I have an FPGA with four push buttons - the two left most ones should cycle up and down the 16 registers, while the two right most ones should increment and decrement the value stored in this register. Here is my attempt at the code to do this:
entity raminfr is --inferring the RAM here
port (
clk : in std_logic;
we : in std_logic;
a : in unsigned(3 downto 0);
di : in unsigned(7 downto 0);
do : out unsigned(7 downto 0)
);
end raminfr;
architecture rtl of raminfr is
type ram_type is array (0 to 15) of unsigned(7 downto 0);
signal RAM : ram_type;
signal read_a : unsigned(3 downto 0);
begin
U1: entity work.lab1 port map ( --ERROR ON THIS LINE
register_counter => a,
value_counter => di
);
process (clk)
begin
if rising_edge(clk) then
if we = '1' then
RAM(to_integer(a)) <= di;
end if;
read_a <= a;
end if;
end process;
do <= RAM(to_integer(read_a));
end rtl;
--lab1 starts here
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity lab1 is
port(
clock : in std_logic;
key : in std_logic_vector(3 downto 0);
value_counter : out unsigned(7 downto 0) ; --value to be written to register
register_counter : out unsigned(3 downto 0) --register to write value to
);
end lab1;
architecture up_and_down of lab1 is --actual button logic here
begin
process(clock)
begin
if rising_edge(clock) then
if (key(3)='0' and key(2)='0' and key(1)='1' and key(0)='0') then
value_counter <= value_counter + "1";
elsif (key(3)='0' and key(2)='0' and key(1)='0' and key(0)='1') then
value_counter <= value_counter - "1";
elsif (key(3)='1' and key(2)='0' and key(1)='0' and key(0)='0') then
register_counter<= register_counter + "1";
elsif (key(3)='0' and key(2)='1' and key(1)='0' and key(0)='0') then
register_counter<= register_counter - "1";
end if;
end if;
end process;
end architecture up_and_down;
I get the error Error (10577): VHDL error at DE2_TOP.vhd(312): actual port "a" of mode "in" cannot be associated with formal port "register_counter" of mode "out"on the line indicated above. It is obvious this is not how I would go about doing what I want to do. Can someone shed some light on this?
Change your point of view: Put the RAM under the Pushbutton-FSM. Not vice versa.
This RAM description should be synthesiable. If not take a look in the Synthesis Guide of your tool vendor.
entity raminfr is --inferring the RAM here
port (
clk : in std_logic;
we : in std_logic;
a : in unsigned(3 downto 0);
di : in unsigned(7 downto 0);
do : out unsigned(7 downto 0)
);
end entity raminfr;
architecture rtl of raminfr is
type ram_type is array (0 to 15) of unsigned(7 downto 0);
signal RAM : ram_type;
begin
process (clk)
begin
if rising_edge(clk) then
if we = '1' then
RAM(to_integer(a)) <= di;
end if;
do <= RAM(to_integer(a));
end if;
end process;
end architecture rtl;
You also forgot to activate the write enable for the RAM.
Maybe you try this code (Always do a simulation first!):
--lab1 starts here
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity lab1 is
port(
clock : in std_logic;
key : in std_logic_vector(3 downto 0);
value_counter : out unsigned(7 downto 0); --value to be written to register
ram_data : out unsigned(7 downto 0); --value from 'RAM-register'
register_counter : out unsigned(3 downto 0) --register to write value to
);
end lab1;
architecture up_and_down of lab1 is --actual button logic here
signal value : unsigned(7 downto 0) := (others => '0');
signal ram_a : unsigned(3 downto 0) := (others => '0');
signal ram_we : std_logic;
begin
-- infer your RAM
your_ram: entity work.raminfr
port map (
clk => clock, --: in std_logic;
we => ram_we, --: in std_logic;
a => ram_a, --: in unsigned(3 downto 0);
di => value, --: in unsigned(7 downto 0);
do => ram_data --: out unsigned(7 downto 0)
);
process(clock)
begin
if rising_edge(clock) then
-- default
ram_we <= '0';
-- change value
if key(1) = '1' then
value <= value + 1;
end if;
-- change value
if key(0) = '1' then
value <= value - 1;
end if;
-- change 'register'
if key(3) = '1' then
ram_a <= ram_a + 1;
end if;
-- write value to register
if key(2) = '1' then
ram_we <= '1';
end if;
end if;
end process;
value_counter <= value;
register_counter <= ram_a;
end architecture up_and_down;
Related
I have a simple program. I am trying to input the counter output into a memory address register and output the data that is in the memory address register.
