otherwise -> Nothing
Since you know the Linked List does make a cycle, and you are only looking for palindromes starting at head, you can make this easier on yourself.
A -> B -> C -> B -> A
In this case, start with a pointer at head (call it H), and a pointer at head.Left() (call it T).
Now keep moving the head pointer H to the right, and the tail pointer T to the left.
As you walk the list, verify that the values of those elements are equal (i.e. a palindrome).
Your stopping condition however take a bit more. There are two cases:
Both pointers end point at the same element (i.e. odd number of elements)
The H pointer is pointing at the element just to the right of T.
So, you stop if H==T or if H==(T.Right()).
Using this approach (or similar) you visit each element just once.
Use the Tortoise and Hare approach as in the other solutions if you don't know if the linked list is cyclic.
Just paste my implementation so we could compare with each others, full test here:
/**
* Given a circular single linked list and the start pointer, check if it is a palindrome
* use a slow/fast pointer + stack is an elegant way
* tip: wheneve there is a circular linked list, think about using slow/fast pointer
*/
#include <iostream>
#include <stack>
using namespace std;
struct Node
{
char c;
Node* next;
Node(char c) {this->c = c;}
Node* chainNode(char c)
{
Node* p = new Node(c);
p->next = NULL;
this->next = p;
return p;
}
};
bool isPalindrome(Node* pStart)
{
Node* pSlow = pStart;
Node* pFast = pStart;
stack<Node*> s;
bool bEven = false;
while(true)
{
// BUG1: check fast pointer first
pFast = pFast->next;
if(pFast == pStart)
{
bEven = false;
break;
}
else
{
pFast = pFast->next;
if(pFast == pStart)
{
bEven = true;
break;
}
}
pSlow = pSlow->next;
s.push(pSlow);
}
if(s.empty()) return true; // BUG2: a, a->b->a
if(bEven) pSlow = pSlow->next; // BUG3: a->b->c->b->a, a->b->c->d->c->b->a: jump over the center pointer
while(!s.empty())
{
// pop stack and advance linked list
Node* topNode = s.top();
s.pop();
pSlow = pSlow->next;
// check
if(topNode->c != pSlow->c)
{
return false;
}
else
{
if(s.empty()) return true;
}
}
return false;
}
I think we dont need an extra space for this. And this can be done with O(n) complexity.
Modifying Philip's solution:
We modify the so-called Floyd's Cycle-Finding Algorithm:
Two pointers, "slow" and "fast", both start at the list head; the slow pointer advances one list element per iteration, the fast pointer two elements
in each step, the slow pointer pushes the current element on the stack
if the fast pointer reaches the end of the list, the slow pointer points to the middle of the list, so now:
Have another pointer at the start of the linked-list (start pointre) and now -
move the start pointer and the slow pointer one by one and compare them - if they are not equal, return false
- if the slow pointer reaches the end of the list, it is a palindrome
This is O(n) time complexity and no extra space is required.
I need to implement two rank queries [rank(k) and select(r)]. But before I can start on this, I need to figure out how the two functions work.
As far as I know, rank(k) returns the rank of a given key k, and select(r) returns the key of a given rank r.
So my questions are:
1.) How do you calculate the rank of a node in an AVL(self balancing BST)?
2.) Is it possible for more than one key to have the same rank? And if so, what woulud select(r) return?
I'm going to include a sample AVL tree which you can refer to if it helps answer the question.
Thanks!
Your question really boils down to: "how is the term 'rank' normally defined with respect to an AVL tree?" (and, possibly, how is 'select' normally defined as well).
At least as I've seen the term used, "rank" means the position among the nodes in the tree -- i.e., how many nodes are to its left. You're typically given a pointer to a node (or perhaps a key value) and you need to count the number of nodes to its left.
"Select" is basically the opposite -- you're given a particular rank, and need to retrieve a pointer to the specified node (or the key for that node).
Two notes: First, since neither of these modifies the tree at all, it makes no real difference what form of balancing is used (e.g., AVL vs. red/black); for that matter a tree with no balancing at all is equivalent as well. Second, if you need to do this frequently, you can improve speed considerably by adding an extra field to each node recording how many nodes are to its left.
Rank is the number of nodes in the Left sub tree plus one, and is calculated for every node. I believe rank is not a concept specific to AVL trees - it can be calculated for any binary tree.
Select is just opposite to rank. A rank is given and you have to return a node matching that rank.
