What is the exact complexity of this program? - algorithm

Someone give me this piece of code and I am suppose to find the exact complexity, or in other words to find a formula that for a specific n to know how to calculate L.
L = 0;
for (i = 1; i<n; i++)
for (j = 1; j<i; j++)
for (k = j; k<n; k++)
L++;
My first thoughts were (n^3 + n^2)/2, but are wrong.
For example n=5 L=20 ;
n=10 L=240
Thanks :D
Edit:
This problem is from Fundamentals of Algorithms, page 140 or slide 161 in pdf (this is a free book version)
http://www.freebookspot.es/Comments.aspx?Element_ID=76025

Firstly: complexity is not about concrete numbers of n. It is about asymptotic behaviour. When one says that complexity of algorithm is O(f(n)), it doesn't mean that algorithm do strictly f(n) operations. In fact, it could do 2*f(n) or 1/2 * f(n) or f(n) + sqrt(f(n)). When talking about complexity one usually is interested in how fast number of operations grow with growth of input.
In your case you have to write 3 nested sums (one for each loop) and sum cost of inner operation (assume it's 1):
And this is exact formula (don't believe me — check using wolfram|alpha), but in complexity language it would be just O(n^3)
UPD: notice that this formula corresponds to the loops with condition of type less-or-equal rather than just less-than.

This is mathematics, not programming.
L is equal to (S is big-sigma, the sum):
n-1 i-1 n-1
S S S 1
i=1 j=1 k=j
n-1 i-1
= S S (n - j)
i=1 j=1
n-1 i-1 n-1 i-1
= S S n - S S j
i=1 j=1 i=1 j=1
n-1 n-1
= n * S (i-1) - S (i-1)i/2
i=1 i=1
And so on. You need to know that the sum of the first n integers is n(n+1)/2 and that the sum of the first n squares is n(n+1)(2n+1)/6. You'll end up with a cubic equation in n.
Thanks to Barmaley's answer for pointing out that I'm not an undergraduate any more, I don't have to manipulate formulae to simplify them down. Wolfram Alpha will do it for me ;-)
The answer is n(n-1)(n-2)/3. Usually when these things factorize nicely, it turns out that there's a key insight (perhaps a geometrical one) that I could have made early on, to get the answer out without writing too many long expressions. This result looks suspiciously like the volume of a pyramid inscribed in a cuboid with sides n, n-1, n-2.

Related

What is the time complexity of Brute Force Algorithm of Kadane's Algorithm? [duplicate]

