If I have an image, how can I obtain the values of each pixel in that image using matlab
Thanks.
Images are matrices (2D if grayscale, 3D if colored) in MATLAB.
You can use x(i,j) to access a pixel at location (i,j) in a grayscale image.
If the image is colored, you can use x(i,j,:) to access the r, g, b values in a 3-vector, respectively. If you need individual channels, then, you can use x(i,j,1) for red for example.
You may read this page to learn more.
You can use reshape to extract all the pixel values of the image into a vector with pixel values:
frame = imread('picture.jpg');
frame_size = size(frame);
allpixels = reshape(frame, frame_size(1)*frame_size(2), frame_size(3))
This can be useful when you want to vectorize your Matlab code (to avoid a for loop that goes through every pixel). To get back the original image representation:
frame2 = reshape(allpixels, frame_size);
to get the values at pixel(1,1) we simply write image(1,1).
Related
I have a 2D CNN model where I perform a classification task. My images are all coming from a sensor data after conversion.
So, normally, my way is to convert them into images using the following approach
newsize = (9, 1000)
pic = acc_normalized[0]
img = Image.fromarray(np.uint8(pic*255), 'L')
img = img.resize(newsize)
image_path = "Images_Accel"
image_name = "D1." + str(2)
img.save(f"{image_path}/{image_name}.jpeg")
This is what I obtain:
However, their precision is sort of important. For instance, some of the numerical values are like:
117.79348187327987 or 117.76568758022673.
As you see in the above line, their difference is the digits, when I use uint8, it only takes 117 to when converting it into image pixels and it looks the same, right? But, I'd like to make them different. In some cases, the difference is even at the 8th or 10th digit.
So, when I try to use mode F and save them .jpeg in Image.fromarray line it gives me error and says that PIL cannot write mode F to jpeg.
Then, I tried to first convert them RGB like following;
img = Image.fromarray(pic, 'RGB')
I am not including np.float32 just before pic or not multiplying it by 255 as it is. Then, I convert this image to grayscale. This is what I got for RGB image;
After converting RGB into grayscale:
As you see, it seems that there is a critical different between the first pic and the last pic. So, what should be the proper way to use them in 2D CNN classification? or, should I convert them into RGB and choose grayscale in CNN implementation and a channel of 1? My image dimensions 1000x9. I can even change this dimension like 250x36 or 100x90. It doesn't matter too much. By the way, in the CNN network, I am able to get more than 90% test accuracy when I use the first-type of image.
The main problem here is using which image conversion method I'll be able to take into account those precision differences across the pixels. Would you give me some idea?
---- EDIT -----
Using .tiff format I made some quick comparisons.
First of all, my data looks like the following;
So, if I convert this first reading into an image using the following code where I use np.float64 and L gives me a grayscale image;
newsize = (9, 1000)
pic = acc_normalized[0]
img = Image.fromarray(np.float64(pic), 'L')
img = img.resize(newsize)
image_path = "Images_Accel"
image_name = "D1." + str(2)
img.save(f"{image_path}/{image_name}.tiff")
It gives me this image;
Then, the first 15x9 matrix seems like following image; The contradiction is that if you take a closer look at the numerical array, for instance (1,4) member, it's a complete black where the numerical array is equal to 0.4326132099074307. For grayscale images, black means that it's close to 0 cause it makes white if it's close to 1. However, if it's making a row operation, there is another value closer to 0 and I was expecting to see it black at (1,5) location. If it does a column operation, there is again something wrong. As I said, this data has been already normalized and varies within 0 and 1. So, what's the logic that it converts the array into an image? What kind of operation it does?
Secondly, if I first get an RGB image of the data and then convert it into a grayscale image, why I am not having exactly the same image as what I obtained first? Should the image coming from direct grayscale conversion (L method, np.float64) and the one coming from RGB-based (first I get RGB then convert it to grayscale) be the same? There is a difference in black-white pixels in those images. I do not know why we have it.
---- EDIT 2 ----
.tiff image with F mode and np.float32 gives the following;
I don't really understand your question, but you seem to want to store image differences that are less than 1, i.e. less than the resolution of integer values.
To do so, you need to use an image format that can store floats. JPEG, PNG, GIF, TGA and BMP cannot store floats. Instead, use TIFF, EXR or PFM formats which can handle floats.
Alternatively, you can create 16-bit PNG images wherein each pixel can store values in range 0..65535. So, say the maximum difference you wanted to store was 60 you could calculate the difference and multiply it by 1000 and round it to make an integer in range 0..60000 and store as 16-bit PNG.
You could record the scale factor as a comment within the image if it is variable.
There is no bijection between RGB and Parula, discussed here.
I am thinking how to do well the image processing of files in Parula.
This challenge has been developed from this thread about removing black color from ECG images by extending the case to a generalized problem with Parula colors.