The following code will perform rank calculation:
void InitRank(struct TreeNode *Node)
{
if(!Node)
{
return;
}
else
{ Node->rank = 1 + NumeberofNodeInTree(Node->LChild);
InitRank(Node->LChild);
InitRank(Node->RChild);
}
}
int NumeberofNodeInTree(struct TreeNode *Node)
{
if(!Node)
{
return 0;
}
else
{
return(1+NumeberofNodeInTree(Node->LChild)+NumeberofNodeInTree(Node->RChild));
}
}
Here is the code i wrote and worked fine for AVL Tree to get the rank of a particular value. difference is just you used a node as parameter and i used a key a parameter. you can modify this as your own way. Sample code:
public int rank(int data){
return rank(data,root);
}
private int rank(int data, AVLNode r){
int rank=1;
while(r != null){
if(data<r.data)
r = r.left;
else if(data > r.data){
rank += 1+ countNodes(r.left);
r = r.right;
}
else{
r.rank=rank+countNodes(r.left);
return r.rank;
}
}
return 0;
}
[N.B] If you want to start your rank from 0 then initialize variable rank=0.
you definitely should have implemented the method countNodes() to execute this code.
What's the best way to create a balanced binary search tree from a sorted singly linked list?
How about creating nodes bottom-up?
This solution's time complexity is O(N). Detailed explanation in my blog post:
http://www.leetcode.com/2010/11/convert-sorted-list-to-balanced-binary.html
Two traversal of the linked list is all we need. First traversal to get the length of the list (which is then passed in as the parameter n into the function), then create nodes by the list's order.
BinaryTree* sortedListToBST(ListNode *& list, int start, int end) {
if (start > end) return NULL;
// same as (start+end)/2, avoids overflow
int mid = start + (end - start) / 2;
BinaryTree *leftChild = sortedListToBST(list, start, mid-1);
BinaryTree *parent = new BinaryTree(list->data);
parent->left = leftChild;
list = list->next;
parent->right = sortedListToBST(list, mid+1, end);
return parent;
}
BinaryTree* sortedListToBST(ListNode *head, int n) {
return sortedListToBST(head, 0, n-1);
}
You can't do better than linear time, since you have to at least read all the elements of the list, so you might as well copy the list into an array (linear time) and then construct the tree efficiently in the usual way, i.e. if you had the list [9,12,18,23,24,51,84], then you'd start by making 23 the root, with children 12 and 51, then 9 and 18 become children of 12, and 24 and 84 become children of 51. Overall, should be O(n) if you do it right.
The actual algorithm, for what it's worth, is "take the middle element of the list as the root, and recursively build BSTs for the sub-lists to the left and right of the middle element and attach them below the root".
Best isn't only about asynmptopic run time. The sorted linked list has all the information needed to create the binary tree directly, and I think this is probably what they are looking for
Note that the first and third entries become children of the second, then the fourth node has chidren of the second and sixth (which has children the fifth and seventh) and so on...
in psuedo code
read three elements, make a node from them, mark as level 1, push on stack
loop
read three elemeents and make a node of them
mark as level 1
push on stack
loop while top two enties on stack have same level (n)
make node of top two entries, mark as level n + 1, push on stack
while elements remain in list
(with a bit of adjustment for when there's less than three elements left or an unbalanced tree at any point)
EDIT:
At any point, there is a left node of height N on the stack. Next step is to read one element, then read and construct another node of height N on the stack. To construct a node of height N, make and push a node of height N -1 on the stack, then read an element, make another node of height N-1 on the stack -- which is a recursive call.
Actually, this means the algorithm (even as modified) won't produce a balanced tree. If there are 2N+1 nodes, it will produce a tree with 2N-1 values on the left, and 1 on the right.
So I think #sgolodetz's answer is better, unless I can think of a way of rebalancing the tree as it's built.
Trick question!
The best way is to use the STL, and advantage yourself of the fact that the sorted associative container ADT, of which set is an implementation, demands insertion of sorted ranges have amortized linear time. Any passable set of core data structures for any language should offer a similar guarantee. For a real answer, see the quite clever solutions others have provided.
What's that? I should offer something useful?
Hum...
How about this?
The smallest possible meaningful tree in a balanced binary tree is 3 nodes.
A parent, and two children. The very first instance of such a tree is the first three elements. Child-parent-Child. Let's now imagine this as a single node. Okay, well, we no longer have a tree. But we know that the shape we want is Child-parent-Child.
Done for a moment with our imaginings, we want to keep a pointer to the parent in that initial triumvirate. But it's singly linked!
