Random walk for find the path with higher cost - algorithm

I have a acyclic directed graph with a start vertice and an end vertice and some unknown number of vertices in between. A path starts from start vertice and end at end vertice. It is known that the number of vertices along the any paths between the start vertice and end vertice <100, but the number of possible vertices could be very large. Each vertice has a cost assigned to it, and the cost of the path is summation of the cost of vertices in between. Is there a way to use the random walk or any other means (this is to avoid explore all the vertices) to find for the path that has the highest (or near-highest) cost?

This problem is solved on Geekviewpoint.com with detailed explanation. It augments Dijkstra's algorithm. http://www.geekviewpoint.com/java/graph/dijkstra_constrained
EDIT: to account for 100 vertices between each path.
Originally your problem said there were 100 paths between the start and finish vertices. But by your correction, it's actually 100 vertices on the path. In that case your optimization is straightforward using DFS.
As you try to assemble a path, track the number of vertices you have seen. If the number reaches 99 and does not link start to finish, abort that path and try another one unit you get the answer if it exists. The algorithm you need to modify is DFS for cycle detection. Any algorithm textbook will have one of those. Since you also need to pick the best path among those found, you should also look at http://www.geekviewpoint.com/java/graph/count_paths.
I don't know if I should tell you how to do the obvious, but you will track the past path you have found similar to how you would find the maximum element in an array. The code is not difficult, you just have to combine a few small ideas:
DFS (similar to cycle detection and similar to counting paths, the two overlap)
track the best path you have seen: a one entry map where the idea is map which you keep replacing if you find a shorter path.

Related

Algorithm: Minimal path alternating colors

Let G be a directed weighted graph with nodes colored black or white, and all weights non-negative. No other information is specified--no start or terminal vertex.
I need to find a path (not necessarily simple) of minimal weight which alternates colors at least n times. My first thought is to run Kosaraju's algorithm to get the component graph, then find a minimal path between the components. Then you could select nodes with in-degree equal to zero since those will have at least as many color alternations as paths which start at components with in-degree positive. However, that also means that you may have an unnecessarily long path.
I've thought about maybe trying to modify the graph somehow, by perhaps making copies of the graph that black-to-white edges or white-to-black edges point into, or copying or deleting edges, but nothing that I'm brain-storming seems to work.
The comments mention using Dijkstra's algorithm, and in fact there is a way to make this work. If we create an new "root" vertex in the graph, and connect every other vertex to it with a directed edge, we can run a modified Dijkstra's algorithm from the root outwards, terminating when a given path's inversions exceeds n. It is important to note that we must allow revisiting each vertex in the implementation, so the key of each vertex in our priority queue will not be merely node_id, but a tuple (node_id, inversion_count), representing that vertex on its ith visit. In doing so, we implicitly make n copies of each vertex, one per potential visit. Visually, we are effectively making n copies of our graph, and translating the edges between each (black_vertex, white_vertex) pair to connect between the i and i+1th inversion graphs. We run the algorithm until we reach a path with n inversions. Alternatively, we can connect each vertex on the nth inversion graph to a "sink" vertex, and run any conventional path finding algorithm on this graph, unmodified. This will run in O(n(E + Vlog(nV))) time. You could optimize this quite heavily, and also consider using A* instead, with the smallest_inversion_weight * (n - inversion_count) as a heuristic.
Furthermore, another idea hit me regarding using knowledge of the inversion requirement to speedup the search, but I was unable to find a way to implement it without exceeding O(V^2) time. The idea is that you can use an addition-chain (like binary exponentiation) to decompose the shortest n-inversion path into two smaller paths, and rinse and repeat in a divide and conquer fashion. The issue is you would need to construct tables for the shortest i-inversion path from any two vertices, which would be O(V^2) entries per i, and O(V^2logn) overall. To construct each table, for every entry in the preceding table you'd need to append V other paths, so it'd be O(V^3logn) time overall. Maybe someone else will see a way to merge these two ideas into a O((logn)(E + Vlog(Vlogn))) time algorithm or something.

Multiple Source Multiple Destination shortest path

Let's say we have a maze, which has a width of W and a height of H. In this maze there are multiple people and multiple towers. The people are the sources (S) and the towers (D) are the destinations. It should be known that we have an omniscient view of the maze. My question is then this:
If I want to find the shortest path between any of the different SD combinations, how do I go about this?
At first, I can think of a naive solution that involves breaking this down into SD different OSOD operations, the problem is that this is quite time-consuming.
The second option would be to break it down into S different OSMD operations. But this I suspect is still too time inefficient for what I'm looking for.
I need an algorithm that can perform the pathfinding in O(WH) time. I've not been able to find anything that gives me the shortest path in O(WH) time and which is MSMD based. Hopefully, someone can point me in the right direction.
Imagine a graph that includes the maze as well as start and end vertexes outside the maze, with an edge from the start vertex to every S, and an edge from every D to the end vertex.
Now breadth-first search (since there are no weights) to find the shortest path from the single start to the single end.
I say 'imagine' that graph, because you don't actually have to build it. This ends up being a simple breadth-first search with minor modifications -- you start with all the S nodes in the root level, and stop when you reach any D.