Data:
which is generated by
[X,Y,Z] = peaks(25);
imgParula = surf(X,Y,Z);
view(2);
axis off;
It is not the point of this thread to use this code in your solution to read the second image.
Code:
[imgParula, map, alpha] = imread('http://i.stack.imgur.com/tVMO2.png');
where map is [] and alpha is a completely white image. Doing imshow(imgParula) gives
where you see a lot of interference and lost of resolution because Matlab reads images as RGB, although the actual colormap is Parula.
Resizing this picture does not improve resolution.
How can you read image into corresponding colormap in Matlab?
I did not find any parameter to specify the colormap in reading.
The Problem
There is a one-to-one mapping from indexed colors in the parula colormap to RGB triplets. However, no such one-to-one mapping exists to reverse this process to convert a parula indexed color back to RGB (indeed there are an infinite number ways to do so). Thus, there is no one-to-one correspondence or bijection between the two spaces. The plot below, which shows the R, G, and B values for each parula index, makes this clearer.
This is the case for most indexed colors. Any solution to this problem will be non-unique.
A Built-in Solution
I after playing around with this a bit, I realized that there's already a built-in function that may be sufficient: rgb2ind, which converts RGB image data to indexed image data. This function uses dither (which in turn calls the mex function ditherc) to perform the inverse colormap transformation.
Here's a demonstration that uses JPEG compression to add noise and distort the colors in the original parula index data:
img0 = peaks(32); % Generate sample data
img0 = img0-min(img0(:));
img0 = floor(255*img0./max(img0(:))); % Convert to 0-255
fname = [tempname '.jpg']; % Save file in temp directory
map = parula(256); % Parula colormap
imwrite(img0,map,fname,'Quality',50); % Write data to compressed JPEG
img1 = imread(fname); % Read RGB JPEG file data
img2 = rgb2ind(img1,map,'nodither'); % Convert RGB data to parula colormap
figure;
image(img0); % Original indexed data
colormap(map);
axis image;
figure;
image(img1); % RGB JPEG file data
axis image;
figure;
image(img2); % rgb2ind indexed image data
colormap(map);
axis image;
This should produce images similar to the first three below.
Alternative Solution: Color Difference
Another way to accomplish this task is by comparing the difference between the colors in the RGB image with the RGB values that correspond to each colormap index. The standard way to do this is by calculating ΔE in the CIE L*a*b* color space. I've implemented a form of this in a general function called rgb2map that can be downloaded from my GitHub. This code relies on makecform and applycform in the Image Processing Toolbox to convert from RGB to the 1976 CIE L*a*b* color space.
The following code will produce an image like the one on the right above:
img3 = rgb2map(img1,map);
figure;
image(img3); % rgb2map indexed image data
colormap(map);
axis image;
For each RGB pixel in an input image, rgb2map calculates the color difference between it and every RGB triplet in the input colormap using the CIE 1976 standard. The min function is used to find the index of the minimum ΔE (if more than one minimum value exists, the index of the first is returned). More sophisticated means can be used to select the "best" color in the case of multiple ΔE minima, but they will be more costly.
Conclusions
As a final example, I used an image of the namesake Parula bird to compare the two methods in the figure below. The two results are quite different for this image. If you manually adjust rgb2map to use the more complex CIE 1994 color difference standard, you'll get yet another rendering. However, for images that more closely match the original parula colormap (as above) both should return more similar results. Importantly, rgb2ind benefits from calling mex functions and is almost 100 times faster than rgb2map despite several optimizations in my code (if the CIE 1994 standard is used, it's about 700 times faster).
Lastly, those who want to learn more about colormaps in Matlab, should read this four-part MathWorks blog post by Steve Eddins on the new parula colormap.
Update 6-20-2015: rgb2map code described above updated to use different color space transforms, which improves it's speed by almost a factor of two.
Let's say i have an image like that one:
After some quick messing around, i got a binary image of the axe, like that:
What is the easiest/fastest way to get the contour of that image using GNU/Octave?
In Octave you can use bwboundaries (but I will welcome patches that implement bwtraceboundaries)
octave:1> pkg load image;
octave:2> bw = logical (imread ("http://i.stack.imgur.com/BoQPe.jpg"));
octave:3> boundaries = bwboundaries (bw);
octave:4> boundaries = cell2mat (boundaries);
octave:5> imshow (bw);
octave:6> hold on
octave:7> plot (boundaries(:,2), boundaries(:,1), '.g');
There are a couple of differences here from #Benoit_11 answer:
here we get the boundaries for all the objects in the image. bwboundaries will also accept coordinates as input argument to pick only a single object but I believe that work should be done by further processing your mask (may be due to the jpeg artifacts)
because we get boundaries for all objects, so you get a cell array with the coordinates. This is why we are using dots to plot the boundaries (the default is lines and it will be all over the image as it jumps from one object to other). Also, it is not documented whether the coordinates given are for the continuous boundary, so you should not assume it (again, why we plot dots).
the image that is read seems to have some artifacts, I will guess that is from saving in jpeg.