We'll want to have four pointers, which I'll call A, B, C, and D. So, we move A to 1, set B equal to A and advance it one. Set C equal to B, and advance it two. The node under B already points to its right-child-to-be. We build our initial tree. We leave B at the parent of Tree one. C is sitting at the node that will have our two minimal trees as children. Set A equal to C, and advance it one. Set D equal to A, and advance it one. We can now build our next minimal tree. D points to the root of that tree, B points to the root of the other, and C points to the... the new root from which we will hang our two minimal trees.
How about some pictures?
[A][B][-][C]
With our image of a minimal tree as a node...
[B = Tree][C][A][D][-]
And then
[Tree A][C][Tree B]
Except we have a problem. The node two after D is our next root.
[B = Tree A][C][A][D][-][Roooooot?!]
It would be a lot easier on us if we could simply maintain a pointer to it instead of to it and C. Turns out, since we know it will point to C, we can go ahead and start constructing the node in the binary tree that will hold it, and as part of this we can enter C into it as a left-node. How can we do this elegantly?
Set the pointer of the Node under C to the node Under B.
It's cheating in every sense of the word, but by using this trick, we free up B.
Alternatively, you can be sane, and actually start building out the node structure. After all, you really can't reuse the nodes from the SLL, they're probably POD structs.
So now...
[TreeA]<-[C][A][D][-][B]
[TreeA]<-[C]->[TreeB][B]
And... Wait a sec. We can use this same trick to free up C, if we just let ourselves think of it as a single node instead of a tree. Because after all, it really is just a single node.
[TreeC]<-[B][A][D][-][C]
We can further generalize our tricks.
[TreeC]<-[B][TreeD]<-[C][-]<-[D][-][A]
[TreeC]<-[B][TreeD]<-[C]->[TreeE][A]
[TreeC]<-[B]->[TreeF][A]
[TreeG]<-[A][B][C][-][D]
[TreeG]<-[A][-]<-[C][-][D]
[TreeG]<-[A][TreeH]<-[D][B][C][-]
[TreeG]<-[A][TreeH]<-[D][-]<-[C][-][B]
[TreeG]<-[A][TreeJ]<-[B][-]<-[C][-][D]
[TreeG]<-[A][TreeJ]<-[B][TreeK]<-[D][-]<-[C][-]
[TreeG]<-[A][TreeJ]<-[B][TreeK]<-[D][-]<-[C][-]
We are missing a critical step!
[TreeG]<-[A]->([TreeJ]<-[B]->([TreeK]<-[D][-]<-[C][-]))
Becomes :
[TreeG]<-[A]->[TreeL->([TreeK]<-[D][-]<-[C][-])][B]
[TreeG]<-[A]->[TreeL->([TreeK]<-[D]->[TreeM])][B]
[TreeG]<-[A]->[TreeL->[TreeN]][B]
[TreeG]<-[A]->[TreeO][B]
[TreeP]<-[B]
Obviously, the algorithm can be cleaned up considerably, but I thought it would be interesting to demonstrate how one can optimize as you go by iteratively designing your algorithm. I think this kind of process is what a good employer should be looking for more than anything.
The trick, basically, is that each time we reach the next midpoint, which we know is a parent-to-be, we know that its left subtree is already finished. The other trick is that we are done with a node once it has two children and something pointing to it, even if all of the sub-trees aren't finished. Using this, we can get what I am pretty sure is a linear time solution, as each element is touched only 4 times at most. The problem is that this relies on being given a list that will form a truly balanced binary search tree. There are, in other words, some hidden constraints that may make this solution either much harder to apply, or impossible. For example, if you have an odd number of elements, or if there are a lot of non-unique values, this starts to produce a fairly silly tree.
Considerations:
Render the element unique.
Insert a dummy element at the end if the number of nodes is odd.
Sing longingly for a more naive implementation.
Use a deque to keep the roots of completed subtrees and the midpoints in, instead of mucking around with my second trick.
This is a python implementation:
def sll_to_bbst(sll, start, end):
"""Build a balanced binary search tree from sorted linked list.
This assumes that you have a class BinarySearchTree, with properties
'l_child' and 'r_child'.
