Any reference resource for programming language UI experience? - user-interface

Programming languages let their users feel terrible or smooth just like GUI designing does. When it comes with bad syntax features, users endure it with twitching fingers and eyes. And such issues already wasted a lot of time and other resources due to wars between language's fans and opponents ( ex: "goto considered harmful", "Node.js is cancer" ... ).
I wonder why UI designing at least became a researching target and own some stable standard like the distance between of user's mouse and the target component while languages didn't. I know some issues related to semantics, not only syntax. But I seriously feel these arguments should be formalized by some strong enough standards.

It seems there is a course at Cambridge entitled "Usability of Programming Languages" that addresses this exact issue.
From the 2015-16 course page:
A programming language is essentially a means of
communicating between humans and computers. Traditional computer
science research has studied the machine end of the communications
link at great length, but there is a shortage of knowledge and
research methods for understanding the human end of the link. This
course provides practical research skills necessary to make advances
in this essential field.
The same page lists the following recommended reading:
Online proceedings of the Psychology of Programming Interest Group
Cambridge guidance for human participants in technology research
Cairns, P. and Cox, A.L. (2008) Research Methods for Human-Computer Interaction. Cambridge University Press.
Hoc, J.M, Green , T.R.G, Samurcay, R and Gilmore, D.J (Eds.) (1990) Psychology of Programming. Academic Press.
Carroll, J.M. (Ed) (2003). HCI Models, Theories and Frameworks: Toward a multidisciplinary science. Morgan Kaufmann.
The 2015 lecture notes seem like a good place to start: http://www.cl.cam.ac.uk/teaching/1415/P201/p201-lecturenotes-2015.pdf

Related

Resources to learn how to design algorithms like which Nest Thermostat uses?

I am trying to build some smart home devices by myself. And I am very interested in building IoT algorithms like Nest Thermostat does which is able to learn the characteristics of the house and the behavior of the family members.
Though I have some machine learning basics, I barely know about thermal model which is all the researches and methods of Nest based on.
So if I want do some study and create similar algorithms like Nest do by myself, how should I get started? Any suggested references?
You said it yourself - thermal modelling. So read up on thermodynamics. If you don't read on thermodynamics you won't know which part of thermodynamics to read on to model heat distribution in a house.
One of the most important thing about being a programmer is not programming. Programming is almost the least important thing a programmer does (slightly lower than debugging). The most important thing about being a programmer is to understand the requirements of the program.
So someone writing an accounting program should know a bit about accounting. He doesn't need to be an expert but he should at least be able to spot a bug.
Working for big companies you'll find that usually you'll have project managers and systems analysts helping you figure out the requirements. But coding your own project you have to be your own project manager and architect. So you have to do the reading-up.
Now, apart from the general advice above, when writing software to control real-world objects and phenomena you can't get away from knowing about the PID loop (Proportional, Integral, Differential). It's how software thermostats control the temperature of industrial ovens. It's how quadcopters can hover without becoming unstable. It's how Segways balance themselves.
The theory behind PID is more than a hundred years old. It was developed to govern steam engines. But it is so useful and important that we generally still depend on it in electronics.
There's a lot of math-heavy theory out there about PIDs. There are also a lot of less complicated rule-of-thumb guides about PIDs aimed at technicians and mechanics. I suggest reading the simpler less theory-heavy guides first then work your way up if you need to know something.

Human Computer Interaction vs Interaction Design

According to Wikipedia Human Computer Interaction involves the study, planning, and design of the interaction between people (users) and computers.
Interaction Design is the practice of:
understanding users’ needs and goals
designing tools for users to achieve those goals
envisioning all states and transitions of the system
considering limitations of the user’s environment and technology
So what is the difference between studying Master in Human Computer Interaction vs Master in Interaction Design? I think interaction design has a broader scope and includes Human computer interaction as well. which one is more practical?
Human Computer Interaction (HCI) is a subset of Interaction Design. You could be forgiven for thinking that interaction design is rebranding of HCI.
Interaction design can be placed on a continuum which begins with the earliest tools, passes through the industrial revolution and stretches out into Weiser’s utopian predictions. In the early 1900’s Frederick Taylor employed current technologies, photography, moving pictures and statistical analysis to improve work practises. Engineering psychology was born and the terms ‘human factors’, ‘ergonomics’ entered into common lexicon. The explosion of information, brought about by what Grudin (2012:5) refers to as: “technologies and practices for compressing, distributing, and organizing information bloomed…were important inventions that influenced the management of information and organizations in the early 20th century”
The earliest computers, where incredibly expensive and where only accessed by specialists, Grudin (2012:7) reports that: “ENIAC, arguably the first general-purpose computer, was…eight to ten feet high, occupied about 1800 square feet, and consumed as much energy as a small town.” While some notable researchers such as Grace Hopper where concerned with the area of ‘programmer-computer interaction’ (a phrase coined by Grace Hopper), the affordability of these massive machines and their relative scarcity would be the single biggest stumbling block the evolution of usability and theories thereof.
Ivan Sutherland’s PhD thesis “Sketchpad: A man-machine graphical communication system” was groundbreaking rethink of the interface between operators and machines. Blackwell & Rodden write in the introduction (2003: 4) that while Sutherland’s demo could only run on one modified TX-2 in laboratory, it was: “one of the first graphical user interfaces. It exploited the light-pen, predecessor of the mouse, allowing the user to point at and interact with objects displayed on the screen.”
Sutherland’s ideas had a major impact on the work on Xerox’s Star’s designers, they used his idea of ‘icons’, a ‘GUI’ (Graphic User Interface), pointer control (in their case a mouse). Johnson et al (1989:11) reports that his team:
“assumed that the target users were interested in getting their work done and not at all interested in computers. Therefore, an important design goal was to make the ‘computer’ as invisible to users as possible…Another important assumption was that Star’s users would he casual, occasional users rather than people who spent most of their time at the machine. This assumption led to the goal of having Star be easy to learn and remember.’
The Star was not a commercial success, but it’s innovations ushered in a new era of ‘personal computing’ - this led to a boon in the area of research and the emergence of Human Computer Interaction (HCI), Grudin (2012:19) reports: “As personal computing spread, experimental methods were applied to study other contexts involving discretionary use. Studies of programming gradually disappeared from HCI conferences.”
Alan Cooper, an early Interaction Design practitioner in interview with Patton (2008:16) reports:
“I began experimenting with this whole new idea that it’s not about computer operators running a batch process, but about people sitting in front of the software and interacting directly.…it was really the microcomputers that drove that into my head.”
The evolution of Interaction design, notes Cooper, was in part driven by the need to specialise, he tells Patton (2008:17):
“I found myself in kind of a bind. I was going to have to either become part of a larger organization or let go of the implementation part of what I did.”
Industry practitioners realised that this interaction between human and computers, needed to develop a methodology. Alan Cooper (2008:17) relates:
“it would be much more valuable and interesting if I could figure out some objective methodology that I was going through. That would give me some leverage, and it would be good for the world, good for the industry.”
Bill Verplank, who worked on the Xerox Star, along with Bill Moggeridge first coined the phrase ‘interaction design’ (we should probably be thankful that Verplank convinced Moggeridge not to use the term (2007:14) ‘Soft-face’). Interaction design, then named a current pressing concern for industry Cooper et al (2012:8) describe how:
“the user experience of digital products has become front page news…institutions such as Harvard Business School and Stanford have recognised the need to train the next generation of MBAs and technologists to incorporate design thinking into their business and development plans…Consumers are sending a clear message that what they want is good technology: technology that has been designed to provide a compelling and effective user experience.”