Memory Address Register Code:
library ieee;
use ieee.std_logic_1164.all;
entity mar is
port(
mar_clk, mar_clr, mar_en : in std_logic;
mar_datain : in std_logic_vector(3 downto 0);
mar_dataout : out std_logic_vector(3 downto 0)
);
end entity;
architecture behavioral of mar is
begin
process(mar_clk, mar_clr, mar_en, mar_datain)
begin
if(mar_clr = '1') then
mar_dataout <= (others => '0');
elsif(mar_clk'event and mar_clk = '1') then
if(mar_en = '0') then
mar_dataout <= mar_datain;
end if;
end if;
end process;
end behavioral;
Buffer4 Code:
library ieee;
use ieee.std_logic_1164.all;
entity buffer4 is
port(
buff4_en : in std_logic;
datain : in std_logic_vector( 3 downto 0 );
dataout : out std_logic_vector( 3 downto 0 )
);
end entity;
architecture behavioral of buffer4 is
begin
process(buff4_en, datain)
begin
if(buff4_en = '1') then
dataout <= datain;
else
dataout <= (others => 'Z');
end if;
end process;
end behavioral;
Program Counter Code:
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity pc is
port(
pc_ld, pc_en, pc_clk, pc_rst : in std_logic;
pc_datain : in std_logic_vector(3 downto 0);
pc_dataout : out std_logic_vector(3 downto 0)
);
end entity;
architecture behave of pc is
signal count : std_logic_vector(3 downto 0) := "0001";
signal temp : integer;
begin
process(pc_clk, pc_rst)
begin
if(pc_rst = '1') then
count <= (others => '0');
elsif(pc_clk'event and pc_clk = '1') then
if(pc_ld = '1') then
count <= pc_datain;
elsif(pc_en = '1') then
count <= count;
temp <= conv_integer(count);
if(temp = 16) then
count <= (others => '0');
end if;
count <= count + 1;
end if;
end if;
end process;
pc_dataout <= count;
end behave;
Test Program Code:
library ieee;
use ieee.std_logic_1164.all;
entity test is
end entity;
architecture behave of test is
component mar
port(
mar_clk, mar_clr, mar_en : in std_logic;
mar_datain : in std_logic_vector( 3 downto 0 );
mar_dataout : out std_logic_vector( 3 downto 0 )
);
end component;
component pc
port(
pc_ld, pc_en, pc_clk, pc_rst : in std_logic;
pc_datain : in std_logic_vector(3 downto 0);
pc_dataout : out std_logic_vector(3 downto 0)
);
end component;
component buffer4
port(
buff4_en : in std_logic;
datain : in std_logic_vector( 3 downto 0 );
dataout : out std_logic_vector( 3 downto 0 )
);
end component;
signal databus : std_logic_vector(7 downto 0);
signal addressbus : std_logic_vector(3 downto 0);
signal gclk : std_logic;
signal mar_clr, mar_en : std_logic;
signal pc_ld, pc_en, pc_rst : std_logic;
signal buff4_en : std_logic;
signal dataout : std_logic_vector(3 downto 0);
signal mar_datain, mar_dataout : std_logic_vector(3 downto 0);
signal pc_dataout : std_logic_vector(3 downto 0);
begin
U1 : pc port map(pc_ld, pc_en, gclk, pc_rst, databus(3 downto 0), pc_dataout);
U2 : buffer4 port map(buff4_en, pc_dataout, databus(3 downto 0));
U3 : mar port map(gclk, mar_clr, mar_en, databus(3 downto 0), addressbus);
stim_process : process
begin
gclk <= '0';
wait for 10 ns;
pc_ld <= '0';
pc_en <= '1';
pc_rst <= '0';
buff4_en <= '1';
mar_clr <= '0';
mar_en <= '0';
gclk <= '1';
wait for 10 ns;
gclk <= '0';
wait for 10 ns;
assert false report "Reached end of test. Start GTKWave";
wait;
end process;
end behave;
This is the output when I run the program
As seen the Memory Address Registers takes the input and doesn't output it on the address bus. How can I make the Memory Address Register output the data on the address bus?