Here is a segment of an algorithm I came up with:
for (int i = 0; i < n - 1; i++)
for (int j = i; j < n; j++)
(...)
I am using this "double loop" to test all possible 2-element sums in a an array of size n.
Apparently (and I have to agree with it), this "double loop" is O(n²):
n + (n-1) + (n-2) + ... + 1 = sum from 1 to n = (n (n - 1))/2
Here is where I am confused:
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
(...)
This second "double loop" also has a complexity of O(n²), when it is clearly (at worst) much (?) better than the first.
What am I missing? Is the information accurate? Can someone explain this "phenomenon"?
(n (n - 1))/2 simplifies to n²/2 - n/2. If you use really large numbers for n, the growth rate of n/2 will be dwarfed in comparison to n², so for the sake of calculating Big-O complexity, you effectively ignore it. Likewise, the "constant" value of 1/2 doesn't grow at all as n increases, so you ignore that too. That just leaves you with n².
Just remember that complexity calculations are not the same as "speed". One algorithm can be five thousand times slower than another and still have a smaller Big-O complexity. But as you increase n to really large numbers, general patterns emerge that can typically be classified using simple formulae: 1, log n, n, n log n, n², etc.
It sometimes helps to create a graph and see what kind of line appears:
Even though the zoom factors of these two graphs are very different, you can see that the type of curve it produces is almost exactly the same.
Constant factors.
Big-O notation ignores constant factors, so even though the second loop is slower by a constant factor, they end up with the same time complexity.
Right there in the definition it tells you that you can pick any old constant factor:
... if and only if there is a positive constant M ...
This is because we want to analyse the growth rate of an algorithm - constant factors just complicates things and are often system-dependent (operations may vary in duration on different machines).
You could just count certain types of operations, but then the question becomes which operation to pick, and what if that operation isn't predominant in some algorithm. Then you'll need to relate operations to each other (in a system-independent way, which is probably impossible), or you could just assign the same weight to each, but that would be fairly inaccurate as some operations would take significantly longer than others.
And how useful would saying O(15n² + 568n + 8 log n + 23 sqrt(n) + 17) (for example) really be? As opposed to just O(n²).
(For the purpose of the below, assume n >= 2)
Note that we actually have asymptotically smaller (i.e. smaller as we approach infinity) terms here, but we can always simplify that to a matter of constant factors. (It's n(n+1)/2, not n(n-1)/2)
n(n+1)/2 = n²/2 + n/2
and
n²/2 <= n²/2 + n/2 <= n²
Given that we've just shown that n(n+1)/2 lies between C.n² and D.n², for two constants C and D, we've also just shown that it's O(n²).
Note - big-O notation is actually strictly an upper bound (so we only care that it's smaller than a function, not between two), but it's often used to mean Θ (big-Theta), which cares about both bounds.
From The Big O page on Wikipedia
In typical usage, the formal definition of O notation is not used
directly; rather, the O notation for a function f is derived by the
following simplification rules:
If f(x) is a sum of several terms, the
one with the largest growth rate is kept, and all others omitted
Big-O is used only to give the asymptotic behaviour - that one is a bit faster than the other doesn't come into it - they're both O(N^2)
You could also say that the first loop is O(n(n-1)/2). The fancy mathematical definition of big-O is something like:
function "f" is big-O of function "g" if there exists constants c, n such that f(x) < c*g(x) for some c and all x > n.
It's a fancy way of saying g is an upper bound past some point with some constant applied. It then follows that O(n(n-1)/2) = O((n^2-n)/2) is big-O of O(n^2), which is neater for quick analysis.
AFAIK, your second code snippet
for(int i = 0; i < n; i++) <-- this loop goes for n times
for(int j = 0; j < n; j++) <-- loop also goes for n times
(...)
So essentially, it's getting a O(n*n) = O(n^2) time complexity.
Per BIG-O theory, constant factor is neglected and only higher order is considered. that's to say, if complexity is O(n^2+k) then actual complexity will be O(n^2) constant k will be ignored.
(OR) if complexity is O(n^2+n) then actual complexity will be O(n^2) lower order n will be ignored.
So in your first case where complexity is O(n(n - 1)/2) will/can be simplified to
O(n^2/2 - n/2) = O(n^2/2) (Ignoring the lower order n/2)
= O(1/2 * n^2)
= O(n^2) (Ignoring the constant factor 1/2)

Need help understanding Big-O

I'm in a Data Structures class now, and we're covering Big-O as a means of algorithm analysis. Unfortunately after many hours of study, I'm still somewhat confused. I understand what Big-O is, and several good code examples I found online make sense. However I have a homework question I don't understand. Any explanation of the following would be greatly appreciated.
Determine how many times the output statement is executed in each of
the following fragments (give a number in terms of n). Then indicate
whether the algorithm is O(n) or O(n2):
for (int i = 0; i < n; i++)
for (int j = 0; j < i; j++)
if (j % i == 0)
System.out.println(i + ” ” + j);
Suppose n = 5. Then, the values of i would be 0, 1, 2, 3, and 4. This means that means that the inner loop will iterate 1, 2, 3, 4, and 5 times, respectively. Because of this, the total number of times that the if comparison will execute is 1+2+3+4+5. A mathematical formula for the sum of integers from 1 to n is n*(n+1)/2. Expanded, this gives us n^2 / 2 + n / 2.
Therefore, the algorithm itself is O(n^2).
For the number of times that something is printed, we need to look at the times that j%i=0. When j < i, the only time that this can be true is when j = 0, so this is the number of times that j = 0 and i is not 0. This means that it is only true once in each iteration of the outer loop, except the first iteration (when i = 0).
Therefore, System.out.println is called n-1 times.
A simple way to look at it is :
A single loop has a complexity of O(n)
A loop within a loop has a complexity of O(n^2) and so on.
So the above loop has a complexity of O(n^2)
This function appears to execute in Quadratic Time - O(n^2).
Here's a trick for something like this. For each nested for loop add one to the exponent for n. If there was three loops this algorithm would run in cubic time O(n^3). If there is only one loop (no halving involved) then it would be linear O(n). If the array was halved each time (recursively or iteratively) it would be considered logarithmic time O(log n) -> base 2.
Hope that helps.