My key concern as a student of ID is that interaction Design is such a large area. Rogers et al (2013:9) list a dizzying array of areas:
“user interface design, software design, user-centered design, product design, web design, experience design, and interactive system design. Interaction design is increasingly being accepted as the umbrella term, covering all of these aspects.”
References
Papers
Patton, Jeff (2008), ‘A Conversation with Alan Cooper: The Origin of Interaction Design’
Software, IEEE Volume: 25 , Issue: 6, Page(s): 15 - 17
Johnson, J. ; Roberts, T.L. ; Verplank, W. ; Smith, D.C. ; Irby, C.H. ; Beard, M. ; Mackey, K. (1989) ‘The Xerox Star: a retrospective’
Computer Volume: 22 , Issue: 9, Page(s): 11 - 26
Grudin, J. (2012) ‘Introduction: A moving target-The evolution of human-computer interaction.’
To appear in Jacko, J., Ed., Human-Computer Interaction Handbook: Fundamentals, evolving technologies, and emerging applications, 3rd ed., Taylor and Francis.
Weiser M (1991) ‘The computer for the 21st Century’.
Scientific American 265(3):94–104, 1991
Books
Cooper A, Reimann R, Cronin D ‘About Face 3: The Essentials of Interaction Design’
John Wiley & Sons, 12 June 2012
Rogers, Yvonne ‘HCI Theory: Classical, Modern, and Contemporary’
Morgan & Claypool Publishers, Pennsylvania State University Press 1 June 2012
Moggridge, Bill (2007): Designing Interactions. The MIT Press 2007
Web
Sutherland, I.E. (1963/2003). ‘Sketchpad, A Man-Machine Graphical Communication System. PhD Thesis at Massachusetts Institute of Technology’,
online version and editors’ introduction by A. F. Blackwell & K. Rodden. Technical Report 574. Cambridge University Computer Laboratory [http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf]

Software projects and development in a research environment [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 3 years ago.
Improve this question
What are useful strategies to adopt when you or the project does not have a clear idea of what the final (if any) product is going to be?
Let us take "research" to mean an exploration into an area where many things are not known or implemented and where a formal set of deliverables cannot be specified at the start of the project. This is common in STEM (science (physics, chemistry, biology, materials, etc.), technology engineering, medicine) and many areas of informatics and computer science. Software is created either as an end in itself (e.g. a new algorithm), a means of managing data (often experimental) and simulation (e.g. materials, reactions, etc.). It is usually created by small groups or individuals (I omit large science such as telescopes and hadron colliders where much emphasis is put of software engineering.)
Research software is characterised by (at least):
unknown outcome
unknown timescale
little formal project management
limited budgets (in academia at least)
unpredictability of third-party tools and libraries
changes in the outside world during the project (e.g. new discoveries which can be positive - save effort - or negative - getting scooped
Projects can be anything from days ("see if this is a worthwhile direction to go") to years ("this is my PhD topic") or longer. Frequently the people are not hired as software people but find they need to write code to get the research done or get infected by writing software. There is generally little credit for good software engineering - the "product" is a conference or journal publication.
However some of these projects turn out to be highly valuable - the most obvious area is genomics where in the early days scientists showed that dynamic programming was a revolutionary tool to help thinking about protein and nucleic structure - now this is a multi-billion industry (or more). The same is true for quantum mechanics codes to predict properties of substances.
The downside is that much code gets thrown away and it is difficult to build on. To try to overcome this we have build up libraries which are shared in the group and through the world as Open Source (but here again there is very little credit given). Many researchers reinvent the wheel ("head-down" programming where colleagues are not consulted and "hero" programming where someone tries to do the whole lot themself).
Too much formality at the start of a project often puts people off and innovation is lost (no-one will spend 2 months writing formal specs and unit tests). Too little and bad habits are developed and promulgated. Programming courses help but again it's difficult to get people doing them especially when you rely on their goodwill. Mentoring is extremely valuable but not always successful.
Are there online resources which can help to persuade people into good software habits?
EDIT: I'm grateful for dmckee (below) for pointing out a similar discussion. It's all good stuff and I particularly agree with version control as being one of the most important things that we can offer scientists (we offered this to our colleagues and got very good takeup). I also like the approach of the Software Carpentry course mentioned there.
It's extremely difficult. The environment both you and Stefano Borini describe is very accurate. I think there are three key factors which propagate the situation.
Short-term thinking
Lack of formal training and experience
Continuous turnover of grad students/postdocs to shoulder the brunt of new development
Short-term thinking. There are a few reasons that short-term thinking is the norm, most of them already well explained by Stefano. As well as the awful pressure to publish and the lack of recognition for software creation, I would emphasise the number of short-term contracts. There is simply very little advantage for more junior academics (PhD students and postdocs) to spend any time planning long-term software strategies, since contracts are 2-3 years. In the case of longer-term projects e.g. those based around the simulation code of a permanent member of staff, I have seen some applications of basic software engineering, things like simple version control, standard test cases, etc. However even in these cases, project management is extremely primitive.
Lack of formal training and experience. This is a serious handicap. In astronomy and astrophysics, programming is an essential tool, but understanding of the costs of development, particularly maintenance overheads, is extremely poor. Because scientists are normally smart people, there is a feeling that software engineering practices don't really apply to them, and that they can 'just make it work'. With more experience, most programmers realise that writing code that mostly works isn't the hard part; maintaining and extending it efficiently and safely is. Some scientific code is throwaway, and in these cases the quick and dirty approach is adequate. But all too often, the code will be used and reused for years to come, bringing consequent grief to all involved with it.
Continuous turnover of grad students/postdocs for new development. I think this is the key feature that allows the academic approach to software to continue to survive. If the code is horrendous and takes days to understand and debug, who pays that price? In general, it's not the original author (who has probably moved on). Nor is it the permanent member of staff, who is often only peripherally involved with new development. It is normally the graduate student who is implementing new algorithms, producing novel approaches, trying to extend the code in some way. Sometimes it will be a postdoc, hired specifically to work on adding some feature to an existing code, and contractually obliged to work on this area for some fraction of their time.
This model is hugely inefficient. I know a PhD student in astrophysics who spent over a year trying to implement a relatively basic piece of mathematics, only a few hundred lines of code, in an existing n-body code. Why did it take so long? Because she literally spent weeks trying to understand the existing, horribly written code, and how to add her calculation to it, and months more ineffectively debugging her problems due to the monolithic code structure, coupled with her own lack of experience. Note that there was almost no science involved in this process; just wasting time grappling with code. Who ultimately paid that price? Only her. She was the one who had to put more hours in to try and get enough results to make a PhD. Her supervisor will get another grad student after she's gone - and so the cycle continues.
The point I'm trying to make is that the problem with the software creation process in academia is endemic within the system itself, a function of the resources available and the type of work that is rewarded. The culture is deeply embedded throughout academia. I don't see any easy way of changing that culture through external resources or training. It's the system itself that needs to change, to reward people for writing substantial code, to place increased scrutiny on the correctness of results produced using scientific code, to recognise the importance of training and process in code, and to hold supervisors jointly responsible for wasting the time of the members of their research group.