This is the logic for writing to your memory address output register inside your 'MAR' component:
if(mar_clr = '1') then
mar_dataout <= (others => '0');
elsif(mar_clk'event and mar_clk = '1') then
if(mar_en = '0') then
mar_dataout <= mar_datain;
end if;
end if;
If appears that at your rising edge of clock (mar_clk'event and mar_clk = '1') in the waveforms that mar_clr and mar_en are both undefined U's. They have not got their values yet when the rising edge occurs.
You need to redo your testbench to make sure input signals are stable+defined before the rising edge so they are sampled correctly. Then mar_dataout <= mar_datain; should take correctly.
Could try moving initial wait statement like so:
gclk <= '0';
pc_ld <= '0';
pc_en <= '1';
pc_rst <= '0';
buff4_en <= '1';
mar_clr <= '0';
mar_en <= '0';
wait for 10 ns;
gclk <= '1';
wait for 10 ns;
I'm trying to make a microprocessor architecture and I'm stuck. My accumulator, IR and PC don't seem to be working and I can't figure out why.
their outputs stay always undefined. I check the mapping and the other components of the mp they're are all correct the problem is somewhere in these registers.
------------------------------------------------------
-- ALU
------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use work.up_pack.all;
entity alu is
port ( A, B : in std_logic_vector(15 downto 0);
alufs : in ALU_FCTS;
S : out std_logic_vector( 15 downto 0));
end alu;
architecture arch_alu of alu is
begin
S <= "0000000000000000"; -- sortie par défaut
process(A, B, alufs)
begin
case alufs is
when ALU_B => S <= B;
when ALU_SUB => S <= std_logic_vector(unsigned(B) - unsigned(A));
when ALU_ADD => S <= std_logic_vector(unsigned(B) + unsigned(A));
when ALU_B_INC => S <= std_logic_vector(unsigned(B) + 1);
when ALU_AND => S <= A and B;
when ALU_OR => S <= A or B;
when ALU_XOR => S <= A xor B;
when others => S <= "0000000000000000";
end case;
end process;
end arch_alu;
------------------------------------------------------
-- ACCUMULATER
------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
entity accumulator is
port( clk, raz, load : in std_logic;
data_in : in std_logic_vector(15 downto 0);
data_out : out std_logic_vector(15 downto 0);
acc15, accz : out std_logic );
end accumulator;
architecture arch_acc of accumulator is
signal q_reg : std_logic_vector(15 downto 0);
begin
process(clk)
begin
if rising_edge(clk) then
if raz='1' then q_reg <= (others => '0');
elsif load='1' then q_reg <= std_logic_vector(unsigned(q_reg) + unsigned(data_in)); end if;
end if;
end process;
data_out <= q_reg;
acc15 <= q_reg(15);
accz <= '1' when q_reg = "0000000000000000";
end arch_acc;
------------------------------------------------------
-- REGISTER PC
------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
entity pc_reg is
port( clk, raz, load : in std_logic;
data_in : in std_logic_vector(11 downto 0);
data_out : out std_logic_vector(11 downto 0) );
end pc_reg;