Params:
sll: sorted linked list, any data structure with 'popleft()' method,
which removes and returns the leftmost element of the list. The
easiest thing to do is to use 'collections.deque' for the sorted
list.
start: int, start index, on initial call set to 0
end: int, on initial call should be set to len(sll)
Returns:
A balanced instance of BinarySearchTree
This is a python implementation of solution found here:
http://leetcode.com/2010/11/convert-sorted-list-to-balanced-binary.html
"""
if start >= end:
return None
middle = (start + end) // 2
l_child = sll_to_bbst(sll, start, middle)
root = BinarySearchTree(sll.popleft())
root.l_child = l_child
root.r_child = sll_to_bbst(sll, middle+1, end)
return root
Instead of the sorted linked list i was asked on a sorted array (doesn't matter though logically, but yes run-time varies) to create a BST of minimal height, following is the code i could get out:
typedef struct Node{
struct Node *left;
int info;
struct Node *right;
}Node_t;
Node_t* Bin(int low, int high) {
Node_t* node = NULL;
int mid = 0;
if(low <= high) {
mid = (low+high)/2;
node = CreateNode(a[mid]);
printf("DEBUG: creating node for %d\n", a[mid]);
if(node->left == NULL) {
node->left = Bin(low, mid-1);
}
if(node->right == NULL) {
node->right = Bin(mid+1, high);
}
return node;
}//if(low <=high)
else {
return NULL;
}
}//Bin(low,high)
Node_t* CreateNode(int info) {
Node_t* node = malloc(sizeof(Node_t));
memset(node, 0, sizeof(Node_t));
node->info = info;
node->left = NULL;
node->right = NULL;
return node;
}//CreateNode(info)
// call function for an array example: 6 7 8 9 10 11 12, it gets you desired
// result
Bin(0,6);
HTH Somebody..
This is the pseudo recursive algorithm that I will suggest.
createTree(treenode *root, linknode *start, linknode *end)
{
if(start == end or start = end->next)
{
return;
}
ptrsingle=start;
ptrdouble=start;
while(ptrdouble != end and ptrdouble->next !=end)
{
ptrsignle=ptrsingle->next;
ptrdouble=ptrdouble->next->next;
}
//ptrsignle will now be at the middle element.
treenode cur_node=Allocatememory;
cur_node->data = ptrsingle->data;
if(root = null)
{
root = cur_node;
}
else
{
if(cur_node->data (less than) root->data)
root->left=cur_node
else
root->right=cur_node
}
createTree(cur_node, start, ptrSingle);
createTree(cur_node, ptrSingle, End);
}
Root = null;
The inital call will be createtree(Root, list, null);
We are doing the recursive building of the tree, but without using the intermediate array.
To get to the middle element every time we are advancing two pointers, one by one element, other by two elements. By the time the second pointer is at the end, the first pointer will be at the middle.
The running time will be o(nlogn). The extra space will be o(logn). Not an efficient solution for a real situation where you can have R-B tree which guarantees nlogn insertion. But good enough for interview.
Similar to #Stuart Golodetz and #Jake Kurzer the important thing is that the list is already sorted.
In #Stuart's answer, the array he presented is the backing data structure for the BST. The find operation for example would just need to perform index array calculations to traverse the tree. Growing the array and removing elements would be the trickier part, so I'd prefer a vector or other constant time lookup data structure.
#Jake's answer also uses this fact but unfortunately requires you to traverse the list to find each time to do a get(index) operation. But requires no additional memory usage.
Unless it was specifically mentioned by the interviewer that they wanted an object structure representation of the tree, I would use #Stuart's answer.
In a question like this you'd be given extra points for discussing the tradeoffs and all the options that you have.
Hope the detailed explanation on this post helps:
http://preparefortechinterview.blogspot.com/2013/10/planting-trees_1.html
A slightly improved implementation from #1337c0d3r in my blog.
// create a balanced BST using #len elements starting from #head & move #head forward by #len
TreeNode *sortedListToBSTHelper(ListNode *&head, int len) {
if (0 == len) return NULL;
auto left = sortedListToBSTHelper(head, len / 2);
auto root = new TreeNode(head->val);
root->left = left;
head = head->next;
root->right = sortedListToBSTHelper(head, (len - 1) / 2);
return root;
}
TreeNode *sortedListToBST(ListNode *head) {
int n = length(head);
return sortedListToBSTHelper(head, n);
}
If you know how many nodes are in the linked list, you can do it like this:
// Gives path to subtree being built. If branch[N] is false, branch
// less from the node at depth N, if true branch greater.
bool branch[max depth];
// If rem[N] is true, then for the current subtree at depth N, it's
// greater subtree has one more node than it's less subtree.
bool rem[max depth];
// Depth of root node of current subtree.
unsigned depth = 0;
// Number of nodes in current subtree.
unsigned num_sub = Number of nodes in linked list;
// The algorithm relies on a stack of nodes whose less subtree has
// been built, but whose right subtree has not yet been built. The
// stack is implemented as linked list. The nodes are linked
// together by having the "greater" handle of a node set to the
// next node in the list. "less_parent" is the handle of the first
// node in the list.
