Check if balanced binary tree (standard ml) - data-structures

The tree datatype is :
datatype mobile = Object of int | Wire of mobile * mobile
To check if it's balanced I figured out I have to first make a weight function to calculate the weight of the values of each node and then compare left sub tree and right tree. However I have trouble putting this in ml language.
Code so far:
fun balanced Object = true
if(weight(Wire(x,t1)) - weight(Wire(y,t1))) = 0)
then true
else false

Related

Confused about expected output for a 'Validate Binary Search Tree' question

Im attempting to write an algorithm that validates a binary search tree. This is to answer the following algorithm question: https://leetcode.com/problems/validate-binary-search-tree/. I've opted to use a recursive approach and have coded the following in Python3:
def isValidBST(self, root: Optional[TreeNode]) -> bool:
if not root:
return True
left = self.isValidBST(root.left)
right = self.isValidBST(root.right)
if left and right:
if (root.left and root.val <= root.left.val) or (root.right and root.val >= root.right.val):
return False
return True
return False
The algorithm above works up to the 71st test case provided by the leetcode platform. However, it fails on the following input:
[5,4,6,null,null,3,7]
The expected output is False (i.e. not a binary search tree). However, my algorithm outputs True. I've consulted the question description and the diagrams provided multiple times and I believe my output to be correct. With that in mind, is there something I'm missing? Or is the platform incorrect?
The input [5,4,6,null,null,3,7] has the following tree representation.
This is clearly not a valid binary search tree, since the node 3 is less than it's grand parent 5.
In a binary search tree, every node to the right (including all ancestors), must be greater (or grater or equal depending on your definition). The same goes for the left sub trees. Please note that the leetcode problem in this case specifically states that they must be less and greater so equal is not valid. Think about it this way: You need to be able to do a binary search in a BST. When you go right, you expect all the nodes there to be greater than the parent. If a node less than the parent is found there, the ordering is broken and you can't do a binary search. You need to search linearly. Binary searching for 3 in this example would return false, while it's clearly there. So, it isn't a valid binary search tree.
Your algorithm only checks whether the immediate left and right children respect this condition.
To correct it, you need to pass down the min and max allowed values to the recursive function. When you go left, you set the max value equal to the current node value. When you go right you set the min value to the current node value. This makes sure that, say the nodes to the left of a node are never greater than that node.
A possible implementation is as follows:
class Solution:
def isValidBST(self, root: TreeNode) -> bool:
return self.isValidBSTHelper(root, None, None)
def isValidBSTHelper(self, root: TreeNode, min_val: int, max_val: int)-> bool:
if root == None: return True
if (min_val != None and root.val <= min_val) or (max_val != None and root.val >= max_val):
return False
return self.isValidBSTHelper(root.left, min_val, root.val) \
and self.isValidBSTHelper(root.right, root.val, max_val)

Decision Tree Depth

As part of my project, I have to use Decision tree that I am using "fitctree" function that is the Matlab function for classified my features that extracted with PCA.
I want to control number of Tree and tree depth in fitctree function.
anyone knows how can I do this? for example changed the number of trees to 200 and tree depth to 10. How am I going to do this?
Is it possible to change these value in decision tree?
Best,
fitctree offers only input parameters to control the depth of the resulting tree:
MaxNumSplits
MinLeafSize
MinParentSize
https://de.mathworks.com/help/stats/classification-trees-and-regression-trees.html#bsw6baj
You have to play with those parameters to control the depth of your tree. Thats because the decision tree only stops growing when purity is reached.
Another possibility would be to turn on pruning. Pruning will reduce the size of your tree by removing sections of the tree that provide little power to classify instances.
Let me assume that you are using ID3 algorithm. Its pseudocode can provide a way to control the depth of the tree.
ID3 (Examples, Target_Attribute, Attributes, **Depth**)
// Check the depth of the tree, if it is 0, we are going to break
if (Depth == 0) { break; }
// Else continue
Create a root node for the tree
If all examples are positive, Return the single-node tree Root, with label = +.
If all examples are negative, Return the single-node tree Root, with label = -.
If number of predicting attributes is empty, then Return the single node tree Root,
with label = most common value of the target attribute in the examples.
Otherwise Begin
A ← The Attribute that best classifies examples.
Decision Tree attribute for Root = A.
For each possible value, vi, of A,
Add a new tree branch below Root, corresponding to the test A = vi.
Let Examples(vi) be the subset of examples that have the value vi for A
If Examples(vi) is empty
Then below this new branch add a leaf node with label = most common target value in the examples
// We decrease the value of Depth by 1 so the tree stops growing when it reaches the designated depth
Else below this new branch add the subtree ID3 (Examples(vi), Target_Attribute, Attributes – {A}, Depth - 1)
End
Return Root
What algorithm does your fictree function try to implement?

