Linux device driver - Threaded IRQ handler - linux-kernel

Recently, I ran into a situation where I would like to use threaded IRQ's for a Keypad driver. For some background on threaded IRQ handlers:
http://lwn.net/Articles/302043/
From what I understand, every time an IRQ would occur the IRQ handler thread would be woken up. So, if i press KEY A, it wakes up the thread and it runs through to completion. Now, what would be the behavior should i press KEY B, when the handler thread is still running while servicing the IRQ from KEY A... Would the IRQ from KEY B be ignored ?
What would be the expected behavior ?

Ideally the system would always acknowledge the sequence of Key A->Key B.
However to acknowledge that a key was pressed, the system must do something at the point at which each key is pressed, I.e. when the keyboard interrupt occurs - at a minimum it must record the key presses, perhaps in a queue.
And from the perspective of a single processor, it can only do one thing at a time, so if it is in the middle of recording key press A, then it can't at the same time record key press B.
It would either have to abandon A and record B instead, or it would have to ignore B.
Thus the goal of interrupt handling is to minimise the amount of time the processor spends doing the minimum it needs to for acknowledging any given interrupt.
The goal of threaded interrupts is to push more of the work to separate threads, so that the minimum needed for acknowledging an interrupt is reduced, and therefore the time spent handling the interrupt (where it can't handle any other interrupts at the same time) is reduced.
Even then there is still no theoretical guarantee that the processor won't have to discard or ignore interrupts, but it does make it a lot less likely in practice.
For your specific example of key presses, if you were somehow able to be quick enough to press B before the processor had completed its minimum handling of A, then since both interrupts are from the same source, and therefore have the same priority, B would be ignored, and it would appear to you as if B was never pressed.

The way it works with interrupts is that processor will call an enabled interrupt over and over again until application clears the corresponding interrupt flag. So what you do is disable that particular interrupt in the hardware handler and wake up your thread. When hardware handler exits, interrupt flags will be set but the interrupt will not be called again. So you then in your thread checkeach flag and clear it as you go. When you detect that a flag for a keypress is set, you read out the key and then clear it. If a new key is pressed after you read data register and there is no fifo in hardware then that key press will be lost. You then clear the interrupt flag and enable the hardware interrupt again. The idea is that this process happens so fast that there is no way to lose a key because your thread will always run sooner than human can press another key.
In the situation such as usb (ie if you write a usb driver that communicates with pc) you have the option to tell usb peripheral when you are done reading data so it can tell the host it can accept more data. In that situation you can never lose data because you will read data out and clear the flag and only then tell the peripheral that you are ready. All the time until then the peripheral will tell the host that it is not ready so no data will be clocked in over the usb bus.

Related

Linux kernel IRQ to execute long action

I am implementing a kernel module to handle power-off event. Our HW setup will emit an IRQ when power cut-off happens, and device can run 200ms more after that. During this time I have to close all rw-opened Fd to avoid file corruption. I am thinking of two options:
Perform closing all Fds from within the interrupt context itself. It will mask all other interrupts and handle the event until device is off. It may cause freezing issue.
Use Softirqs and do closing in the bottom half.
What would be the best way to implement this? thanks all.

When save states while dealing with tasklets?