Node *less_parent = nullptr;
// h is root of current subtree, child is one of its children.
Node *h, *child;
Node *p = head of the sorted linked list of nodes;
LOOP // loop unconditionally
LOOP WHILE (num_sub > 2)
// Subtract one for root of subtree.
num_sub = num_sub - 1;
rem[depth] = !!(num_sub & 1); // true if num_sub is an odd number
branch[depth] = false;
depth = depth + 1;
num_sub = num_sub / 2;
END LOOP
IF (num_sub == 2)
// Build a subtree with two nodes, slanting to greater.
// I arbitrarily chose to always have the extra node in the
// greater subtree when there is an odd number of nodes to
// split between the two subtrees.
h = p;
p = the node after p in the linked list;
child = p;
p = the node after p in the linked list;
make h and p into a two-element AVL tree;
ELSE // num_sub == 1
// Build a subtree with one node.
h = p;
p = the next node in the linked list;
make h into a leaf node;
END IF
LOOP WHILE (depth > 0)
depth = depth - 1;
IF (not branch[depth])
// We've completed a less subtree, exit while loop.
EXIT LOOP;
END IF
// We've completed a greater subtree, so attach it to
// its parent (that is less than it). We pop the parent
// off the stack of less parents.
child = h;
h = less_parent;
less_parent = h->greater_child;
h->greater_child = child;
num_sub = 2 * (num_sub - rem[depth]) + rem[depth] + 1;
IF (num_sub & (num_sub - 1))
// num_sub is not a power of 2
h->balance_factor = 0;
ELSE
// num_sub is a power of 2
h->balance_factor = 1;
END IF
END LOOP
IF (num_sub == number of node in original linked list)
// We've completed the full tree, exit outer unconditional loop
EXIT LOOP;
END IF
// The subtree we've completed is the less subtree of the
// next node in the sequence.
child = h;
h = p;
p = the next node in the linked list;
h->less_child = child;
// Put h onto the stack of less parents.
h->greater_child = less_parent;
less_parent = h;
// Proceed to creating greater than subtree of h.
branch[depth] = true;
num_sub = num_sub + rem[depth];
depth = depth + 1;
END LOOP
// h now points to the root of the completed AVL tree.
For an encoding of this in C++, see the build member function (currently at line 361) in https://github.com/wkaras/C-plus-plus-intrusive-container-templates/blob/master/avl_tree.h . It's actually more general, a template using any forward iterator rather than specifically a linked list.
This question may be old, but I couldn't think of an answer.
Say, there are two lists of different lengths, merging at a point; how do we know where the merging point is?
Conditions:
We don't know the length
We should parse each list only once.
The following is by far the greatest of all I have seen - O(N), no counters. I got it during an interview to a candidate S.N. at VisionMap.
Make an interating pointer like this: it goes forward every time till the end, and then jumps to the beginning of the opposite list, and so on.
Create two of these, pointing to two heads.
Advance each of the pointers by 1 every time, until they meet. This will happen after either one or two passes.
I still use this question in the interviews - but to see how long it takes someone to understand why this solution works.
Pavel's answer requires modification of the lists as well as iterating each list twice.
Here's a solution that only requires iterating each list twice (the first time to calculate their length; if the length is given you only need to iterate once).
The idea is to ignore the starting entries of the longer list (merge point can't be there), so that the two pointers are an equal distance from the end of the list. Then move them forwards until they merge.
lenA = count(listA) //iterates list A
lenB = count(listB) //iterates list B
ptrA = listA
ptrB = listB
//now we adjust either ptrA or ptrB so that they are equally far from the end
while(lenA > lenB):
ptrA = ptrA->next
lenA--
while(lenB > lenA):
prtB = ptrB->next
lenB--
while(ptrA != NULL):
if (ptrA == ptrB):
return ptrA //found merge point
ptrA = ptrA->next
ptrB = ptrB->next
This is asymptotically the same (linear time) as my other answer but probably has smaller constants, so is probably faster. But I think my other answer is cooler.
If
by "modification is not allowed" it was meant "you may change but in the end they should be restored", and
we could iterate the lists exactly twice
the following algorithm would be the solution.
First, the numbers. Assume the first list is of length a+c and the second one is of length b+c, where c is the length of their common "tail" (after the mergepoint). Let's denote them as follows:
x = a+c
y = b+c
Since we don't know the length, we will calculate x and y without additional iterations; you'll see how.