Discrete Mathematics Big-O notation Algorithm Complexity

I can probably figure out part b if you can help me do part a. I've been looking at this and similar problems all day, and I'm just having problems grasping what to do with nested loops. For the first loop there are n iterations, for the second there are n-1, and for the third there are n-1.. Am I thinking about this correctly?
Consider the following algorithm,
which takes as input a sequence of n integers a1, a2, ..., an
and produces as output a matrix M = {mij}
where mij is the minimum term
in the sequence of integers ai, a + 1, ..., aj for j >= i and mij = 0 otherwise.
initialize M so that mij = ai if j >= i and mij = 0
for i:=1 to n do
for j:=i+1 to n do
for k:=i+1 to j do
m[i][j] := min(m[i][j], a[k])
end
end
end
return M = {m[i][j]}
(a) Show that this algorithm uses Big-O(n^3) comparisons to compute the matrix M.
(b) Show that this algorithm uses Big-Omega(n^3) comparisons to compute the matrix M.
Using this face and part (a), conclude that the algorithm uses Big-theta(n^3) comparisons.
In part A, you need to find an upper bound for the number of min ops.
In order to do so, it is clear that the above algorithm has less min ops then the following:
for i=1 to n
for j=1 to n //bigger range then your algorithm
for k=1 to n //bigger range then your algorithm
(something with min)
The above has exactly n^3 min ops - thus in your algorithm, there are less then n^3 min ops.
From this we can conclude: #minOps <= 1 * n^3 (for each n > 10, where 10 is arbitrary).
By definition of Big-O, this means the algorithm is O(n^3)
You said you can figure B alone, so I'll let you try it :)
hint: the middle loop has more iterations then for j=i+1 to n/2
For each iteration of outer loop inner two nested loop would give n^2 complexity if i == n. Outer loop will run for i = 1 to n. So total complexity would be a series like: 1^2 + 2^2 + 3^2 + 4^2 + ... ... ... + n^2. This summation value is n(n+1)(2n+1)/6. Ignoring lower order terms of this summation term ultimately the order would be O(n^3)

how to solve recursion of given algorithm?

int gcd(n,m)
{
if (n%m ==0) return m;
n = n%m;
return gcd(m,n);
}
I solved this and i got
T(n, m) = 1 + T(m, n%m) if n > m
= 1 + T(m, n) if n < m
= m if n%m == 0
I am confused how to proceed further to get the final result. Please help me to solve this.
The problem here is that the size of the next values of m and n depend on exactly what the previous values were, not just their size. Knuth goes into this in detail in "The Art of Computer Programming" Vol 2: Seminumerical algorithms, section 4.5.3. After about five pages he proves what you might have guessed, which is that the worst case is when m and n are consecutive fibonacci numbers. From this (or otherwise!) it turns out that in the worst case the number of divisions required is linear in the logarithm of the larger of the two arguments.
After a great deal more heavy-duty math, Knuth proves that the average case is also linear in the logarithm of the arguments.
mcdowella has given a perfect answer to this.
For an intuitive explaination you can think of it this way,
if n >= m, n mod m < n/2;
This can be shown as,
if m < n/2, then:
n mod m < m < n/2
if m > n/2, then: n mod m = n-m < n/2
So effectively you are halving the larger input, and in two calls both the arguments will be halved.