I'm reading Linux Kernel development and get confused in the tasklets chapter (https://doc.lagout.org/operating%20system%20/linux/Linux%20Kernel%20Development%2C%203rd%20Edition.pdf page143).
In the tasklet_schedule function, the interrupt state is saved while in the taslet_action it is not. The author explains that the context is not saved in taslet_action because the function knows that interrupts are always enabled. I fail to understand how does the set of interrupts interfere with saving the context? Thank you!
The author states that tasklet_schedule can be called with either interrupts disabled or enabled. Since it wants them disabled, it needs to save whether they are already disabled. Then after the work is done it knows whether to enable them (if they were enabled prior to the call it enables them, if they were disabled prior to the call it leaves them disabled). In contrast, tasklet_action is only called with interrupts enabled, so there is no point in checking their state. They always get disabled and enabled on return.
In case of tasklet_schedule :
We do not want interrupt to disturb us when we are scheduling a tasklet, so we have to disable it. But we also know that, when we are done with scheduling the tasklet, we want to go back to the state of IRQ as it was before schedule tasklet was called. To achieve this, we save the state of the IRQ register before doing anything, then disable the IRQ as per our requirement, do the scheduling, now before going back restore the state of the IRQ and then return from the function.
Now coming to the complicated part, Why dont we need to save the IRQ when executing the tasklet i.e when the handler calls the tasklet function ?
To understand that we need to look at two different paragraphs :
On page 141 :
The softirq handlers run with interrupts enabled and cannot
sleep .While a handler runs, softirqs on the current processor are
disabled.Another processor, however, can exe-cute other softirqs. If
the same softirq is raised again while it is executing, another
processor can run it simultaneously.
So this declares that interrupts are always enabled.
Now going to pg 143 :
Disable local interrupt delivery (there is no need to first save their state because the code here is always called as a softirq
handler and interrupts are always enabled) and retrieve the
tasklet_vec or tasklet_hi_vec list for this processor
So we can conclude that we dont need to save the IRQ state as we already know its state and it will remain so in all the conditions so we just disable the IRQ and enable it later.

What is channel event system?

I am working on some project Where I have to deal with uc ATxmega128A1 , But being a beginner to a ucontrollers I want to know what is this channel event system regarding ucs.
I have referred a link http://www.atmel.com/Images/doc8071.pdf but not getting it.
The traditional way to do things the channel system can do is to use interrupts.
In the interrupt model, the CPU runs the code starting with main(), and continues usually with some loop. When an particular event occurs, such as a button being pressed, the CPU is "interrupted". The current processing is stopped, some registers are saved, and the execution jumps to some code pointed to by an interrupt vector called an interrupt handler. This code usually has instructions to save register values, and this is added automatically by the compiler.
When the interrupting code is finished, the CPU restores the values that the registers previously had and execution jumps back to the point in the main code where it was interrupted.
But this approach takes valuable CPU cycles. And some interrupt handlers don't do very much expect trigger some peripheral to take an action. Wouldn't it be great it these kinds of interrupt handlers could be avoided and have the mC have the peripherals talk directly to each other without pausing the CPU?
This is what the event channel system does. It allows peripherals to trigger each other directly without involving the CPU. The CPU continues to execute instructions while the channel system operates in parallel. This doesn't mean you can replace all interrupt handlers, though. If complicated processing is involved, you still need a handler to act. But the channel system does allow you to avoid using very simple interrupt handlers.
The paper you reference describes this in a little more detail (but assumes a lot of knowledge on the reader's part). You have to read the actual datasheet of your mC to find the exact details.

Avoid spinlock deadlock

Imagine that a device function holds a spinlock to control access to the device. While the lock is held, the device issues an interrupt, which causes an interrupt handler to run. The interrupt handler, before accessing the device, must also obtain the lock.
Suppose that the interrupt handler executes in the same processor as the code that took out the lock originally.
Knowing that to hold spinlock disables preemption on the relevant processor, is it possible that the code that holds the spinlock be executed on another processor (because of preemption on this processor)? (We suppose that this is a SMP machine)
Is it possible that the code that holds the spinlock be executed on another processor (because of preemption on this processor)?
No, the code just keeps waiting for the interrupt handler to return.
Just use spin_lock_irq*(), or spin_lock_bh() if you also want to protect against softirqs/tasklets.

Why kernel code/thread executing in interrupt context cannot sleep?