I'll tell you my experience.
It is undoubt that a lot of software gets created and wasted in the academia. Fact is that it's difficult to adapt research software, purposely created for a specific research objective, to a more general environment. Also, the product of academia are scientific papers, not software. The value of software in academia is zero. The data you produce with that software is evaluated, once you write a paper on it (which takes a lot of editorial time).
In most cases, however, research groups have recognized frequent patterns, which can be polished, tested and archived as internal knowledge. This is what I do with my personal toolkit. I grow it according to my research needs, only with those features that are "cross-project". Developing a personal toolkit is almost a requirement, as your scientific needs are most likely unique for some verse (otherwise you would not be doing research) and you want to have as low amount of external dependencies as possible (since if something evolves and breaks your stuff, you will not have the time to fix it).
Everything else, however, is too specific for a given project to be crystallized. I therefore tend not to encapsulate something that is clearly a one-time solver. I do, however, go back and improve it if, later on, other projects require the same piece of code.
Short project span, and the heat of research (e.g. the publish or perish vision so central today), requires agile, quick languages, and in general, languages that can be grasped quickly. Ph.Ds in genomics and quantum chemistry don't have formal programming background. In some cases, they don't even like it. So the language must be quick, easy, clean, flexible, and easy to understand later on. The latter point is capital, as there's no time to produce documentation, and it's guaranteed that in academia, everyone will leave sooner or later, you burn the group experience to zero every three years or so. Academia is a high risk industry that periodically fires all their hard-formed executors, keeping only some managers. Having a code that is maintainable and can be easily grasped by someone else is therefore capital. Also, never underestimate the power of a google search to solve your problems. With a well deployed language you are more likely to find answers to gotchas and issues you can stumble on.
Management is a problem as well. Waterfall is out of discussion. There is no time for paperwork programming (requirements, specs, design). Spiral is quite ok, but as low paperwork as possible is clearly recommended. Fact is that anything that does not give you an article in academia is wasted time. If you spend one month writing specs, it's a month wasted, and your contract expires in 11 months. Moreover, that fatty document counts zero or close to zero for your career (as many other things: administration and teaching are two examples). Of course, Agile methods are also out of discussion. Most development is made by groups that are far, and in general have a bunch of other things to do as well. Coding concentration comes in brief bursts during "spare time" between articles, and before or after meetings. The bazaar is the most likely, but the bazaar carries a lot of issues as well.
So, to answer your question, the best strategy is "slow accumulation" of known good software, development in small bursts with a quick and agile method and language. Good coding practices need to be taught during lectures, as good laboratory practices are taught during practical courses (eg. never put water in sulphuric acid, always the opposite)
The hardest part is the transition between "this is just for a paper" and "we're really going to use this."
If you know that the code will only be for a paper, fine, take short cuts. Hardcode everything you can. Don't waste time on extensive validation if the programmer is the only one who will ever run the code. Etc. The problem is when someone says "Great! Now let's use this for real" or "Now let's use it for this entirely different scenario than what it was developed and tested for."
A related challenge is having to explain why the software isn't ready for prime time even though it obviously works, i.e. it's prototype quality and not production quality. What do you mean you need to rewrite it?
I would recommend that you/they read "Clean Code"
http://www.amazon.co.uk/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882/ref=sr_1_1?ie=UTF8&s=books&qid=1251633753&sr=8-1
The basic idea of this book is that if you do not keep the code "clean", eventually the mess will stop you from making any progress.
The kind of big science I do (particle physics) has a small number of large, long-running projects (ROOT and Geant4, for instance). These are developed mostly by actual programming professionals. Using processes that would be recognized by anyone else in the industry.
Then, each collaboration has a number of project-wide programs which are developed collaboratively under the direction of a small number of senior programming scientists. These use at least the basic tools (always version control, often some kind of bug tracking or automated builds).
Finally almost every scientist works on their own programs. Use of process on these programs is very spotty, and they often suffer from all the ills that others have discussed (short lifetimes, poor coding skills, no review, lots of serial maintainers, Not Invented Here Syndrome, etc. etc.). The only advantage that is available here compared to small group science, is that they work with the tools I talked about above, so there is something that you can point to and say "That is what you want to achieve.".
Don't really have that much more to add to what has already been said. It's a difficult balance to strike because our priorities are different - academia is all about discovering new things, software engineering is more about getting things done according to specifications.
The most important thing I can think of is to try and extricate yourself from the culture of in-house development that goes on in academia and try to maintain a disciplined approach to development, difficult as that may be in many cases owing to time restraints, lack of experience etc. This control-freakery sucks away at individual responsibility and decision-making and leaves it in the hands of a few who do not necessarily know best
Get a good book on software development, Code Complete already mention is excellent, as well as any respected book on algorithms and data structures. Read up on how you will need to manage your data eg do you need fast lookup / hash-tables / binary trees. Don't reinvent the wheel - use the libraries and things like STL otherwise you are likely to be wasting time. There is a vast amount on the web including this very fine blog.
Many academics, besides sometimes being primadonna-ish and precious about any approach seen as businesslike, tend to be quite vague in their objectives. To put it mildly. For this reason alone it is vital to build up your own software arsenal of helper functions and recipes, eventually, hopefully ending up with a kind of flexible experimental framework that enables you to try out any combination of things without being to restricted to any particular problem area. Strongly resist the temptation to just dive into the problem at hand.

How to learn the necessary anthropology to create social software?

Joel Spolsky repeats over and over that today, knowing a bit of anthropology can be very useful for a programer because much of what's being created is social software.
How can someone that already knows the computer science learn the anthropology needed to know how human beings works? Any books? Any recorded lectures?
I agree that knowing a bit about how we think is more important now for a developer then ever. The book Consciousness Explained by Dan Dennett was a real eye opener for me in understanding that we don't think the way we think we think.
I would suggest Clay Shirky's site is a good place to start. It's social anthropology set in a context of the internet, so it's more accessible (to programmers) than purely academic anthropology.
There is a book I've heard is good, but didn't have a chance to dig through it yet: Programming collective intelligence. It gives you some algorithms to quantify human behavior in social software. Sounds interesting.
Mathew Podwysocki wrote a post some time ago about implementing these ideas in Haskell.
I'm not sure that approaching contemporary anthropology is a whole is
the absolute best way to develop the knowledge that you
seek. Anthropologists study a bunch of different things, and while
knowing this stuff will help you be able to develop better designs and
products, this is a case where being a generalist is probably not an
effective use of time.
Anthropologists study culture, the superstructural stuff that
happens when you put a bunch of people in close proximity and let the
situation stew for a while. Apologies for the rough
definition. Knowing about culture, how cultures and societies
function, what causes them to break, what causes them to flourish is
fascinating and useful. Reading the "anthropological cannon" will help
you begin to understand this, but again long road, and I think the
questions you need answered are more easily addressed with some
specific projects.
First I'd like to just characterize Anthropology for a moment:
Although Anthropology isn't an experimental field, it's incredibly
empirical. Anthropologists collect a lot of data, and attempt to
describe what they see as totally as possible. This methodology, and
approach is--I think--extremely useful to software developers. It's
very easy to say "people want this," or "users feel this way," about a
feature or aspect of your software based on your experiences. It's
terribly difficult to figure out how users actually feel and interact
with your software in a precise way. If you had to take one
Anthropology class as a software developer, I'd recommend something
with a methodological emphasis.