architecture arch_pc_reg of pc_reg is
signal interne : std_logic_vector(11 downto 0);
begin
process(clk)
begin
if rising_edge(clk) then
if raz='1' then interne <= (others => '0');
elsif load='1' then interne <= data_in;
end if;
end if;
end process;
data_out <= interne;
end arch_pc_reg;
------------------------------------------------------
-- IR (Instruction Register)
------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use work.up_pack.all;
entity ir_reg is
port( clk, raz, load : in std_logic;
data_in : in std_logic_vector(15 downto 0);
data_out : out std_logic_vector(11 downto 0);
opcode : out OPCODE);
end ir_reg;
architecture arch_ir_reg of ir_reg is
signal interne : std_logic_vector(3 downto 0);
begin
process(clk)
begin
if rising_edge(clk) then
if raz='1' then data_out <= (others => '0');
elsif load='1'
then
data_out <= data_in(11 downto 0);
interne <= data_in(15 downto 12);
end if;
end if;
end process;
opcode <= OP_LDA when interne="0000" else
OP_STO when interne="0001" else
OP_ADD when interne="0010" else
OP_SUB when interne="0011" else
OP_JMP when interne="0100" else
OP_JGE when interne="0101" else
OP_JNE when interne="0110" else
OP_STP when interne="0111" else
OP_AND when interne="1000" else
OP_OR when interne="1001" else
OP_XOR when interne="1010" else
OP_LDR when interne="1011" else
OP_LDI when interne="1100" else
OP_STI when interne="1101" else
OP_JSR when interne="1110" else
OP_RET when interne="1111" else
OP_UNKNOWN;
end arch_ir_reg;
This is not an answer, but a testbench for you to work with. Your accumulator seems to work fine. I tested it with the testbench below. Use it as resource for writing testbenches for the rest of your modules. (You can write a test bench to test all the modules together or individually, just FYI)
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
entity tb_accumulator is
end tb_accumulator;
architecture behav of tb_accumulator is
signal clk : std_logic := '0';
signal raz : std_logic := '1';
signal load : std_logic := '0';
signal data_in : std_logic_vector(15 downto 0) := (others => '0');
signal data_out : std_logic_vector(15 downto 0) := (others => '0');
signal acc15 : std_logic := '0';
signal accz : std_logic := '0';
begin
--Assign values for signals being passed into accumulator.
clk <= not clk after 2.5 ns;
data_in <= "0000000000000001";
raz <= '0' after 90 ns; --You can do this instead of forcing a signal. Set at what times you want it to change values.
load <= '1' after 100 ns;
accu_inst : entity work.accumulator
port map(
clk => clk,
raz => raz,
load => load,
data_in => data_in,
data_out => data_out,
acc15 => acc15,
accz=> accz
);
end behav;
THis is the vhdl code for a fir filter:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL;
use IEEE.NUMERIC_STD.ALL;
entity FIR is
port(
CLK2: in std_logic;
Sendin : in std_logic;
Sendout: out std_logic;
Din : in std_logic_vector(11 downto 0);
Dout: out std_logic_vector(11 downto 0)
);
end FIR;
architecture Behavioral of FIR is