How to calculate Hash value of a Tree

What is the best way to calculate the hash value of a Tree?
I need to compare the similarity between several trees in O(1). Now, I want to precalculate the hash values and compare them when needed. But then I realized, hashing a tree is different than hashing a sequence. I wasn't able to come up with a good hash function.
What is the best way to calculate hash value of a tree?
Note : I will implement the function in c/c++
Well hasing a tree means representing it in a unique way so that we can differ other trees from this tree using a simple representation or number. On normal polynomial hash we use number base conversion, we convert a string or a sequence in a specific prime base and use a mod value which is also a large prime. Now using this same technique we can hash a tree.
Now fix the root of the tree at any vertex. Let root = 1 and,
B = The base in which we want to convert.
P[i] = i th power of B (B^i).
level[i] = Depth of the ith vertex where (distance from the root).
child[i] = Total number of the vertex in the subtree of ith vertex including i.
degree[i] = Number of adjacent node of vertex i.
Now the contribution of the ith vertex in the hash value is -
hash[i] = ( (P[level[i]]+degree[i]) * child[i] ) % modVal
And the hash value of the entire tree is the summation of the all vertices hash value-
(hash[1]+hash[2]+....+hash[n]) % modVal
If we use this definition of tree equivalence:
T1 is equivalent to T2 iff
all paths to leaves of T1 exist exactly once in T2, and
all paths to leaves of T2 exist exactly once in T2
Hashing a sequence (a path) is straightforward. If h_tree(T) is a hash of all paths-to-leafs of T, where the order of the paths does not alter the outcome, then it is a good hash for the whole of T, in the sense that equivalent trees will produce equal hashes, according to the above definition of equivalence. So I propose:
h_path(path) = an order-dependent hash of all elements in the path.
Requires O(|path|) time to calculate,
but child nodes can reuse the calculation of their
parent node's h_path in their own calculations.
h_tree(T) = an order-independent hashing of all its paths-to-leaves.
Can be calculated in O(|L|), where L is the number of leaves
In pseudo-c++:
struct node {
int path_hash; // path-to-root hash; only use for building tree_hash
int tree_hash; // takes children into account; use to compare trees
int content;
vector<node> children;
int update_hash(int parent_path_hash = 1) {
path_hash = parent_path_hash * PRIME1 + content; // order-dependent
tree_hash = path_hash;
for (node n : children) {
tree_hash += n.update_hash(path_hash) * PRIME2; // order-independent
}
return tree_hash;
}
};
After building two trees, update their hashes and compare away. Equivalent trees should have the same hash, different trees not so much. Note that the path and tree hashes that I am using are rather simplistic, and chosen rather for ease of programming than for great collision resistance...
Child hashes should be successively multiplied by a prime number & added. Hash of the node itself should be multiplied by a different prime number & added.
Cache the hash of the tree overall -- I prefer to cache it outside the AST node, if I have a wrapper object holding the AST.
public class RequirementsExpr {
protected RequirementsAST ast;
protected int hash = -1;
public int hashCode() {
if (hash == -1)
this.hash = ast.hashCode();
return hash;
}
}
public class RequirementsAST {
protected int nodeType;
protected Object data;
// -
protected RequirementsAST down;
protected RequirementsAST across;
public int hashCode() {
int nodeHash = nodeType;
nodeHash = (nodeHash * 17) + (data != null ? data.hashCode() : 0);
nodeHash *= 23; // prime A.
int childrenHash = 0;
for (RequirementsAST child = down; child != null; child = child.getAcross()) {
childrenHash *= 41; // prime B.
childrenHash += child.hashCode();
}
int result = nodeHash + childrenHash;
return result;
}
}
The result of this, is that child/descendant nodes in different positions are always multiplied in by different factors; and the node itself is always multiplied in by a different factor from any possible child/descendant nodes.
Note that other primes should also be used in building the nodeHash of the node data, itself. This helps avoid eg. different values of nodeType colliding with different values of data.
Within the limits of 32-bit hashing, this scheme overall gives a very high chance of uniqueness for any differences in tree-structure (eg, transposing two siblings) or value.
Once calculated (over the entire AST) the hashes are highly efficient.
I would recommend converting the tree to a canonical sequence and hashing the sequence. (The details of the conversion depend on your definition of equivalence. For example, if the trees are binary search trees and the equivalence relation is structural, then the conversion could be to enumerate the tree in preorder, as the structure of binary search trees can be recovered from the preorder enumeration.)
Thomas's answer boils down at first glance to associating a multivariable polynomial with each tree and evaluating the polynomial at a particular location. There are two steps that, at the moment, have to be assumed on faith; the first is that the map doesn't send inequivalent trees to the same polynomial, and the second is that the evaluation scheme doesn't introduce too many collisions. I can't evaluate the first step presently, though there are reasonable definitions of equivalence that permit reconstruction from a two-variable polynomial. The second is not theoretically sound but could be made so via Schwartz--Zippel.