Worst Case Time Complexity for an algorithm

What is the Worst Case Time Complexity t(n) :-
I'm reading this book about algorithms and as an example
how to get the T(n) for .... like the selection Sort Algorithm
Like if I'm dealing with the selectionSort(A[0..n-1])
//sorts a given array by selection sort
//input: An array A[0..n - 1] of orderable elements.
//output: Array A[0..n-1] sorted in ascending order
let me write a pseudocode
for i <----0 to n-2 do
min<--i
for j<--i+1 to n-1 do
ifA[j]<A[min] min <--j
swap A[i] and A[min]
--------I will write it in C# too---------------
private int[] a = new int[100];
// number of elements in array
private int x;
// Selection Sort Algorithm
public void sortArray()
{
int i, j;
int min, temp;
for( i = 0; i < x-1; i++ )
{
min = i;
for( j = i+1; j < x; j++ )
{
if( a[j] < a[min] )
{
min = j;
}
}
temp = a[i];
a[i] = a[min];
a[min] = temp;
}
}
==================
Now how to get the t(n) or as its known the worst case time complexity
That would be O(n^2).
The reason is you have a single for loop nested in another for loop. The run time for the inner for loop, O(n), happens for each iteration of the outer for loop, which again is O(n). The reason each of these individually are O(n) is because they take a linear amount of time given the size of the input. The larger the input the longer it takes on a linear scale, n.
To work out the math, which in this case is trivial, just multiple the complexity of the inner loop by the complexity of the outer loop. n * n = n^2. Because remember, for each n in the outer loop, you must again do n for the inner. To clarify: n times for each n.
O(n * n).
O(n^2)
By the way, you shouldn't mix up complexity (denoted by big-O) and the T function. The T function is the number of steps the algorithm has to go through for a given input.
So, the value of T(n) is the actual number of steps, whereas O(something) denotes a complexity. By the conventional abuse of notation, T(n) = O( f(n) ) means that the function T(n) is of at most the same complexity as another function f(n), which will usually be the simplest possible function of its complexity class.
This is useful because it allows us to focus on the big picture: We can now easily compare two algorithms that may have very different-looking T(n) functions by looking at how they perform "in the long run".
#sara jons
The slide set that you've referenced - and the algorithm therein
The complexity is being measured for each primitive/atomic operation in the for loop
for(j=0 ; j<n ; j++)
{
//...
}
The slides rate this loop as 2n+2 for the following reasons:
The initial set of j=0 (+1 op)
The comparison of j < n (n ops)
The increment of j++ (n ops)
The final condition to check if j < n (+1 op)
Secondly, the comparison within the for loop
if(STudID == A[j])
return true;
This is rated as n ops. Thus the result if you add up +1 op, n ops, n ops, +1 op, n ops = 3n+2 complexity. So T(n) = 3n+2
Recognize that T(n) is not the same as O(n).
Another doctoral-comp flashback here.
First, the T function is simply the amount of time (usually in some number of steps, about which more below) an algorithm takes to perform a task. What a "step" is, is somewhat defined by the use; for example, it's conventional to count the number of comparisons in sorting algorithms, but the number of elements searched in search algorithms.
When we talk about the worst-case time of an algorithm, we usually express that with "big-O notation". Thus, for example, you hear that bubble sort takes O(n²) time. When we use big O notation, what we're really saying is that the growth of some function -- in this case T -- is no faster than the growth of some other function times a constant. That is
T(n) = O(n²)
means for any n, no matter how large, there is a constant k for which T(n) ≤ kn². A point of some confustion here is that we're using the "=" sign in an overloaded fashion: it doesn't mean the two are equal in the numerical sense, just that we are saying that T(n) is bounded by kn².
In the example in your extended question, it looks like they're counting the number of comparisons in the for loop and in the test; it would help to be able to see the context and the question they're answering. In any case, though, it shows why we like big-O notation: W(n) here is O(n). (Proof: there exists a constant k, namely 5, for which W(n) ≤ k(3n)+2. It follows by the definition of O(n).)
If you want to learn more about this, consult any good algorithms text, eg, Introduction to Algorithms, by Cormen et al.
write pseudo codes to search, insert and remove student information from the hash table. calculate the best and the worst case time complexities
3n + 2 is the correct answer as far as the loop is concerned. At each step of the loop, 3 atomic operations are done. j++ is actually two operations, not one. and j

Resources