Then, we iterate each list and reverse them while iterating! If both iterators reach the merge point at the same time, then we find it out by mere comparing. Otherwise, one pointer will reach the merge point before the other one.
After that, when the other iterator reaches the merge point, it won't proceed to the common tail. Instead will go back to the former beginning of the list that had reached merge-point before! So, before it reaches the end of the changed list (i.e. the former beginning of the other list), he will make a+b+1 iterations total. Let's call it z+1.
The pointer that reached the merge-point first, will keep iterating, until reaches the end of the list. The number of iterations it made should be calculated and is equal to x.
Then, this pointer iterates back and reverses the lists again. But now it won't go back to the beginning of the list it originally started from! Instead, it will go to the beginning of the other list! The number of iterations it made should be calculated and equal to y.
So we know the following numbers:
x = a+c
y = b+c
z = a+b
From which we determine that
a = (+x-y+z)/2
b = (-x+y+z)/2
c = (+x+y-z)/2
Which solves the problem.
Well, if you know that they will merge:
Say you start with:
A-->B-->C
|
V
1-->2-->3-->4-->5
1) Go through the first list setting each next pointer to NULL.
Now you have:
A B C
1-->2-->3 4 5
2) Now go through the second list and wait until you see a NULL, that is your merge point.
If you can't be sure that they merge you can use a sentinel value for the pointer value, but that isn't as elegant.
If we could iterate lists exactly twice, than I can provide method for determining merge point:
iterate both lists and calculate lengths A and B
calculate difference of lengths C = |A-B|;
start iterating both list simultaneously, but make additional C steps on list which was greater
this two pointers will meet each other in the merging point
Here's a solution, computationally quick (iterates each list once) but uses a lot of memory:
for each item in list a
push pointer to item onto stack_a
for each item in list b
push pointer to item onto stack_b
while (stack_a top == stack_b top) // where top is the item to be popped next
pop stack_a
pop stack_b
// values at the top of each stack are the items prior to the merged item
You can use a set of Nodes. Iterate through one list and add each Node to the set. Then iterate through the second list and for every iteration, check if the Node exists in the set. If it does, you've found your merge point :)
This arguably violates the "parse each list only once" condition, but implement the tortoise and hare algorithm (used to find the merge point and cycle length of a cyclic list) so you start at List A, and when you reach the NULL at the end you pretend it's a pointer to the beginning of list B, thus creating the appearance of a cyclic list. The algorithm will then tell you exactly how far down List A the merge is (the variable 'mu' according to the Wikipedia description).
Also, the "lambda" value tells you the length of list B, and if you want, you can work out the length of list A during the algorithm (when you redirect the NULL link).
Maybe I am over simplifying this, but simply iterate the smallest list and use the last nodes Link as the merging point?
So, where Data->Link->Link == NULL is the end point, giving Data->Link as the merging point (at the end of the list).
EDIT:
Okay, from the picture you posted, you parse the two lists, the smallest first. With the smallest list you can maintain the references to the following node. Now, when you parse the second list you do a comparison on the reference to find where Reference [i] is the reference at LinkedList[i]->Link. This will give the merge point. Time to explain with pictures (superimpose the values on the picture the OP).
You have a linked list (references shown below):
A->B->C->D->E
You have a second linked list:
1->2->
With the merged list, the references would then go as follows:
1->2->D->E->
Therefore, you map the first "smaller" list (as the merged list, which is what we are counting has a length of 4 and the main list 5)
Loop through the first list, maintain a reference of references.
The list will contain the following references Pointers { 1, 2, D, E }.
We now go through the second list:
-> A - Contains reference in Pointers? No, move on
-> B - Contains reference in Pointers? No, move on
-> C - Contains reference in Pointers? No, move on
-> D - Contains reference in Pointers? Yes, merge point found, break.
Sure, you maintain a new list of pointers, but thats not outside the specification. However the first list is parsed exactly once, and the second list will only be fully parsed if there is no merge point. Otherwise, it will end sooner (at the merge point).
I have tested a merge case on my FC9 x86_64, and print every node address as shown below:
Head A 0x7fffb2f3c4b0
0x214f010
0x214f030
0x214f050
0x214f070
0x214f090
0x214f0f0
0x214f110
0x214f130
0x214f150
0x214f170
Head B 0x7fffb2f3c4a0
0x214f0b0
0x214f0d0
0x214f0f0
0x214f110
0x214f130
0x214f150
0x214f170
Note becase I had aligned the node structure, so when malloc() a node, the address is aligned w/ 16 bytes, see the least 4 bits.
The least bits are 0s, i.e., 0x0 or 000b.