signal count : std_logic_vector(5 downto 0) := "000000";
signal send : std_logic := '0';
signal Dout_S : std_logic_vector(11 downto 0) := x"000";
type multype is array(36 downto 0) of std_logic_vector(23 downto 0);
signal mult : multype := ((others=> (others=>'0')));
type addtype is array(36 downto 0) of std_logic_vector(11 downto 0);
signal adder : addtype :=((others=> (others=>'0')));
type reg is array(36 downto 0) of std_logic_vector(11 downto 0);
signal shiftreg : reg:= ((others=> (others=>'0')));
signal coefs : reg:= (
x"015",x"02F",x"05E",x"0A8",x"114",x"1A8",x"268",x"356",x"472"
,x"5B6",x"71B",x"894",x"A10",x"B7E",x"CCC",x"DE6",x"EBD",x"F43"
,x"F71",x"F43",x"EBD",x"DE6",x"CCC",x"B7E",x"A10",x"894",x"71B"
,x"5B6",x"472",x"356",x"268",x"1A8",x"114",x"0A8",x"05E",x"02F"
,x"015"
);
begin
FIRcal:process(ClK2,Sendin)
begin
if rising_edge(clk2) then
count<=count + 1;
if Sendin = '1' then
shiftreg<=shiftreg(35 downto 0) & Din;
for I in 36 downto 0 loop
MULT(I) <= shiftreg(36-I) * COEFS(36-I);
if I = 0 then
ADDER(I) <= x"000" + ("000000" & MULT(I)(23 downto 17));
else
ADDER(I) <= ("000000" & MULT(I)(23 downto 17)) + ADDER(I-1);
end if;
end loop;
DOUT_S <= ADDER(36);
send <='1';
end if;
end if;
end process FIRcal;
--FIRsend: process(ClK2,Send)
--begin
--if rising_edge(clk2) then
--if send <= '1' then
-- send <='0';
--end if;
--end if;
--end process FIRsend;
Sendout <= Send;
Dout <= Dout_S;
end Behavioral;
Testbench
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY fvfv IS
END fvfv;
ARCHITECTURE behavior OF fvfv IS
COMPONENT FIR
PORT(
CLK2 : IN std_logic;
Sendin : IN std_logic;
Sendout : OUT std_logic;
Din : IN std_logic_vector(11 downto 0);
Dout : OUT std_logic_vector(11 downto 0)
);
END COMPONENT;
--Inputs
signal CLK2 : std_logic := '0';
signal Sendin : std_logic := '0';
signal Din : std_logic_vector(11 downto 0) := (others => '0');
--Outputs
signal Sendout : std_logic;
signal Dout : std_logic_vector(11 downto 0);
-- Clock period definitions
constant CLK2_period : time := 10 ns;
BEGIN
-- Instantiate the Unit Under Test (UUT)
uut: FIR PORT MAP (
CLK2 => CLK2,
Sendin => Sendin,
Sendout => Sendout,
Din => Din,
Dout => Dout
);
-- Clock process definitions
CLK2_process :process
begin
CLK2 <= '0';
wait for CLK2_period/2;
CLK2 <= '1';
wait for CLK2_period/2;
end process;
-- Stimulus process
stim_proc: process
begin
Din <= x"0F0";
wait for 10 ns;
sendin<='1';
wait for 10 ns;
sendin<='0';
wait for 300 ns;
Din <= x"090";
sendin<='1';
wait for 10 ns;
sendin<='0';
end process;
END;
enter image description here
enter image description here
The testbench only show three clk cycles, I try to extend the time, but it didn't work, Is there any problem for my Code?
You have an error in follow lines:
if I = 0 then
ADDER(I) <= x"000" + ("00000" & MULT(I)(23 downto 17));
else
ADDER(I) <= ("00000" & MULT(I)(23 downto 17)) + ADDER(I-1);
end if;
As I told in comments you have different sizes of vectors.