Which algorithm returns the shortest sequence to exchange information between knots of a graph?

Is there a Tool or known algorithmic method, which could compute the shortest sequence to transmit an information between the knots of a graph - e.g. graph threeC ?
Example: threeC
Time 0: A=a; B=b; C=c; D=d
Time 1: A=abcd; B=b; C=c; D=d
Time 2: A=abcd; B=bacd; C=cabd; D=dabc
I've looked into petri-nets, it would have to be a coloured net with directed and multiple edges - I guess. However I am quite uncertain, if I am on the right track.
It would have to work for connected unlabelled Graphs up to 5 knots (there are 21 of those). I would like to know - better proof - the shortest way of distributing abcd amongst all 5 knots (for all of those 21 graphs).
So, is there an algorithm or field of research that fits to this problem?
Thank you for your help.
If I understand correctly the question is actually to find the shortest path to the vertex that is father from starting vertex. That would be exactly what Dijkstra would do very well. You basically only assign a start node for Dijkstra and let it run until it has visited all nodes.
Dijkstra would leave behind information required for output.
If output is single value telling the maximum shortest path you can simple keep track of distance and print the highest distance when algorithm terminates. If requirement is to output also paths then Dijkstra would need to store information which edges it used to travel from a vertices that resulted to the shortest path in other end of vertex (there could be multiple equal entrances to a vertex requiring all sources to have their edges marked as used for route if all paths are required for output.)
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

K negative edges - single source shortest path

I've managed to solve the problem finding all single source shortest paths when there's exactly one negative edge using dijkstra.
Now i'm trying to face a new problem, how to find all shortest paths from a given source when there are exactly K negative edges using dijkstra only (Not bellman ford). (k is known).
Can't really think of a good way to do it.
any suggestions?
If it is a nondirectional graph, there is no single shortest path because even with a single negative edge, you could just go back and forth on that negative edge and have an infinite number of paths of negative infinity.
However, assuming a directional graph with no negative cycles, you could use Breadth First Search and keep track of both the negative edges you've already hit and the shortest path to each node you've discovered so far. If you see a node you've already visited, you only go there again if it would be better than the previous path you took to get there.
Since there are no negative cycles the algorithm must terminate. After the algorithm terminates the target node should have the best path that was used to get there.