Figuring a max repetitive sub-tree in an object tree

I am trying to solve a problem of finding a max repetitive sub-tree in an object tree.
By the object tree I mean a tree where each leaf and node has a name. Each leaf has a type and a value of that type associated with that leaf. Each node has a set of leaves / nodes in certain order.
Given an object tree that - we know - has a repetitive sub-tree in it.
By repetitive I mean 2 or more sub-trees that are similar in everything (names/types/order of sub-elements) but the values of leaves. No nodes/leaves can be shared between sub-trees.
Problem is to identify these sub-trees of the max height.
I know that the exhaustive search can do the trick. I am rather looking for more efficient approach.
you could implement a dfs traversal generating a hash value for each node. Store these values with the node height in a simple array. Sub-tree candidates are duplicate values, just check that the candidates are ok since two different sub-trees could yield same hash value.
Assuming the leafs and internal nodes are all of type Node and that standard access and traversal functions are available :
procedure dfs_update( node : Node, hashmap : Hashmap )
begin
if is_leaf(node) then
hashstring = concat("LEAF",'|',get_name_str(node),'|',get_type_str(node))
else // node is an internal node
hashstring = concat("NODE",'|',get_name_str(node))
for each child in get_children_sorted(node)
dfs_update(child,hashmap)
hashstring = concat(hashstring,'|',get_hash_string(hashmap,child))
end for
end if
// only a ref to node is added to the hashmap, we could also add
// the node's height, hashstring, whatever could be useful and inapropriate
// to keep in the Node ds
add(hashmap, hash(hashstring),node)
end
The tricky part is after a dfs_update, we have to get the list of collinding nodes in the hasmap by descending height and check two by two they are really repetitive.