To solve the issue you need to equate the sizes in depends on your logic (remove one 0 from right side or expand ADDER elements:
if I = 0 then
ADDER(I) <= x"000" + ("0000" & MULT(I)(23 downto 17));
else
ADDER(I) <= ("0000" & MULT(I)(23 downto 17)) + ADDER(I-1);
end if;
OR
type addtype is array(36 downto 0) of std_logic_vector(12 downto 0);
signal adder : addtype :=((others=> (others=>'0')));
I am trying to implement the the following shift register
entity MyShiftRegister is
port(
clock: in std_logic;
DataIn: in std_logic_vector (9 downto 0);
Left: in std_logic; --synchronous left rotate
Right: in std_logic; --synchronous right rotate
Load: in std_logic; --synchronous parallel load
Clear: in std_logic; -- synchronous clear
DataOut: out std_logic_vector (9 downto 0);
This is what I have so far
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
entity question2 is
Port (
led: buffer std_logic_vector (9 downto 0);
clk: in std_logic;
btnu: in std_logic;
btnL: in std_logic;
btnR: in std_logic ;
btnD: in std_logic;
btnC: in std_logic
);
end question2;
architecture Behavioral of question2 is
constant active: std_logic :='1';
constant inactive: std_logic :='0';
constant step_zero: std_logic_vector(9 downto 0) :="0000000000";
constant step_one: std_logic_vector(9 downto 0) :="0000000001";
constant step_two: std_logic_vector(9 downto 0) :="0000000010";
constant step_three: std_logic_vector(9 downto 0) :="0000000100";
constant step_four: std_logic_vector(9 downto 0) :="0000001000";
constant step_five: std_logic_vector(9 downto 0) :="0000010000";
constant step_six: std_logic_vector(9 downto 0) :="0000100000";
constant step_seven: std_logic_vector(9 downto 0) :="0001000000";
constant step_eight: std_logic_vector(9 downto 0) :="0010000000";
constant step_nine: std_logic_vector(9 downto 0) :="0100000000";
constant step_ten: std_logic_vector(9 downto 0) :="0100000000";
signal DataIn: std_logic_vector (9 downto 0):= "1111111111";
signal Load: std_logic := btnD;
signal Reset: std_logic;
signal Left: std_logic:= btnL;
signal Right: std_logic:= btnR;
signal DataOut: std_logic_vector := led (9 downto 0);
signal Clear: std_logic:= btnU;
signal speed_enable: std_logic;
begin
SpeedControl: process (clk)
variable counter: integer range 0 to 10000000;
begin
speed_enable<=not active;
if Reset = Active then
counter:= 0;
elsif (rising_edge (clk)) then
counter := counter + 1;
if (counter=10000000) then
speed_enable<= Active;
counter:=0;
end if;
end if;
end process;
shiftregister: process(clk, clear)
begin
if rising_edge (clk) then
if clear= active then
DataOut <= (others => '0');
elsif load = active then
DataOut <= DataIn ;
elsif Left = active then
DataOut <= DataOut(8 downto 0) & "1" ;
if DataOut = "1000000000" then
clear <= active;
elsif Right = active then
DataOut <= DataOut (9 downto 1) & "1" ;
if DataOut = "0000000001" then
clear <= active;
end if;
end if;
end if;
end if;
end process;
with DataOut select
led <= step_one when "0000",
step_two when "0001",
step_three when "0010",
step_four when "0011",
step_five when "0100",
step_six when "0101",
step_seven when "0110",
step_eight when "0111",
step_nine when "1000",
step_ten when "1001",
step_zero when others;
end Behavioral;
How exactly do I rotate bits left and right and tie that to my led outputs. I was thinking of using a counter and just incrementing and decrementing to shift bits left or right but I'm not sure if that would still be considered a shift register.
thanks
To start:
constant step_nine: std_logic_vector(9 downto 0) :="0100000000";
constant step_ten: std_logic_vector(9 downto 0) :="0100000000";
is incorrect. It should be
constant step_nine: std_logic_vector(9 downto 0) :="0100000000";
constant step_ten: std_logic_vector(9 downto 0) :="1000000000";
But this approach is very error prone anyhow. Lets simplify it:
process(sel)
variable selected_led : natural;
begin
led <= (others => '0');
selected_led := to_integer(unsigned(sel));
if selected_led < led'length then
led(selected_led) <= '1';
end if;
end process;
If the led(selected_led) <= '1'; won't synthesize, you probably have to change it to
for i in 0 to led'length-1 loop
if (i = selected_led) then
led(i) <= '1';
end if;
end loop;
As for using the buffer port. Don't. preferably only use in or out. If you want to read an out port, compile with VHDL-2008, or use a temporary signal in between.