In terms of specific resources, the following directions spring to mind
Dona Harroway's "The Cyborg Manifesto," springs instantly to mind as
the foundational work in a field of study that explores the
interaction between people, and machines as a social phenomena. It's
short. Good read. Amber Case, a young "cyborg anthropologist" does
work in Harroway's tradition, and I'd follow up on both of these
folks.
Secondly, I'd explore studies of cities and small communities. Except
in some very extreme cases (i.e. Twitter, Facebook, etc.), whole
cultures aren't using your software. Groups are. Learn about them. I
think urban studies and work that gets called "urban sociology" might
begin to provide you the kinds of answer that you'd be interested
in. I think that would be a good place to start.
The only rule to know about social software is that "people will do anything to make money or get laid" :)
But on a serious note, I don't think anthropology is what matters, but rather an understanding of the motivation that people have to contribute to social software or to expose themselves on social software. There have been quite a few recent books that explain a lot of these concepts in good terms. A good start could be "Here comes everybody" by Clay Shriky.
The Design of Everyday Things
The Humane Interface
Many of the answers here are pointing towards texts on how consciousness works or how people interact with devices. This is a great start, since it shows where you would want to go. Beyond that, you could consider understanding fundamental social and experiential aspects of how humans work. This way, you can develop software with an understanding of how humans could experience your software, as well as how it could be part of a social world.
To this I recommend The Ethical Primate from Mary Midgley. The text is about philosophy, ethics, freedom, and evolution, but it is firmly grounded in empirical knowledge. It will also give you tools to be able to critically examine the language and knowledge that—in my experience as a computer science major—STEM usually uses when discussing people. If you want to read a shorter text regarding this last point on the dangers of STEM language when describing humans, you could read Mary Midgley's Biotechnology and Monstruosity.
A text that deals less with the ethical and social implications of theorizing about humans is The Tangled Wing.
There are many ethnographies that describe how people interact with technologies such as social media. These are more specific to the kind of technology that you're working on.

Why is good UI design so hard for some Developers? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
Some of us just have a hard time with the softer aspects of UI design (myself especially). Are "back-end coders" doomed to only design business logic and data layers? Is there something we can do to retrain our brain to be more effective at designing pleasing and useful presentation layers?
Colleagues have recommended a few books me including The Design of Sites, Don't make me think and Why Software sucks , but I am wondering what others have done to remove their deficiencies in this area?
Let me say it directly:
Improving on this does not begin with guidelines. It begins with reframing how you think about software.
Most hardcore developers have practically zero empathy with users of their software. They have no clue how users think, how users build models of software they use and how they use a computer in general.
It is a typical problem when an expert collides with a laymen: How on earth could a normal person be so dumb not to understand what the expert understood 10 years ago?
One of the first facts to acknowledge that is unbelievably difficult to grasp for almost all experienced developers is this:
Normal people have a vastly different concept of software than you have. They have no clue whatsoever of programming. None. Zero. And they don't even care. They don't even think they have to care. If you force them to, they will delete your program.
Now that's unbelievably harsh for a developer. He is proud of the software he produces. He loves every single feature. He can tell you exactly how the code behind it works. Maybe he even invented an unbelievable clever algorithm that made it work 50% faster than before.
And the user doesn't care.
What an idiot.
Many developers can't stand working with normal users. They get depressed by their non-existing knowledge of technology. And that's why most developers shy away and think users must be idiots.
They are not.
If a software developer buys a car, he expects it to run smoothly. He usually does not care about tire pressures, the mechanical fine-tuning that was important to make it run that way. Here he is not the expert. And if he buys a car that does not have the fine-tuning, he gives it back and buys one that does what he wants.
Many software developers like movies. Well-done movies that spark their imagination. But they are not experts in producing movies, in producing visual effects or in writing good movie scripts. Most nerds are very, very, very bad at acting because it is all about displaying complex emotions and little about analytics. If a developer watches a bad film, he just notices that it is bad as a whole. Nerds have even built up IMDB to collect information about good and bad movies so they know which ones to watch and which to avoid. But they are not experts in creating movies. If a movie is bad, they'll not go to the movies (or not download it from BitTorrent ;)
So it boils down to: Shunning normal users as an expert is ignorance. Because in those areas (and there are so many) where they are not experts, they expect the experts of other areas to have already thought about normal people who use their products or services.
What can you do to remedy it? The more hardcore you are as a programmer, the less open you will be to normal user thinking. It will be alien and clueless to you. You will think: I can't imagine how people could ever use a computer with this lack of knowledge. But they can. For every UI element, think about: Is it necessary? Does it fit to the concept a user has of my tool? How can I make him understand? Please read up on usability for this, there are many good books. It's a whole area of science, too.
Ah and before you say it, yes, I'm an Apple fan ;)
UI design is hard
To the question:
why is UI design so hard for most developers?
Try asking the inverse question:
why is programming so hard for most UI designers?
Coding a UI and designing a UI require different skills and a different mindset. UI design is hard for most developers, not some developers, just as writing code is hard for most designers, not some designers.
Coding is hard. Design is hard too. Few people do both well. Good UI designers rarely write code. They may not even know how, yet they are still good designers. So why do good developers feel responsible for UI design?
Knowing more about UI design will make you a better developer, but that doesn't mean you should be responsible for UI design. The reverse is true for designers: knowing how to write code will make them better designers, but that doesn't mean they should be responsible for coding the UI.
How to get better at UI design
For developers wanting to get better at UI design I have 3 basic pieces of advice:
Recognize design as a separate skill. Coding and design are separate but related. UI design is not a subset of coding. It requires a different mindset, knowledge base, and skill group. There are people out there who focus on UI design.
Learn about design. At least a little bit. Try to learn a few of the design concepts and techniques from the long list below. If you are more ambitious, read some books, attend a conference, take a class, get a degree. There are lot of ways to learn about design. Joel Spolky's book on UI design is a good primer for developers, but there's a lot more to it and that's where designers come into the picture.
Work with designers. Good designers, if you can. People who do this work go by various titles. Today, the most common titles are User Experience Designer (UXD), Information Architect (IA), Interaction Designer(ID), and Usability Engineer. They think about design as much as you think about code. You can learn a lot from them, and they from you. Work with them however you can. Find people with these skills in your company. Maybe you need to hire someone. Or go to some conferences, attend webinars, and spend time in the UXD/IA/ID world.
Here are some specific things you can learn. Don't try to learn everything. If you knew everything below you could call yourself an interaction designer or an information architect. Start with things near the top of the list. Focus on specific concepts and skills. Then move down and branch out. If you really like this stuff, consider it as a career path. Many developers move into managements, but UX design is another option.
Learn fundamental design concepts. You should know about affordances, visibility, feedback, mappings, Fitt's law, poka-yokes, and more. I recommend reading The Design of Everyday Things (Don Norman) and Universal Principles of Design (Lidwell, Holden, & Butler)
Learn about user experience. This is becoming the umbrella term for the human-centered design of web sites, applications, and any other digital artifact. The classic primer here is The elements of User Experience (Jesse James Garrett). You can get an overview and the first few chapters from the author's site.