Hashing a Tree Structure

I've just come across a scenario in my project where it I need to compare different tree objects for equality with already known instances, and have considered that some sort of hashing algorithm that operates on an arbitrary tree would be very useful.
Take for example the following tree:
O
/ \
/ \
O O
/|\ |
/ | \ |
O O O O
/ \
/ \
O O
Where each O represents a node of the tree, is an arbitrary object, has has an associated hash function. So the problem reduces to: given the hash code of the nodes of tree structure, and a known structure, what is a decent algorithm for computing a (relatively) collision-free hash code for the entire tree?
A few notes on the properties of the hash function:
The hash function should depend on the hash code of every node within the tree as well as its position.
Reordering the children of a node should distinctly change the resulting hash code.
Reflecting any part of the tree should distinctly change the resulting hash code
If it helps, I'm using C# 4.0 here in my project, though I'm primarily looking for a theoretical solution, so pseudo-code, a description, or code in another imperative language would be fine.
UPDATE
Well, here's my own proposed solution. It has been helped much by several of the answers here.
Each node (sub-tree/leaf node) has the following hash function:
public override int GetHashCode()
{
int hashCode = unchecked((this.Symbol.GetHashCode() * 31 +
this.Value.GetHashCode()));
for (int i = 0; i < this.Children.Count; i++)
hashCode = unchecked(hashCode * 31 + this.Children[i].GetHashCode());
return hashCode;
}
The nice thing about this method, as I see it, is that hash codes can be cached and only recalculated when the node or one of its descendants changes. (Thanks to vatine and Jason Orendorff for pointing this out).
Anyway, I would be grateful if people could comment on my suggested solution here - if it does the job well, then great, otherwise any possible improvements would be welcome.
If I were to do this, I'd probably do something like the following:
For each leaf node, compute the concatenation of 0 and the hash of the node data.
For each internal node, compute the concatenation of 1 and the hash of any local data (NB: may not be applicable) and the hash of the children from left to right.
This will lead to a cascade up the tree every time you change anything, but that MAY be low-enough of an overhead to be worthwhile. If changes are relatively infrequent compared to the amount of changes, it may even make sense to go for a cryptographically secure hash.
Edit1: There is also the possibility of adding a "hash valid" flag to each node and simply propagate a "false" up the tree (or "hash invalid" and propagate "true") up the tree on a node change. That way, it may be possible to avoid a complete recalculation when the tree hash is needed and possibly avoid multiple hash calculations that are not used, at the risk of slightly less predictable time to get a hash when needed.
Edit3: The hash code suggested by Noldorin in the question looks like it would have a chance of collisions, if the result of GetHashCode can ever be 0. Essentially, there is no way of distinguishing a tree composed of a single node, with "symbol hash" 30 and "value hash" 25 and a two-node tree, where the root has a "symbol hash" of 0 and a "value hash" of 30 and the child node has a total hash of 25. The examples are entirely invented, I don't know what expected hash ranges are so I can only comment on what I see in the presented code.
Using 31 as the multiplicative constant is good, in that it will cause any overflow to happen on a non-bit boundary, although I am thinking that, with sufficient children and possibly adversarial content in the tree, the hash contribution from items hashed early MAY be dominated by later hashed items.
However, if the hash performs decently on expected data, it looks as if it will do the job. It's certainly faster than using a cryptographic hash (as done in the example code listed below).
Edit2: As for specific algorithms and minimum data structure needed, something like the following (Python, translating to any other language should be relatively easy).
#! /usr/bin/env python
import Crypto.Hash.SHA
class Node:
def __init__ (self, parent=None, contents="", children=[]):
self.valid = False
self.hash = False
self.contents = contents
self.children = children
def append_child (self, child):
self.children.append(child)
self.invalidate()
def invalidate (self):
self.valid = False
if self.parent:
self.parent.invalidate()
def gethash (self):
if self.valid:
return self.hash
digester = crypto.hash.SHA.new()
digester.update(self.contents)