Find the shortest path in a graph which visits certain nodes

I have a undirected graph with about 100 nodes and about 200 edges. One node is labelled 'start', one is 'end', and there's about a dozen labelled 'mustpass'.
I need to find the shortest path through this graph that starts at 'start', ends at 'end', and passes through all of the 'mustpass' nodes (in any order).
( http://3e.org/local/maize-graph.png / http://3e.org/local/maize-graph.dot.txt is the graph in question - it represents a corn maze in Lancaster, PA)
Everyone else comparing this to the Travelling Salesman Problem probably hasn't read your question carefully. In TSP, the objective is to find the shortest cycle that visits all the vertices (a Hamiltonian cycle) -- it corresponds to having every node labelled 'mustpass'.
In your case, given that you have only about a dozen labelled 'mustpass', and given that 12! is rather small (479001600), you can simply try all permutations of only the 'mustpass' nodes, and look at the shortest path from 'start' to 'end' that visits the 'mustpass' nodes in that order -- it will simply be the concatenation of the shortest paths between every two consecutive nodes in that list.
In other words, first find the shortest distance between each pair of vertices (you can use Dijkstra's algorithm or others, but with those small numbers (100 nodes), even the simplest-to-code Floyd-Warshall algorithm will run in time). Then, once you have this in a table, try all permutations of your 'mustpass' nodes, and the rest.
Something like this:
//Precomputation: Find all pairs shortest paths, e.g. using Floyd-Warshall
n = number of nodes
for i=1 to n: for j=1 to n: d[i][j]=INF
for k=1 to n:
for i=1 to n:
for j=1 to n:
d[i][j] = min(d[i][j], d[i][k] + d[k][j])
//That *really* gives the shortest distance between every pair of nodes! :-)
//Now try all permutations
shortest = INF
for each permutation a[1],a[2],...a[k] of the 'mustpass' nodes:
shortest = min(shortest, d['start'][a[1]]+d[a[1]][a[2]]+...+d[a[k]]['end'])
print shortest
(Of course that's not real code, and if you want the actual path you'll have to keep track of which permutation gives the shortest distance, and also what the all-pairs shortest paths are, but you get the idea.)
It will run in at most a few seconds on any reasonable language :)
[If you have n nodes and k 'mustpass' nodes, its running time is O(n3) for the Floyd-Warshall part, and O(k!n) for the all permutations part, and 100^3+(12!)(100) is practically peanuts unless you have some really restrictive constraints.]
run Djikstra's Algorithm to find the shortest paths between all of the critical nodes (start, end, and must-pass), then a depth-first traversal should tell you the shortest path through the resulting subgraph that touches all of the nodes start ... mustpasses ... end
This is two problems... Steven Lowe pointed this out, but didn't give enough respect to the second half of the problem.
You should first discover the shortest paths between all of your critical nodes (start, end, mustpass). Once these paths are discovered, you can construct a simplified graph, where each edge in the new graph is a path from one critical node to another in the original graph. There are many pathfinding algorithms that you can use to find the shortest path here.
Once you have this new graph, though, you have exactly the Traveling Salesperson problem (well, almost... No need to return to your starting point). Any of the posts concerning this, mentioned above, will apply.
Actually, the problem you posted is similar to the traveling salesman, but I think closer to a simple pathfinding problem. Rather than needing to visit each and every node, you simply need to visit a particular set of nodes in the shortest time (distance) possible.
The reason for this is that, unlike the traveling salesman problem, a corn maze will not allow you to travel directly from any one point to any other point on the map without needing to pass through other nodes to get there.
I would actually recommend A* pathfinding as a technique to consider. You set this up by deciding which nodes have access to which other nodes directly, and what the "cost" of each hop from a particular node is. In this case, it looks like each "hop" could be of equal cost, since your nodes seem relatively closely spaced. A* can use this information to find the lowest cost path between any two points. Since you need to get from point A to point B and visit about 12 inbetween, even a brute force approach using pathfinding wouldn't hurt at all.
Just an alternative to consider. It does look remarkably like the traveling salesman problem, and those are good papers to read up on, but look closer and you'll see that its only overcomplicating things. ^_^ This coming from the mind of a video game programmer who's dealt with these kinds of things before.
This is not a TSP problem and not NP-hard because the original question does not require that must-pass nodes are visited only once. This makes the answer much, much simpler to just brute-force after compiling a list of shortest paths between all must-pass nodes via Dijkstra's algorithm. There may be a better way to go but a simple one would be to simply work a binary tree backwards. Imagine a list of nodes [start,a,b,c,end]. Sum the simple distances [start->a->b->c->end] this is your new target distance to beat. Now try [start->a->c->b->end] and if that's better set that as the target (and remember that it came from that pattern of nodes). Work backwards over the permutations:
[start->a->b->c->end]
[start->a->c->b->end]
[start->b->a->c->end]
[start->b->c->a->end]
[start->c->a->b->end]
[start->c->b->a->end]
One of those will be shortest.
(where are the 'visited multiple times' nodes, if any? They're just hidden in the shortest-path initialization step. The shortest path between a and b may contain c or even the end point. You don't need to care)
Andrew Top has the right idea:
1) Djikstra's Algorithm
2) Some TSP heuristic.
I recommend the Lin-Kernighan heuristic: it's one of the best known for any NP Complete problem. The only other thing to remember is that after you expanded out the graph again after step 2, you may have loops in your expanded path, so you should go around short-circuiting those (look at the degree of vertices along your path).
I'm actually not sure how good this solution will be relative to the optimum. There are probably some pathological cases to do with short circuiting. After all, this problem looks a LOT like Steiner Tree: http://en.wikipedia.org/wiki/Steiner_tree and you definitely can't approximate Steiner Tree by just contracting your graph and running Kruskal's for example.
Considering the amount of nodes and edges is relatively finite, you can probably calculate every possible path and take the shortest one.
Generally this known as the travelling salesman problem, and has a non-deterministic polynomial runtime, no matter what the algorithm you use.
http://en.wikipedia.org/wiki/Traveling_salesman_problem
The question talks about must-pass in ANY order. I have been trying to search for a solution about the defined order of must-pass nodes. I found my answer but since no question on StackOverflow had a similar question I'm posting here to let maximum people benefit from it.
If the order or must-pass is defined then you could run dijkstra's algorithm multiple times. For instance let's assume you have to start from s pass through k1, k2 and k3 (in respective order) and stop at e. Then what you could do is run dijkstra's algorithm between each consecutive pair of nodes. The cost and path would be given by:
dijkstras(s, k1) + dijkstras(k1, k2) + dijkstras(k2, k3) + dijkstras(k3, 3)
How about using brute force on the dozen 'must visit' nodes. You can cover all the possible combinations of 12 nodes easily enough, and this leaves you with an optimal circuit you can follow to cover them.
Now your problem is simplified to one of finding optimal routes from the start node to the circuit, which you then follow around until you've covered them, and then find the route from that to the end.
Final path is composed of :
start -> path to circuit* -> circuit of must visit nodes -> path to end* -> end
You find the paths I marked with * like this
Do an A* search from the start node to every point on the circuit
for each of these do an A* search from the next and previous node on the circuit to the end (because you can follow the circuit round in either direction)
What you end up with is a lot of search paths, and you can choose the one with the lowest cost.
There's lots of room for optimization by caching the searches, but I think this will generate good solutions.
It doesn't go anywhere near looking for an optimal solution though, because that could involve leaving the must visit circuit within the search.
One thing that is not mentioned anywhere, is whether it is ok for the same vertex to be visited more than once in the path. Most of the answers here assume that it's ok to visit the same edge multiple times, but my take given the question (a path should not visit the same vertex more than once!) is that it is not ok to visit the same vertex twice.
So a brute force approach would still apply, but you'd have to remove vertices already used when you attempt to calculate each subset of the path.

Resources