Learn to sketch designs. Sketching is fast way to explore design options and find the right design, whereas usability testing is about getting the design right. Paper prototyping is fast, cheap, and effective during the early design stages. Much faster than coding a digital prototype. The key text here is Sketching User Experience: Getting the design right and the right design (Bill Buxton). Sketching is a particularly useful skill when working with IA/ID/UX designers. Your collaboration will be more effective. For a good primer on how and why designers sketch, watch the presentation How to be a UX team of one by Leah Buley from the 2008 IA Summit.
Learn paper prototyping. The fastest way to iteratively test an interface before you write code. Different from sketching and usability testing. The definitive book here is Paper Prototyping (Carolyn Snyder). You can get a good DVD on this from the Nielsen Norman Group.
Learn usability testing. Discount testing is easy and effective. But for many UIs, usability is hard to do well. You can learn the basics quickly, but good usability people are invaluable. If you want a book, the classic is The Handbook of Usability Testing (Jeffrey Rubin). It's older but offers thorough coverage of lab-based testing. The famous starter book is Don't Make Me Think (2nd Ed) (Steve Krug). I caution people about this one: Krug makes it sound easier than it is. But it is a good starting point. The user research books listed in the next point also cover this topic. And you can find piles about it online.
Learn about information architecture. The main book here is Information Architecture for the World Wide Web (3rd) (Louis Rosenfeld & Peter Morville). A good starter book is Information Architecture: Blueprints for the Web (Christina Wodtke). For more, visit the Information Architecture Institute or attend the annual Information Architecture Summit.
Learn about interaction design. The main book here is The Essentials of Interaction Design (3rd) (Alan Cooper, et al). A good starter book is Designing for interaction (Dan Saffer). For more, visit the Interaction Design Association (IxDA) or attend the annual Interaction Design conference.
Learn fundamentals of graphic design. Graphic design is not UI design, but concepts from graphic design can improve an interface. Graphic design introduces design principles for the visual presentation of information, such as proximity, alignment, and small multiples. I recommend reading The non-designer's design book (Robin Williams) and Envisioning Information (Edward Tufte)
Learn to do user research. Where usability tests an interface, user research tries to model users and their tasks through personas, scenarios, user journeys, and other documents. It's about understanding users and what they do, then using that to inform the design instead of guessing. Some techniques are interviews, surveys, diary studies, and cart sorting. Good books on this are Observing the User Experience (Mike Kuniavsky) and Understanding Your Users (Courage & Baxter)
Learn to do field research. Watching people in the lab under artificial conditions helps (ie: usability), but there is nothing like watching people use your code in context: their home, their office, or wherever they use it. Goes by various names, including ethnography, field studies, and contextual inquiry. Here is a good primer on field research. Two of the better known books here are Rapid Contextual Design (Karen Holtzblatt et al) and User and task analysis for interface design (Hackos & Redish).
Read UX design web sites. Some of the big ones are Boxes & Arrows, UX Mag, UX Matters, and Digital Web magazine.
Use UI pattern libraries. There are patterns for interfaces. For web sites, I recommend The Design of Sites, 2nd ed (Van Duyne, et al) and Homepage usability: 50 websites deconstructed (Jakob Nielsen & Marie Tahir). For desktop applications I recommend Designing interfaces (Jennifer Tidwell), and for web applications I recommend Designing Web Interfaces: Principles and Patterns for Rich Interactions (Bill Scott & Theresa Neil). Online you should check Welie pattern library, UI patterns, and Web UI patterns.
Attend UX design conferences. Some good annual conferences are: Information Architecture Summit, Interaction '09 (IxDA), User Interface, and UX week.
Attend a workshop or webinar. You can take workshops, webinars, and online courses. This is far from a comprehensive list, but you might try the UIE virtual seminars, Adaptive Path virtual seminars, and UX webinars from Rosenfeld Media.
Get a degree. A graduate degree in HCI is one approach, but these programs are mostly about writing coding. If you want to learn about the design of digital artifacts and devices, then you want a graduate program that's not in CS. Some options include Interaction Design at Carnegie Mellon, the d-School at Stanford, the ITP program at NYU, and Information Architecture & Knowledge Management at Kent State (disclosure: I'm on faculty at Kent; we are seeing more and more people with CS degrees moving into UX design instead of management, which is interesting, because management is the traditional path for developers who want to move away from writing code while staying in their field). There are many more programs. Each has their own perspective, areas of emphasis, and technical expectations. Some come out of the arts and visual design, others out of library and information science, and some from CS. Most are hybrids, but every hybrid has deeper roots in one or more fields. If this interests you, look around and try to understand the differences between these programs. Some offer online courses and certificate programs in addition to full-fledged degrees.
Why UI design is hard
Good UI design is hard because it involves 2 vastly different skills:
A deep understanding of the machine. People in this group worry about code first, people second. They have deep technological knowledge and skill. We call them developers, programmers, engineers, and so forth.
A deep understanding of people and design: People in this group worry about people first, code second. They have deep knowledge of how people interact with information, computers, and the world around them. We call them user experience designers, information architects, interaction designers, usability engineers, and so forth.
This is the essential difference between these 2 groups—between developers and designers:
Developers make it work. They implement the functionality on your TiVo, your iPhone, your favorite website, etc. They make sure it actually does what it is supposed to do. Their highest priority is making it work.
Designers make people love it. They figure out how to interact with it, how it should look, and how it should feel. They design the experience of using the application, the web site, the device. Their highest priority is making you fall in love with what developers make. This is what is meant by user experience, and it's not the same as brand experience.
Moreover, programming and design require different mindsets, not just different knowledge and different skills. Good UI design requires both mindsets, both knowledge bases, both skill groups. And it takes years to master either one.
Developers should expect to find UI design hard, just as UI designers should expect to find writing code hard.
What really helps me improve my design is to grab a fellow developer, one the QA guys, the PM, or anyone who happens to walk by and have them try out a particular widget or screen.
Its amazing what you will realize when you watch someone else use your software for the first time
Ultimately, it's really about empathy -- can you put yourself in the shoes of your user?
One thing that helps, of course, is "eating your own dogfood" -- using your applications as a real user yourself, and seeing what's annoying.
Another good idea is to find a way to watch a real user using your application, which may be as complicated as a usability lab with one-way mirrors, screen video capture, video cameras on the users, etc., or can be as simple as paper prototyping using the next person who happens to walk down the hall.
If all else fails, remember that it's almost always better for the UI to be too simple than too complicated. It's very very easy to say "oh, I know how to solve that, I'll just add a checkbox so the user can decide which mode they prefer". Soon your UI is too complicated. Pick a default mode and make the preference setting an advanced configuration option. Or just leave it out.
If you read a lot about design you can easily get hung up on dropped shadows and rounded corners and so forth. That's not the important stuff. Simplicity and discoverability are the important stuff.
Contrary to popular myth there are literally no soft aspects in UI design, at least no more than needed to design a good back end.
Consider the following; good back end design is based upon fairly solid principles and elements any good developer is familiar with:
low coupling
high cohesion
architectural patterns
industry best practices
etc
Good back end design is usually born through a number of interactions, where based on the measurable feedback obtained during tests or actual use the initial blueprint is gradually improved. Sometimes you need to prototype smaller aspects of back end and trial them in isolation etc.