if self.children:
for child in self.children:
digester.update(child.gethash())
self.hash = "1"+digester.hexdigest()
else:
self.hash = "0"+digester.hexdigest()
return self.hash
def setcontents (self):
self.valid = False
return self.contents
Okay, after your edit where you've introduced a requirement that the hashing result should be different for different tree layouts, you're only left with option to traverse the whole tree and write its structure to a single array.
That's done like this: you traverse the tree and dump the operations you do. For an original tree that could be (for a left-child-right-sibling structure):
[1, child, 2, child, 3, sibling, 4, sibling, 5, parent, parent, //we're at root again
sibling, 6, child, 7, child, 8, sibling, 9, parent, parent]
You may then hash the list (that is, effectively, a string) the way you like. As another option, you may even return this list as a result of hash-function, so it becomes collision-free tree representation.
But adding precise information about the whole structure is not what hash functions usually do. The way proposed should compute hash function of every node as well as traverse the whole tree. So you may consider other ways of hashing, described below.
If you don't want to traverse the whole tree:
One algorithm that immediately came to my mind is like this. Pick a large prime number H (that's greater than maximal number of children). To hash a tree, hash its root, pick a child number H mod n, where n is the number of children of root, and recursively hash the subtree of this child.
This seems to be a bad option if trees differ only deeply near the leaves. But at least it should run fast for not very tall trees.
If you want to hash less elements but go through the whole tree:
Instead of hashing subtree, you may want to hash layer-wise. I.e. hash root first, than hash one of nodes that are its children, then one of children of the children etc. So you cover the whole tree instead of one of specific paths. This makes hashing procedure slower, of course.
--- O ------- layer 0, n=1
/ \
/ \
--- O --- O ----- layer 1, n=2
/|\ |
/ | \ |
/ | \ |
O - O - O O------ layer 2, n=4
/ \
/ \
------ O --- O -- layer 3, n=2
A node from a layer is picked with H mod n rule.
The difference between this version and previous version is that a tree should undergo quite an illogical transformation to retain the hash function.
The usual technique of hashing any sequence is combining the values (or hashes thereof) of its elements in some mathematical way. I don't think a tree would be any different in this respect.
For example, here is the hash function for tuples in Python (taken from Objects/tupleobject.c in the source of Python 2.6):
static long
tuplehash(PyTupleObject *v)
{
register long x, y;
register Py_ssize_t len = Py_SIZE(v);
register PyObject **p;
long mult = 1000003L;
x = 0x345678L;
p = v->ob_item;
while (--len >= 0) {
y = PyObject_Hash(*p++);
if (y == -1)
return -1;
x = (x ^ y) * mult;
/* the cast might truncate len; that doesn't change hash stability */
mult += (long)(82520L + len + len);
}
x += 97531L;
if (x == -1)
x = -2;
return x;
}
It's a relatively complex combination with constants experimentally chosen for best results for tuples of typical lengths. What I'm trying to show with this code snippet is that the issue is very complex and very heuristic, and the quality of the results probably depend on the more specific aspects of your data - i.e. domain knowledge may help you reach better results. However, for good-enough results you shouldn't look too far. I would guess that taking this algorithm and combining all the nodes of the tree instead of all the tuple elements, plus adding their position into play will give you a pretty good algorithm.
One option of taking the position into account is the node's position in an inorder walk of the tree.
Any time you are working with trees recursion should come to mind:
public override int GetHashCode() {
int hash = 5381;
foreach(var node in this.BreadthFirstTraversal()) {
hash = 33 * hash + node.GetHashCode();
}
}
The hash function should depend on the hash code of every node within the tree as well as its position.
Check. We are explicitly using node.GetHashCode() in the computation of the tree's hash code. Further, because of the nature of the algorithm, a node's position plays a role in the tree's ultimate hash code.
Reordering the children of a node should distinctly change the resulting hash code.
Check. They will be visited in a different order in the in-order traversal leading to a different hash code. (Note that if there are two children with the same hash code you will end up with the same hash code upon swapping the order of those children.)