I am reading following article by Robert Love
http://www.linuxjournal.com/article/6916
that says
"...Let's discuss the fact that work queues run in process context. This is in contrast to the other bottom-half mechanisms, which all run in interrupt context. Code running in interrupt context is unable to sleep, or block, because interrupt context does not have a backing process with which to reschedule. Therefore, because interrupt handlers are not associated with a process, there is nothing for the scheduler to put to sleep and, more importantly, nothing for the scheduler to wake up..."
I don't get it. AFAIK, scheduler in the kernel is O(1), that is implemented through the bitmap. So what stops the scehduler from putting interrupt context to sleep and taking next schedulable process and passing it the control?
So what stops the scehduler from putting interrupt context to sleep and taking next schedulable process and passing it the control?
The problem is that the interrupt context is not a process, and therefore cannot be put to sleep.
When an interrupt occurs, the processor saves the registers onto the stack and jumps to the start of the interrupt service routine. This means that when the interrupt handler is running, it is running in the context of the process that was executing when the interrupt occurred. The interrupt is executing on that process's stack, and when the interrupt handler completes, that process will resume executing.
If you tried to sleep or block inside an interrupt handler, you would wind up not only stopping the interrupt handler, but also the process it interrupted. This could be dangerous, as the interrupt handler has no way of knowing what the interrupted process was doing, or even if it is safe for that process to be suspended.
A simple scenario where things could go wrong would be a deadlock between the interrupt handler and the process it interrupts.
Process1 enters kernel mode.
Process1 acquires LockA.
Interrupt occurs.
ISR starts executing using Process1's stack.
ISR tries to acquire LockA.
ISR calls sleep to wait for LockA to be released.
At this point, you have a deadlock. Process1 can't resume execution until the ISR is done with its stack. But the ISR is blocked waiting for Process1 to release LockA.
I think it's a design idea.
Sure, you can design a system that you can sleep in interrupt, but except to make to the system hard to comprehend and complicated(many many situation you have to take into account), that's does not help anything. So from a design view, declare interrupt handler as can not sleep is very clear and easy to implement.
From Robert Love (a kernel hacker):
http://permalink.gmane.org/gmane.linux.kernel.kernelnewbies/1791
You cannot sleep in an interrupt handler because interrupts do not have
a backing process context, and thus there is nothing to reschedule back
into. In other words, interrupt handlers are not associated with a task,
so there is nothing to "put to sleep" and (more importantly) "nothing to
wake up". They must run atomically.
This is not unlike other operating systems. In most operating systems,
interrupts are not threaded. Bottom halves often are, however.
The reason the page fault handler can sleep is that it is invoked only
by code that is running in process context. Because the kernel's own
memory is not pagable, only user-space memory accesses can result in a
page fault. Thus, only a few certain places (such as calls to
copy_{to,from}_user()) can cause a page fault within the kernel. Those
places must all be made by code that can sleep (i.e., process context,
no locks, et cetera).
Because the thread switching infrastructure is unusable at that point. When servicing an interrupt, only stuff of higher priority can execute - See the Intel Software Developer's Manual on interrupt, task and processor priority. If you did allow another thread to execute (which you imply in your question that it would be easy to do), you wouldn't be able to let it do anything - if it caused a page fault, you'd have to use services in the kernel that are unusable while the interrupt is being serviced (see below for why).
Typically, your only goal in an interrupt routine is to get the device to stop interrupting and queue something at a lower interrupt level (in unix this is typically a non-interrupt level, but for Windows, it's dispatch, apc or passive level) to do the heavy lifting where you have access to more features of the kernel/os. See - Implementing a handler.
It's a property of how O/S's have to work, not something inherent in Linux. An interrupt routine can execute at any point so the state of what you interrupted is inconsistent. If you interrupted the thread scheduling code, its state is inconsistent so you can't be sure you can "sleep" and switch threads. Even if you protect the thread switching code from being interrupted, thread switching is a very high level feature of the O/S and if you protected everything it relies on, an interrupt becomes more of a suggestion than the imperative implied by its name.
So what stops the scehduler from putting interrupt context to sleep and taking next schedulable process and passing it the control?
Scheduling happens on timer interrupts. The basic rule is that only one interrupt can be open at a time, so if you go to sleep in the "got data from device X" interrupt, the timer interrupt cannot run to schedule it out.