Good UI design is based on the sound principles of:
visibility
affordance
feedback
tolerance
simplicity
consistency
structure
UI is also born through test and trial, through iterations but not with compiler + automated test suit, but people. Similarly to back end there are industry best practises, measurement and evaluation techniques, ways to think of UI and set goals in terms of user model, system image, designer model, structural model, functional model etc.
The skill set needed for designing UI is quite different from designing back-end and hence don’t expect to be able to do good UI without doing some learning first. However that both these activities have in common is the process of design. I believe that anyone who can design good software is capable of designing good UI as long as they spend some time learning how.
I recommend taking a course in Human Computer Interaction, check MIT and Yale site for example for online materials:
MIT User Interface Design and Implementation Course
Structural vs Functional Model in Understanding and Usage
The excellent earlier post by Thorsten79 brings up the topic of software development experts vs users and how their understanding of software differ. Human learning experts distinguish between functional and structural mental models. Finding way to your friend's house can be an excellent example of the difference between the two:
First approach includes a set of detailed instructions: take the first exit of the motorway, then after 100 yards turn left etc. This is an example of functional model: list of concrete steps necessary to achieve a certain goal. Functional models are easy to use, they do not require much thinking just a straight forward execution. Obviously there is a penalty for the simplicity: it might not be the most efficient route and any any exceptional situation (i.e. a traffic diversion) can easilly lead to a complete failure.
A different way to cope with the task is to build a structural mental model. In our example that would be a map that conveyes a lot of information about the internal structure of the "task object". From understanding the map and relative locations of our and friend's house we can deduct the functional model (the route). Obviously it's requires more effort, but much more reliable way of completing the task in spite of the possible deviations.
The choice between conveying functional or structural model through UI (for example, wizard vs advanced mode) is not that straight forward as it might seem from Thorsten79's post. Advanced and frequent users might well prefer the structural model, whereas occassional or less expirienced users — functional.
Google maps is a great example: they include both functional and structural model, so do many sat navs.
Another dimension of the problem is that the structural model presented through UI must not map to the structure of software, but rather naturally map to structure of the user task at hand or task object involved.
The difficulty here is that many developers will have a good structural model of their software internals, but only functional model of the user task the software aims to assist at. To build good UI one needs to understand the task/task object structure and map UI to that structure.
Anyway, I still can't recommend taking a formal HCI course strongly enough. There's a lot of stuff involved such as heuristics, principles derived from Gestalt phychology, ways humans learn etc.
I suggest you start by doing all your UI in the same way as you are doing now, with no focus on usability and stuff.
alt text http://www.stricken.org/uploaded_images/WordToolbars-718376.jpg
Now think of this:
A designer knows he has achieved perfection not when there is nothing left to add, but when there is nothing left to take away.
— Saint-Exupéry
And apply this in your design.
A lot of developers think that because they can write code, they can do it all. Designing an interface is a completely different skill, and it was not taught at all when I attended college. It's not just something that just comes naturally.
Another good book is The Design of Everyday Things by Donald Norman.
There's a huge difference between design and aesthetics, and they are often confused.
A beautiful UI requires artistic or at least aesthetic skills that many, including myself, are incapable of producing. Unfortunately, it is not enough and does not make the UI usable, as we can see in many heavyweight flash-based APIs.
Producing usable UIs requires an understanding of how humans interact with computers, some issues in psychology (e.g., Fitt's law, Hick's law), and other topics. Very few CS programs train for this. Very few developers that I know will pick a user-testing book over a JUnit book, etc.
Many of us are also "core programmers", tending to think of UIs as the facade rather than as a factor that could make or break the success of our project.
In addition, most UI development experience is extremely frustrating. We can either use toy GUI builders like old VB and have to deal with ugly glue code, or we use APIs that frustrate us to no end, like trying to sort out layouts in Swing.
Go over to Slashdot, and read the comments on any article dealing with Apple. You'll find a large number of people talking about how Apple products are nothing special, and ascribing the success of the iPod and iPhone to people trying to be trendy or hip. They will typically go through feature lists, and point out that they do nothing earlier MP3 players or smart phones didn't do.
Then there are people who like the iPod and iPhone because they do what the users want simply and easily, without reference to manuals. The interfaces are about as intuitive as interfaces get, memorable, and discoverable. I'm not as fond of the UI on MacOSX as I was on earlier versions, I think they've given up some usefulness in favor of glitz, but the iPod and iPhone are examples of superb design.
If you are in the first camp, you don't think the way the average person does, and therefore you are likely to make bad user interfaces because you can't tell them from good ones. This doesn't mean you're hopeless, but rather that you have to explicitly learn good interface design principles, and how to recognize a good UI (much as somebody with Asperger's might need to learn social skills explicitly). Obviously, just having a sense of a good UI doesn't mean you can make one; my appreciation for literature, for example, doesn't seem to extend to the ability (currently) to write publishable stories.
So, try to develop a sense for good UI design. This extends to more than just software. Don Norman's "The Design of Everyday Things" is a classic, and there's other books out there. Get examples of successful UI designs, and play with them enough to get a feel for the difference. Recognize that you may be having to learn a new way of thinking abou things, and enjoy it.
The main rule of thumb I hold to, is never try to do both at once. If I'm working on back-end code, I'll finish up doing that, take a break, and return with my UI hat on. If you try to work it in whilst you're doing code, you'll approach it with the wrong mindset, and end up with some horrible interfaces as a result.
I think it's definitely possible to be both a good back-end developer and a good UI designer, you just have to work at it, do some reading and research on the topic (everything from Miller's #7, to Nielsen's archives), and make sure you understand why UI design is of the utmost importance.
I don't think it's a case of needing to be creative but rather, like back-end development, it is a very methodical, very structured thing that needs to be learned. It's people getting 'creative' with UIs that creates some of the biggest usability monstrosities... I mean, take a look at 100% Flash websites, for a start...
Edit: Krug's book is really good... do take a read of it, especially if you're going to be designing for the Web.
There are many reasons for this.
(1) Developer fails to see things from the point of view of the user. This is the usual suspect: lack of empathy. But it is not usually true since developers are not as alien as people make them out to be.
(2) Another, more common reason is that the developer being so close to his own stuff, having stayed with his stuff for so long, fails to realize that his stuff may not be so familiar(a term better than intuitive) to other people.
(3) Still another reason is the developer lacks techniques.
MY BIG CLAIM: read any UI, human interection design, prototyping book. e.g. Designing the Obvious: A Common Sense Approach to Web Application Design, Don't Make Me Think: A Common Sense Approach to Web Usability, Designing the moment, whatever.
How do they discuss task flows? How do they describe decision points? That is, in any use case, there are at least 3 paths: success, failure/exception, alternative.
Thus, from point A, you can go to A.1, A.2, A.3.
From point A.1, you can get to A.1.1, A.1.2, A.1.3, and so on.
How do they show such drill-down task flow?
They don't. They just gloss over it.
Since even UI experst don't have a technique, developers have no chance.
He thinks it is clear in his head. But it is not even clear on paper, let alone clear in software implementation.
I have to use my own hand-made techniques for this.
I try to keep in touch with design-specific websites and texts. I found also the excellent Robin Williams book The Non-Designer's Design Book to be very interesting in these studies.
I believe that design and usability is a very important part of software engineering and we should learn it more and stop giving excuses that we are not supposed to do design.
Everyone can be a designer once in a while, as also everyone can be a programmer.