Reflecting any part of the tree should distinctly change the resulting hash code
Check. Again the nodes would be visited in a different order leading to a different hash code. (Note that there are circumstances where the reflection could lead to the same hash code if every node is reflected into a node with the same hash code.)
The collision-free property of this will depend on how collision-free the hash function used for the node data is.
It sounds like you want a system where the hash of a particular node is a combination of the child node hashes, where order matters.
If you're planning on manipulating this tree a lot, you may want to pay the price in space of storing the hashcode with each node, to avoid the penalty of recalculation when performing operations on the tree.
Since the order of the child nodes matters, a method which might work here would be to combine the node data and children using prime number multiples and addition modulo some large number.
To go for something similar to Java's String hashcode:
Say you have n child nodes.
hash(node) = hash(nodedata) +
hash(childnode[0]) * 31^(n-1) +
hash(childnode[1]) * 31^(n-2) +
<...> +
hash(childnode[n])
Some more detail on the scheme used above can be found here: http://computinglife.wordpress.com/2008/11/20/why-do-hash-functions-use-prime-numbers/
I can see that if you have a large set of trees to compare, then you could use a hash function to retrieve a set of potential candidates, then do a direct comparison.
A substring that would work is just use lisp syntax to put brackets around the tree, write out the identifiere of each node in pre-order. But this is computationally equivalent to a pre-order comparison of the tree, so why not just do that?
I've given 2 solutions: one is for comparing the two trees when you're done (needed to resolve collisions) and the other to compute the hashcode.
TREE COMPARISON:
The most efficient way to compare will be to simply recursively traverse each tree in a fixed order (pre-order is simple and as good as anything else), comparing the node at each step.
So, just create a Visitor pattern that successively returns the next node in pre-order for a tree. i.e. it's constructor can take the root of the tree.
Then, just create two insces of the Visitor, that act as generators for the next node in preorder. i.e. Vistor v1 = new Visitor(root1), Visitor v2 = new Visitor(root2)
Write a comparison function that can compare itself to another node.
Then just visit each node of the trees, comparing, and returning false if comparison fails. i.e.
Module
Function Compare(Node root1, Node root2)
Visitor v1 = new Visitor(root1)
Visitor v2 = new Visitor(root2)
loop
Node n1 = v1.next
Node n2 = v2.next
if (n1 == null) and (n2 == null) then
return true
if (n1 == null) or (n2 == null) then
return false
if n1.compare(n2) != 0 then
return false
end loop
// unreachable
End Function
End Module
HASH CODE GENERATION:
if you want to write out a string representation of the tree, you can use the lisp syntax for a tree, then sample the string to generate a shorter hashcode.
Module
Function TreeToString(Node n1) : String
if node == null
return ""
String s1 = "(" + n1.toString()
for each child of n1
s1 = TreeToString(child)
return s1 + ")"
End Function
The node.toString() can return the unique label/hash code/whatever for that node. Then you can just do a substring comparison from the strings returned by the TreeToString function to determine if the trees are equivalent. For a shorter hashcode, just sample the TreeToString Function, i.e. take every 5 character.
End Module
I think you could do this recursively: Assume you have a hash function h that hashes strings of arbitrary length (e.g. SHA-1). Now, the hash of a tree is the hash of a string that is created as a concatenation of the hash of the current element (you have your own function for that) and hashes of all the children of that node (from recursive calls of the function).
For a binary tree you would have:
Hash( h(node->data) || Hash(node->left) || Hash(node->right) )
You may need to carefully check if tree geometry is properly accounted for. I think that with some effort you could derive a method for which finding collisions for such trees could be as hard as finding collisions in the underlying hash function.
A simple enumeration (in any deterministic order) together with a hash function that depends when the node is visited should work.
int hash(Node root) {
ArrayList<Node> worklist = new ArrayList<Node>();
worklist.add(root);
int h = 0;
int n = 0;
while (!worklist.isEmpty()) {
Node x = worklist.remove(worklist.size() - 1);
worklist.addAll(x.children());