Interrupts also happen many times and overlap. If you put the "got data" interrupt to sleep, and then get more data, what happens? It's confusing (and fragile) enough that the catch-all rule is: no sleeping in interrupts. You will do it wrong.
Disallowing an interrupt handler to block is a design choice. When some data is on the device, the interrupt handler intercepts the current process, prepares the transfer of the data and enables the interrupt; before the handler enables the current interrupt, the device has to hang. We want keep our I/O busy and our system responsive, then we had better not block the interrupt handler.
I don't think the "unstable states" are an essential reason. Processes, no matter they are in user-mode or kernel-mode, should be aware that they may be interrupted by interrupts. If some kernel-mode data structure will be accessed by both interrupt handler and the current process, and race condition exists, then the current process should disable local interrupts, and moreover for multi-processor architectures, spinlocks should be used to during the critical sections.
I also don't think if the interrupt handler were blocked, it cannot be waken up. When we say "block", basically it means that the blocked process is waiting for some event/resource, so it links itself into some wait-queue for that event/resource. Whenever the resource is released, the releasing process is responsible for waking up the waiting process(es).
However, the really annoying thing is that the blocked process can do nothing during the blocking time; it did nothing wrong for this punishment, which is unfair. And nobody could surely predict the blocking time, so the innocent process has to wait for unclear reason and for unlimited time.
Even if you could put an ISR to sleep, you wouldn't want to do it. You want your ISRs to be as fast as possible to reduce the risk of missing subsequent interrupts.
The linux kernel has two ways to allocate interrupt stack. One is on the kernel stack of the interrupted process, the other is a dedicated interrupt stack per CPU. If the interrupt context is saved on the dedicated interrupt stack per CPU, then indeed the interrupt context is completely not associated with any process. The "current" macro will produce an invalid pointer to current running process, since the "current" macro with some architecture are computed with the stack pointer. The stack pointer in the interrupt context may point to the dedicated interrupt stack, not the kernel stack of some process.
By nature, the question is whether in interrupt handler you can get a valid "current" (address to the current process task_structure), if yes, it's possible to modify the content there accordingly to make it into "sleep" state, which can be back by scheduler later if the state get changed somehow. The answer may be hardware-dependent.
But in ARM, it's impossible since 'current' is irrelevant to process under interrupt mode. See the code below:
#linux/arch/arm/include/asm/thread_info.h
94 static inline struct thread_info *current_thread_info(void)
95 {
96 register unsigned long sp asm ("sp");
97 return (struct thread_info *)(sp & ~(THREAD_SIZE - 1));
98 }
sp in USER mode and SVC mode are the "same" ("same" here not mean they're equal, instead, user mode's sp point to user space stack, while svc mode's sp r13_svc point to the kernel stack, where the user process's task_structure was updated at previous task switch, When a system call occurs, the process enter kernel space again, when the sp (sp_svc) is still not changed, these 2 sp are associated with each other, in this sense, they're 'same'), So under SVC mode, kernel code can get the valid 'current'. But under other privileged modes, say interrupt mode, sp is 'different', point to dedicated address defined in cpu_init(). The 'current' calculated under these mode will be irrelevant to the interrupted process, accessing it will result in unexpected behaviors. That's why it's always said that system call can sleep but interrupt handler can't, system call works on process context but interrupt not.
High-level interrupt handlers mask the operations of all lower-priority interrupts, including those of the system timer interrupt. Consequently, the interrupt handler must avoid involving itself in an activity that might cause it to sleep. If the handler sleeps, then the system may hang because the timer is masked and incapable of scheduling the sleeping thread.
Does this make sense?
If a higher-level interrupt routine gets to the point where the next thing it must do has to happen after a period of time, then it needs to put a request into the timer queue, asking that another interrupt routine be run (at lower priority level) some time later.
When that interrupt routine runs, it would then raise priority level back to the level of the original interrupt routine, and continue execution. This has the same effect as a sleep.
It is just a design/implementation choices in Linux OS. The advantage of this design is simple, but it may not be good for real time OS requirements.
Other OSes have other designs/implementations.
For example, in Solaris, the interrupts could have different priorities, that allows most of devices interrupts are invoked in interrupt threads. The interrupt threads allows sleep because each of interrupt threads has separate stack in the context of the thread.
The interrupt threads design is good for real time threads which should have higher priorities than interrupts.

Resources