When approaching UI design, here are a few of the things I keep in mind throughout (by far not a complete list):
Communicating a model. The UI is a narrative that explains a mental model to the user. This model may be a business object, a set of relationships, what have you. The visual prominence, spatial placement, and workflow ordering all play a part in communicating this model to the user. For example, a certain kind of list vs another implies different things, as well as the relationship of what's in the list to the rest of the model. In general I find it best to make sure only one model is communicated at a time. Programmers frequently try to communicate more than one model, or parts of several, in the same UI space.
Consistency. Re-using popular UI metaphors helps a lot. Internal consistency is also very important.
Grouping of tasks. Users should not have to move the mouse all the way across the screen to verify or complete a related sequence of commands. Modal dialogs and flyout-menus can be especially bad in this area.
Knowing your audience. If your users will be doing the same activities over and over, they will quickly become power users at those tasks and be frustrated by attempts to lower the initial entry barrier. If your users do many different kinds of activities infrequently, it's best to ensure the UI holds their hand the whole time.
Read Apple Human Interface Guidelines.
I find the best tool in UI design is to watch a first-time User attempt to use the software. Take loads of notes and ask them some questions. Never direct them or attempt to explain how the software works. This is the job of the UI (and well written documentation).
We consistently adopt this approach in all projects. It is always fascinating to watch a User deal with software in a manner that you never considered before.
Why is UI design so hard? Well generally because the Developer and User never meet.
duffymo just reminded me why: Many Programmers think "*Design" == "Art".
Good UI design is absolutely not artistic. It follows solid principles, that can be backed up with data if you've got the time to do the research.
I think all programmers need to do is take the time to learn the principles. I think it's in our nature to apply best practice whenever we can, be it in code or in layout. All we need to do is make ourselves aware of what the best practices are for this aspect of our job.
What have I done to become better at UI design?
Pay attention to it!
It's like how ever time you see a chart on the news or an electronic bus sign and you wonder 'How did they get that data? Did they do that with raw sql or are they using LINQ?' (or insert your own common geek curiosity here).
You need to start doing that but with visual elements of all kinds.
But just like learning a new language, if you don't really throw yourself into it, you won't ever learn it.
Taken from another answer I wrote:
Learn to look, really look, at the world around you. Why do I like that UI but hate this one? Why is it so hard to find the noodle dishes in this restaurant menu? Wow, I knew what that sign meant before I even read the words. Why was that? How come that book cover looks so wrong? Learn to take the time to think about why you react the way you do to visual elements of all kinds, and then apply this to your work.
However you do it (and there are some great points above), it really helped me once I accepted that there is NO SUCH THING AS INTUITIVE....
I can hear the arguments rumbling on the horizon... so let me explain a little.
Intuitive: using what one feels to be right or true based on an unconscious method or feeling.
If (as Carl Sagan postulated) you accept that you cannot comprehend things that are absolutely unlike anything you have ever encountered then how could you possibly "know" how to use something if you have never used anything remotely like it?
Think about it: kids try to open doors not because they "know" how a doorknob works, but because they have seen someone else do it... often they turn the knob in the wrong direction, or pull too soon. They have to LEARN how a doorknob works. This knowledge then gets applied in different but similar instances: opening a window, opening a drawer, opening almost anything big with a big, knob-looking handle.
Even simple things that seem intuitive to us will not be intuitive at all to people from other cultures. If someone held their arm out in front of them and waived their hand up-and-down at the wrist while keeping the arm still.... are they waiving you away? Probably, unless you are in Japan. There, this hand signal can mean "come here". So who is right? Both, of course, in their own context. But if you travel to both, you need to know both... UI design.
I try to find the things that are already "familiar" to the potential users of my project and then build the UI around them: user-centric design.
Take a look at Apple's iPhone. Even if you hate it, you have to respect the amount of thought that went into it. Is it perfect? Of course not. Over time an object's perceived "intuitiveness" can grow or even fade away completely.
For example. Most everyone knows that a strip of black with two rows of holes along the top and bottom looks like a film strip... or do they?
Ask your average 9 or 10 year old what they think it is. You may be surprised how many kids right now will have a hard time identifying it as a film strip, even though it is something that is still used to represent Hollywood, or anything film (movie) related. Most movies for the past 20 years have been digitally shot. And when was the last time any of us held a piece of film of ANY kind, photos or film?
So, what it all boils down to for me is: Know your audience and constantly research to keep up with trends and changes in things that are "intuitive", target your main users and try not to do things that punish the inexperienced in favor of the advanced users or slow down the advanced users in order to hand-hold the novices.
Ultimately, every program will require a certain amount of training on the user's part to use it. How much training and for which level of user is part of the decisions that need to be made.
Some things are more or less familiar based on your target user's past experience level as a human being, or computer user, or student, or whatever.
I just shoot for the fattest part of the bell curve and try to get as many people as I can but realizing that I will never please everyone....
I know that Microsoft is rather inconsistent with their own guidelines, but I have found that reading their Windows design guidelines have really helped me. I have a copy on my website here, just scroll down a little the the Vista UX Guide. It has helped me with things such as colors, spacing, layouts, and more.
I believe the main problem has nothing to do with different talents or skillsets. The main problem is that as a developer, you know too much about what the application does and how it does it, and you automatically design your UI from the point of view of someone who has that knowledge.
Whereas a user typically starts out knowing absolutely nothing about the application and should never need to learn anything about its inner workings.
It is very hard, almost impossible, to not use knowledge that you have - and that's why an UI should not be designed by someone who's developing the app behind it.
"Designing from both sides of the screen" presents a very simple but profound reason as to why programmers find UI design hard: programmers are trained to think in terms of edge cases while UI designers are trained to think in terms of common cases or usage.
So going from one world to the other is certainly difficult if the default traning in either is the exact opposite of the other.
To say that programms suck at UI design is to miss the point. The point of the problem is that the formal training that most developers get go indepth with the technology. Human - Computer Interaction is not a simple topic. It is not something that I can "mind-meld" to you by providing a simple one line statement that makes you realize "oh the users will use this application more effectively if I do x instead of y."
This is because there is one part of UI design that you are missing. The human brain. In order to understand how to design a UI, you have to understand how the human mind interacts with machinery. There is an excellent course I took at the University of Minnesota on this topic taught by a professor of Psychology. It is named "Human - Machine Interaction". This describes many of the reasons of why UI design is so complicated.
Since Psychology is based on Correlations and not Causality you can never prove that a method of UI design will always work in any given situation. You can correlate that many users will find a particular UI design appealing or efficient, but you cannot prove that it will always generalize.
Additionally, there are two parts to UI design that many people seem to miss. There is the aesthetical appeal, and the functional workflow. If you go for a 100% aesthetical appeal, sure people will but your product. I highly doubt that aesthetics will ever reduce user frustration though.
There are several good books on this topic and course to take (like Bill Buxton's Sketching User Experiences, and Cognition in the Wild by Edwin Hutchins). There are graduate programs on Human - Computer Interaction at many universities.
The overall answer to this question though lies in how individuals are taught computer science. It is all math based, logic based and not based on the user experience. To get that, you need more than a generic 4 year computer science degree (unless your 4 year computer science degree had a minor in psychology and was emphasized in Human - Computer Interaction).
Let's turn your question around -
Are "ui designers" doomed to only design information architecture and presentation layers? Is there something they can do to retrain their brains to be more effective at designing pleasing and efficient system layers?