So if your are in the same special case (aligned node address) too, you can use these least 4 bits.
For example when travel both lists from head to tail, set 1 or 2 of the 4 bits of the visiting node address, that is, set a flag;
next_node = node->next;
node = (struct node*)((unsigned long)node | 0x1UL);
Note above flags won't affect the real node address but only your SAVED node pointer value.
Once found somebody had set the flag bit(s), then the first found node should be the merge point.
after done, you'd restore the node address by clear the flag bits you had set. while an important thing is that you should be careful when iterate (e.g. node = node->next) to do clean. remember you had set flag bits, so do this way
real_node = (struct node*)((unsigned long)node) & ~0x1UL);
real_node = real_node->next;
node = real_node;
Because this proposal will restore the modified node addresses, it could be considered as "no modification".
There can be a simple solution but will require an auxilary space. The idea is to traverse a list and store each address in a hash map, now traverse the other list and match if the address lies in the hash map or not. Each list is traversed only once. There's no modification to any list. Length is still unknown. Auxiliary space used: O(n) where 'n' is the length of first list traversed.
this solution iterates each list only once...no modification of list required too..though you may complain about space..
1) Basically you iterate in list1 and store the address of each node in an array(which stores unsigned int value)
2) Then you iterate list2, and for each node's address ---> you search through the array that you find a match or not...if you do then this is the merging node
//pseudocode
//for the first list
p1=list1;
unsigned int addr[];//to store addresses
i=0;
while(p1!=null){
addr[i]=&p1;
p1=p1->next;
}
int len=sizeof(addr)/sizeof(int);//calculates length of array addr
//for the second list
p2=list2;
while(p2!=null){
if(search(addr[],len,&p2)==1)//match found
{
//this is the merging node
return (p2);
}
p2=p2->next;
}
int search(addr,len,p2){
i=0;
while(i<len){
if(addr[i]==p2)
return 1;
i++;
}
return 0;
}
Hope it is a valid solution...
There is no need to modify any list. There is a solution in which we only have to traverse each list once.
Create two stacks, lets say stck1 and stck2.
Traverse 1st list and push a copy of each node you traverse in stck1.
Same as step two but this time traverse 2nd list and push the copy of nodes in stck2.
Now, pop from both stacks and check whether the two nodes are equal, if yes then keep a reference to them. If no, then previous nodes which were equal are actually the merge point we were looking for.
int FindMergeNode(Node headA, Node headB) {
Node currentA = headA;
Node currentB = headB;
// Do till the two nodes are the same
while (currentA != currentB) {
// If you reached the end of one list start at the beginning of the other
// one currentA
if (currentA.next == null) {
currentA = headA;
} else {
currentA = currentA.next;
}
// currentB
if (currentB.next == null) {
currentB = headB;
} else {
currentB = currentB.next;
}
}
return currentB.data;
}
We can use two pointers and move in a fashion such that if one of the pointers is null we point it to the head of the other list and same for the other, this way if the list lengths are different they will meet in the second pass.
If length of list1 is n and list2 is m, their difference is d=abs(n-m). They will cover this distance and meet at the merge point.
Code:
int findMergeNode(SinglyLinkedListNode* head1, SinglyLinkedListNode* head2) {
SinglyLinkedListNode* start1=head1;
SinglyLinkedListNode* start2=head2;
while (start1!=start2){
start1=start1->next;
start2=start2->next;
if (!start1)
start1=head2;
if (!start2)
start2=head1;
}
return start1->data;
}
Here is naive solution , No neeed to traverse whole lists.
if your structured node has three fields like
struct node {
int data;
int flag; //initially set the flag to zero for all nodes
struct node *next;
};
say you have two heads (head1 and head2) pointing to head of two lists.
Traverse both the list at same pace and put the flag =1(visited flag) for that node ,
if (node->next->field==1)//possibly longer list will have this opportunity
//this will be your required node.
How about this:
If you are only allowed to traverse each list only once, you can create a new node, traverse the first list to have every node point to this new node, and traverse the second list to see if any node is pointing to your new node (that's your merge point). If the second traversal doesn't lead to your new node then the original lists don't have a merge point.
If you are allowed to traverse the lists more than once, then you can traverse each list to find our their lengths and if they are different, omit the "extra" nodes at the beginning of the longer list. Then just traverse both lists one step at a time and find the first merging node.
Steps in Java:
Create a map.
Start traversing in the both branches of list and Put all traversed nodes of list into the Map using some unique thing related to Nodes(say node Id) as Key and put Values as 1 in the starting for all.