Then note that right and left are keywords in VHDL. you shouldn't use them
What you want is very simple and basic VHDL. Example (using VHDL-2008):
process(clock)
begin
if rising'edge(clock) then
if clear = '1' then
data_out <= (others => '0');
elsif load = '1' then
data_out <= data_in;
elsif right_rotate = '1' then
data_out <= data_out(0) & data_out(data_out'length-1 downto 1);
elsif left_rotate = '1' then
data_out <= data_out(data_out'length-2 downto 0) &
data_out(data_out'length-1);
end if;
end if;
end process;
Everything works but the increment function. It can increment from 0 to 1, 1 to 2, and then from 2 it goes to "1111111111". I'm stumped.
Variables:
D_IN: Data in
PC_OE: Active high. Drives PC_TRI output.
PC_LD: Active high synchronously loads D_IN into PC.
PC_INC: Active high synchronously increments value in PC.
RST: Active high asyncronous reset.
PC_COUNT: Current value in PC. Address.
PC_TRI: Current value in the PC under tri-state control. When PC_OE = '1', PC_TRI <=
PC_COUNT, else high impedance.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
entity ProgramCounter is
Port ( D_IN : in STD_LOGIC_VECTOR (9 downto 0);
PC_OE : in STD_LOGIC;
PC_LD : in STD_LOGIC;
PC_INC : in STD_LOGIC;
RST : in STD_LOGIC;
CLK : in STD_LOGIC;
PC_COUNT : out STD_LOGIC_VECTOR (9 downto 0);
PC_TRI : out STD_LOGIC_VECTOR (9 downto 0));
end ProgramCounter;
architecture Behavioral of ProgramCounter is
signal s_COUNT : STD_LOGIC_VECTOR (9 downto 0);
begin
s_COUNT <= "0000000000";
proc: process(RST, CLK, PC_LD, D_IN, s_COUNT, PC_INC, PC_OE)
begin
if (RST = '1') then
s_COUNT <= "0000000000";
elsif (rising_edge(CLK)) then
if (PC_LD = '1') then
s_COUNT <= D_IN;
elsif (PC_INC = '1') then
s_COUNT <= s_COUNT + 1;
else
end if;
else
end if;
if (PC_OE = '1') then
PC_TRI <= s_COUNT;
else
PC_TRI <= "ZZZZZZZZZZ";
end if;
PC_COUNT <= s_COUNT;
end process proc;
end Behavioral;
The comment of QuantumRipple is very useful
begin
--s_COUNT <= "0000000000";
...
I tried to comment such line and it worked.
Try to do this, and make RST before start to count
Please try this way and let me know, i corrected your code but I can't try it :
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
entity ProgramCounter is
Port ( D_IN : in STD_LOGIC_VECTOR (9 downto 0);
PC_OE : in STD_LOGIC;
PC_LD : in STD_LOGIC;
PC_INC : in STD_LOGIC;
RST : in STD_LOGIC;
CLK : in STD_LOGIC;
PC_COUNT : out STD_LOGIC_VECTOR (9 downto 0);
PC_TRI : out STD_LOGIC_VECTOR (9 downto 0));
end ProgramCounter;
architecture Behavioral of ProgramCounter is
signal s_COUNT : STD_LOGIC_VECTOR (9 downto 0);
begin
proc: process(RST, CLK)
begin
if (RST = '1') then
s_COUNT <= "0000000000";
elsif (rising_edge(CLK)) then
if (PC_LD = '1') then
s_COUNT <= D_IN;
elsif (PC_INC = '1') then
s_COUNT <= s_COUNT + 1;
else
end if;
else
end if;
end process;
PC_TRI <= s_COUNT when (PC_OE = '1') else (others => 'Z');
PC_COUNT <= s_COUNT;
end Behavioral;