h ^= place_hash(x.hash(), n);
n++;
}
return h;
}
int place_hash(int hash, int place) {
return (Integer.toString(hash) + "_" + Integer.toString(place)).hash();
}
class TreeNode
{
public static QualityAgainstPerformance = 3; // tune this for your needs
public static PositionMarkConstan = 23498735; // just anything
public object TargetObject; // this is a subject of this TreeNode, which has to add it's hashcode;
IEnumerable<TreeNode> GetChildParticipiants()
{
yield return this;
foreach(var child in Children)
{
yield return child;
foreach(var grandchild in child.GetParticipiants() )
yield return grandchild;
}
IEnumerable<TreeNode> GetParentParticipiants()
{
TreeNode parent = Parent;
do
yield return parent;
while( ( parent = parent.Parent ) != null );
}
public override int GetHashcode()
{
int computed = 0;
var nodesToCombine =
(Parent != null ? Parent : this).GetChildParticipiants()
.Take(QualityAgainstPerformance/2)
.Concat(GetParentParticipiants().Take(QualityAgainstPerformance/2));
foreach(var node in nodesToCombine)
{
if ( node.ReferenceEquals(this) )
computed = AddToMix(computed, PositionMarkConstant );
computed = AddToMix(computed, node.GetPositionInParent());
computed = AddToMix(computed, node.TargetObject.GetHashCode());
}
return computed;
}
}
AddToTheMix is a function, which combines the two hashcodes, so the sequence matters.
I don't know what it is, but you can figure out. Some bit shifting, rounding, you know...
The idea is that you have to analyse some environment of the node, depending on the quality you want to achieve.
I have to say, that you requirements are somewhat against the entire concept of hashcodes.
Hash function computational complexity should be very limited.
It's computational complexity should not linearly depend on the size of the container (the tree), otherwise it totally breaks the hashcode-based algorithms.
Considering the position as a major property of the nodes hash function also somewhat goes against the concept of the tree, but achievable, if you replace the requirement, that it HAS to depend on the position.
Overall principle i would suggest, is replacing MUST requirements with SHOULD requirements.
That way you can come up with appropriate and efficient algorithm.
For example, consider building a limited sequence of integer hashcode tokens, and add what you want to this sequence, in the order of preference.
Order of the elements in this sequence is important, it affects the computed value.
for example for each node you want to compute:
add the hashcode of underlying object
add the hashcodes of underlying objects of the nearest siblings, if available. I think, even the single left sibling would be enough.
add the hashcode of underlying object of the parent and it's nearest siblings like for the node itself, same as 2.
repeat this to with the grandparents to a limited depth.
//--------5------- ancestor depth 2 and it's left sibling;
//-------/|------- ;
//------4-3------- ancestor depth 1 and it's left sibling;
//-------/|------- ;
//------2-1------- this;
the fact that you are adding a direct sibling's underlying object's hashcode gives a positional property to the hashfunction.
if this is not enough, add the children:
You should add every child, just some to give a decent hashcode.
add the first child and it's first child and it's first child.. limit the depth to some constant, and do not compute anything recursively - just the underlying node's object's hashcode.
//----- this;
//-----/--;
//----6---;
//---/--;
//--7---;
This way the complexity is linear to the depth of the underlying tree, not the total number of elements.
Now you have a sequence if integers, combine them with a known algorithm, like Ely suggests above.
1,2,...7
This way, you will have a lightweight hash function, with a positional property, not dependent on the total size of the tree, and even not dependent on the tree depth, and not requiring to recompute hash function of the entire tree when you change the tree structure.
I bet this 7 numbers would give a hash destribution near to perfect.
Writing your own hash function is almost always a bug, because you basically need a degree in mathematics to do it well. Hashfunctions are incredibly nonintuitive, and have highly unpredictable collision characteristics.
Don't try directly combining hashcodes for Child nodes -- this will magnify any problems in the underlying hash functions. Instead, concatenate the raw bytes from each node in order, and feed this as a byte stream to a tried-and-true hash function. All the cryptographic hash functions can accept a byte stream. If the tree is small, you may want to just create a byte array and hash it in one operation.

Resources