When ever first duplicate key comes, increment the value for that Key (let say now its value became 2 which is > 1.
Get the Key where the value is greater than 1 and that should be the node where two lists are merging.
We can efficiently solve it by introducing "isVisited" field. Traverse first list and set "isVisited" value to "true" for all nodes till end. Now start from second and find first node where flag is true and Boom ,its your merging point.
Step 1: find lenght of both the list
Step 2 : Find the diff and move the biggest list with the difference
Step 3 : Now both list will be in similar position.
Step 4 : Iterate through list to find the merge point
//Psuedocode
def findmergepoint(list1, list2):
lendiff = list1.length() > list2.length() : list1.length() - list2.length() ? list2.lenght()-list1.lenght()
biggerlist = list1.length() > list2.length() : list1 ? list2 # list with biggest length
smallerlist = list1.length() < list2.length() : list2 ? list1 # list with smallest length
# move the biggest length to the diff position to level both the list at the same position
for i in range(0,lendiff-1):
biggerlist = biggerlist.next
#Looped only once.
while ( biggerlist is not None and smallerlist is not None ):
if biggerlist == smallerlist :
return biggerlist #point of intersection
return None // No intersection found
int FindMergeNode(Node *headA, Node *headB)
{
Node *tempB=new Node;
tempB=headB;
while(headA->next!=NULL)
{
while(tempB->next!=NULL)
{
if(tempB==headA)
return tempB->data;
tempB=tempB->next;
}
headA=headA->next;
tempB=headB;
}
return headA->data;
}
Use Map or Dictionary to store the addressess vs value of node. if the address alread exists in the Map/Dictionary then the value of the key is the answer.
I did this:
int FindMergeNode(Node headA, Node headB) {
Map<Object, Integer> map = new HashMap<Object, Integer>();
while(headA != null || headB != null)
{
if(headA != null && map.containsKey(headA.next))
{
return map.get(headA.next);
}
if(headA != null && headA.next != null)
{
map.put(headA.next, headA.next.data);
headA = headA.next;
}
if(headB != null && map.containsKey(headB.next))
{
return map.get(headB.next);
}
if(headB != null && headB.next != null)
{
map.put(headB.next, headB.next.data);
headB = headB.next;
}
}
return 0;
}
A O(n) complexity solution. But based on an assumption.
assumption is: both nodes are having only positive integers.
logic : make all the integer of list1 to negative. Then walk through the list2, till you get a negative integer. Once found => take it, change the sign back to positive and return.
static int findMergeNode(SinglyLinkedListNode head1, SinglyLinkedListNode head2) {
SinglyLinkedListNode current = head1; //head1 is give to be not null.
//mark all head1 nodes as negative
while(true){
current.data = -current.data;
current = current.next;
if(current==null) break;
}
current=head2; //given as not null
while(true){
if(current.data<0) return -current.data;
current = current.next;
}
}
You can add the nodes of list1 to a hashset and the loop through the second and if any node of list2 is already present in the set .If yes, then thats the merge node
static int findMergeNode(SinglyLinkedListNode head1, SinglyLinkedListNode head2) {
HashSet<SinglyLinkedListNode> set=new HashSet<SinglyLinkedListNode>();
while(head1!=null)
{
set.add(head1);
head1=head1.next;
}
while(head2!=null){
if(set.contains(head2){
return head2.data;
}
}
return -1;
}
Solution using javascript
var getIntersectionNode = function(headA, headB) {
if(headA == null || headB == null) return null;
let countA = listCount(headA);
let countB = listCount(headB);
let diff = 0;
if(countA > countB) {
diff = countA - countB;
for(let i = 0; i < diff; i++) {
headA = headA.next;
}
} else if(countA < countB) {
diff = countB - countA;
for(let i = 0; i < diff; i++) {
headB = headB.next;
}
}
return getIntersectValue(headA, headB);
};
function listCount(head) {
let count = 0;
while(head) {
count++;
head = head.next;
}
return count;
}
function getIntersectValue(headA, headB) {
while(headA && headB) {
if(headA === headB) {
return headA;
}
headA = headA.next;
headB = headB.next;
}
return null;
}
If editing the linked list is allowed,
Then just make the next node pointers of all the nodes of list 2 as null.
Find the data value of the last node of the list 1.
This will give you the intersecting node in single traversal of both the lists, with "no hi fi logic".
Follow the simple logic to solve this problem:
Since both pointer A and B are traveling with same speed. To meet both at the same point they must be cover the same distance. and we can achieve this by adding the length of a list to another.