Seems like them "ui designers" would have to take a completely different perspective - they'd have to look from the inside of the box outwards; instead of looking in from outside the box.
Alan Cooper's "The Inmates are Running the Asylum" opinion is that we can't successfully take both perspectives - we can learn to wear one hat well but we can't just switch hats.
I think its because a good UI is not logical. A good UI is intuitive.
Software developers typically do bad on 'intuitive'
A useful framing is to actively consider what you're doing as designing a process of communication. In a very real sense, your interface is a language that the user must use to tell the computer what to do. This leads to considering a number of points:
Does the user already speak this language? Using a highly idiosyncratic interface is like communicating in a language you've never spoken before. So if your interface must be idiosyncratic at all, it had best introduce itself with the simplest of terms and few distractions. On the other hand, if your interface uses idioms that the user is accustomed to, they'll gain confidence from the start.
The enemy of communication is noise. Auditory noise interferes with spoken communication; visual noise interferes with visual communication. The more noise you can cut out of your interface, the easier communicating with it will be.
As in human conversation, it's often not what you say, it's how you say it. The way most software communicates is rude to a degree that would get it punched in the face if it were a person. How would you feel if you asked someone a question and they sat there and stared at you for several minutes, refusing to respond in any other way, before answering? Many interface elements, like progress bars and automatic focus selection, have the fundamental function of politeness. Ask yourself how you can make the user's day a little more pleasant.
Really, it's somewhat hard to determine what programmers think of interface interaction as being, other than a process of communication, but maybe the problem is that it doesn't get thought of as being anything at all.
There are a lot o good comments already, so I am not sure there is much I can add.
But still...
Why would a developer expect to be able to design good UI?
How much training did he had in that field?
How many books did he read?
How many things did he designed over how many years?
Did he had the opportunity to see the reaction of it's users?
We don't expect that a random "Joe the plumber" to be able to write good code.
So why would we expect the random "Joe the programmer" to design good UI?
Empathy helps. Separating the UI design and the programming helps. Usability testing helps.
But UI design is a craft that has to be learned, and practiced, like any other.
Developers are not (necessarily) good at UI design for the same reason they aren't (necessarily) good at knitting; it's hard, it takes practice, and it doesn't hurt to have someone show you how in the first place.
Most developers (me included) started "designing" UIs because it was a necessary part of writing software. Until a developer puts in the effort to get good at it, s/he won't be.
To improve just look around at existing sites. In addition to the books already suggested, you might like to have a look at Robin Williams's excellent book "The Non-designers Design Book" (sanitised Amazon link)
Have a look at what's possible in visual design by taking a look at the various submissions over at The Zen Garden as well.
UI design is definitely an art though, like pointers in C, some people get it and some people don't.
But at least we can have a chuckle at their attempts. BTW Thanks OK/Cancel for a funny comic and thanks Joel for putting it in your book "The Best Software Writing I" (sanitised Amazon link).
User interface isn't something that can be applied after the fact, like a thin coat of paint. It is something that needs to be there at the start, and based on real research. There's tons of Usability research available of course. It needs to not just be there at the start, it needs to form the core of the very reason you're making the software in the first place: There's some gap in the world out there, some problem, and it needs to be made more usable and more efficient.
Software is not there for its own sake. The reason for a peice of software to exist is FOR PEOPLE. It's absolutely ludicrous to even try to come up with an idea for a new peice of software, without understanding why anyone would need it. Yet this happens all the time.
Before a single line of code is written, you should go through paper versions of the interface, and test it on real people. This is kind of weird and silly, it works best with kids, and someone entertaining acting as "the computer".
The interface needs to take advantage of our natural cognitive facilities. How would a caveman use your program? For instance, we've evolved to be really good at tracking moving objects. That's why interfaces that use physics simulations, like the iphone, work better than interfaces where changes occur instantaneously.
We are good at certain kinds of abstraction, but not others. As programmers, we're trained to do mental gymnastics and backflips to understand some of the weirdest abstractions. For instance, we understand that a sequence of arcane text can represent and be translated into a pattern of electromagnetic state on a metal platter, which when encountered by a carefully designed device, leads to a sequence of invisible events that occur at lightspeed on an electronic circuit, and these events can be directed to produce a useful outcome. This is an incredibly unnatural thing to have to understand. Understand that while it's got a perfectly rational explanation to us, to the outside world, it looks like we're writing incomprehensible incantations to summon invisible sentient spirits to do our bidding.
The sorts of abstractions that normal humans understand are things like maps, diagrams, and symbols. Beware of symbols, because symbols are a very fragile human concept that take conscious mental effort to decode, until the symbol is learned.
The trick with symbols is that there has to be a clear relationship between the symbol, and the thing it represents. The thing it represents either has to be a noun, in which case the symbol should look VERY MUCH like the thing it represents. If a symbol is representing a more abstract concept, that has to be explained IN ADVANCE. See the inscrutable unlabled icons in msword's, or photoshop's toolbar, and the abstract concepts they represent. It has to be LEARNED that the crop tool icon in photoshop means CROP TOOL. it has to be understood what CROP even means. These are prerequisites to correctly using that software. Which brings up an important point, beware of ASSUMED knowledge.
We only gain the ability to understand maps around the age of 4. I think I read somewhere once that chimpanzees gain the ability to understand maps around the age of 6 or 7.
The reason that guis have been so successful to begin with, is that they changed a landscape of mostly textual interfaces to computers, to something that mapped the computer concepts to something that resembled a physical place. Where guis fail in terms of usability, is where they stop resembling something you'd see in real life. There are invisible, unpredictable, incomprehensible things that happen in a computer that bare no resemblance to anything you'd ever see in the physical world. Some of this is necessary, since there'd be no point in just making a reality simulator- The idea is to save work, so there has to be a bit of magic. But that magic has to make sense, and be grounded in an abstraction that human beings are well adapted to understanding. It's when our abstractions start getting deep, and layered, and mismatched with the task at hand that things break down. In other words, the interface doesn't function as a good map for the underlying software.
There are lots of books. The two I've read, and can therefore reccomend, are "The Design of Everyday Things" by donald norman, and "The Human Interface" by Jef Raskin.
I also reccomend a course in psychology. "The Design of Every day Things" talks about this a bit. A lot of interfaces break down because of a developer's "folk understanding" of psychology. This is similar to "folk physics". An object in motion stays in motion doesn't make any sense to most people. "You have to keep pushing it to keep it in motion!" thinks the physics novice. User testing doesn't make sense to most developers. "You can just ask the users what they want, and that should be good enough!" thinks the psychology novice.
I reccomend Discovering Psychology, a PBS documentary series, hosted by Philip Zimbardo. Failing that, try and find a good physics textbook. The expensive kind. Not the pulp fiction self help crap that you find in Borders, but the thick hardbound stuff you can only find in a university library. This is a necesesary foundation. You can do good design without it, but you'll only have an intuitive understanding of what's going on. Reading some good books will give you a good perspective.
If you read the book "Why software sucks" you would have seen Platt's answer, which is a simple one:
Developers prefere control over user-friendliness
Average people prefere user-friendliness over control
But another another answer to your question would be "why is dentistry so hard for some developers?" - UI design is best done by a UI designer.
http://dotmad.net/blog/2007/11/david-platt-on-why-software-sucks/

Resources