You can use bwtraceboundary in the Image package. Here is the Matlab implementation but that should be pretty similar using Octave:
First estimate starting pixel to look for boundary and then plot (BW is the image). (Check here )
dim = size(BW);
col = round(dim(2)/2)-90;
row = min(find(BW(:,col)));
boundary = bwtraceboundary(BW,[row, col],'N');
imshow(BW)
hold on;
plot(boundary(:,2),boundary(:,1),'g','LineWidth',3);
Output:
I have a original gray scale image(I m using mammogram image with labels outside image).
I need to remove some objects(Labels) in that image, So i converted that grayscale image to a binary image. Then i followed the answer method provided in
How to Select Object with Largest area
Finally i extracted an Object with largest area as binary image. I want that region in gray scale for accessing and segmenting small objects within that. For example. Minor tissues in region and also should detect its edge.
**
How can i get that separated object region as grayscale image or
anyway to get the largest object region from gray scale directly
without converting to binary or any other way.?
**
(I am new to matlab. I dono whether i explained it correctly or not. If u cant get, I ll provide more detail)
If I understood you correctly, you are looking to have a gray image with only the biggest blob being highlighted.
Code
img = imread(IMAGE_FILEPATH);
BW = im2bw(img,0.2); %%// 0.2 worked to get a good area for the biggest blob
%%// Biggest blob
[L, num] = bwlabel(BW);
counts = sum(bsxfun(#eq,L(:),1:num));
[~,ind] = max(counts);
BW = (L==ind);
%%// Close the biggest blob
[L,num] = bwlabel( ~BW );
counts = sum(bsxfun(#eq,L(:),1:num));
[~,ind] = max(counts);
BW = ~(L==ind);
%%// Original image with only the biggest blob highlighted
img1 = uint8(255.*bsxfun(#times,im2double(img),BW));
%%// Display input and output images
figure,
subplot(121),imshow(img)
subplot(122),imshow(img1)
Output
If I understand your question correctly, you want to use the binary map and access the corresponding pixel intensities in those regions.
If that's the case, then it's very simple. You can use the binary map to identify the spatial co-ordinates of where you want to access the intensities in the original image. Create a blank image, then copy over these intensities over to the blank image using those spatial co-ordinates.
Here's some sample code that you can play around with.
% Assumptions:
% im - Original image
% bmap - Binary image
% Where the output image will be stored
outImg = uint8(zeros(size(im)));
% Find locations in the binary image that are white
locWhite = find(bmap == 1);
% Copy over the intensity values from these locations from
% the original image to the output image.
% The output image will only contain those pixels that were white
% in the binary image
outImg(locWhite) = im(locWhite);
% Show the original and the result side by side
figure;
subplot(1,2,1);
imshow(im); title('Original Image');
subplot(1,2,2);
imshow(outImg); title('Extracted Result');
Let me know if this is what you're looking for.
Method #2
As suggested by Rafael in his comments, you can skip using find all together and use logical statements:
outImg = img;
outImg(~bmap) = 0;
I decided to use find as it less obfuscated for a beginner, even though it is less efficient to do so. Either method will give you the correct result.
Some food for thought
The extracted region that you have in your binary image has several holes. I suspect you would want to grab the entire region without any holes. As such, I would recommend that you fill in these holes before you use the above code. The imfill function from MATLAB works nicely and it accepts binary images as input.
Check out the documentation here: http://www.mathworks.com/help/images/ref/imfill.html
As such, apply imfill on your binary image first, then go ahead and use the above code to do your extraction.
I am working on Image Inpaiting on video project and i am selecting the portion of the image on a screen(ROI) as a rectangle and i am inpaiting that portion of the image. Now i want to save five previous frame from live video(that i can do it) and save the pixels value of that ROI of five frame/image on five different array. I will use that array to generate the background and remove the foreground object.
Any one know how i can save pixel value in array for that selected area?
Thanks in advance.
C++ interface of opencv use cv::Mat for storing image pixel.
The following code shows you how to declare a matrix B "pointing" to a ROI of matrix A.
Matrices are images. ROI is a rectangle (x=0;t=0;width=0;height=100). Use opencv highgui function to save your image.
cv::Mat A(640,480,CV_8C3);
cv::Rect rect(0,0,100,100);
cv::Mat B = A(rect);
cv::imwrite("my_roi.pbg",B);
If you need to read frames from a video, use cv::VideoCapture cap and cap >> frame to grab and retrieve each images as cv::Mat. If you want to go to different position in your video file use cv::VideoCapture::set(..,CV_FRAME_MSEC) , read manual.