base b expansion of n algorithm - algorithm

im reading about base b expansion of n algorithm and this book is really hard to read and understand, i am not sure what the bottom part means...
does it return n or what ? how would you do this...thanks
some method (n,b)
if b == 0
return 1
q = n
k = 0
while q does not == 0
a[k] = q % b
q = q / b
k = k + 1
return ???

I wrote an implementation in C for the function. It uses a pointer as input parameter, where the output (a vector of integers) will be placed. The function also returns an integer - the logical size of the vector.
#include <assert.h>
int toBase(int n, int b, int* answer) {
assert(b > 1);
q = n
k = 0
while (q != 0) {
answer[k] = q % b;
q /= b;
++k;
}
return k;
}
int main() {
int answer[32];
int n = 100000;
int b = 2;
int answerSize = toBase(n, b, answer);
// use answer and answerSize
return 0;
}
Another way to do it (without the pointer parameter) is to allocate memory for the vector inside the function and return it, requiring the calling function to release the used memory after it has finished processing it.
In this case, you can't tell the logical size of the vector, so you have to set answer[k] to a special value (-1 here), to know where the vector ends.
#include <assert.h>
int* toBase(int n, int b) {
assert(b > 1);
int* answer = malloc(33 * sizeof(int));
q = n
k = 0
while (q != 0) {
answer[k] = q % b;
q /= b;
++k;
}
answer[k] = -1;
return answer;
}
int main() {
int n = 100000;
int b = 2;
int *answer = toBase(n, b);
// use answer
free(answer);
return 0;
}
A more elegant solution (in C++) is to use the STL vector class.

The idea behind this algorithm is that it's creating a list of values ak, ak-1, ak-2, ..., a0. At the very end, it wants to return that list of values and do so in a form that looks like the base-b representation of the number.
For example, if you input 33 into this algorithm and ask for its base-16 representation, the algorithm will set a1 = 2 and a0 = 1. The return value of the algorithm is then the representation 21, which is a1 (2) followed by a0 (1).
The notation they're using is just fancy mathspeak for "return the list of values produced by this algorithm." You can think of it as returning an array of the base-b digits of the number.
Hope this helps!

Related

Integer vector compositions of size K (Implementation in C++)

A composition of an integer v is a set of K integers such that their sum is v (and order matters). For instance the 3-sized compositions of 2 are:
2 0 0
1 1 0
1 0 1
0 2 0
0 1 1
0 0 2
A simple C++ algorithm to obtains these compositions can be found here:
void print(std::vector<int>& a) {
std::ostream_iterator<int> i(std::cout, " ");
std::copy(a.begin(), a.end(), i);
std::cout << "\n";
}
void recurse(std::vector<int>& a, int pos, int remaining) {
if (remaining == 0) { print(a); return; }
if (pos == a.size()) { return; }
for (int i = remaining; i >= 0; --i) {
a[pos] = i;
recurse(a, pos + 1, remaining - i);
}
}
int main() {
int v = 2, k = 3;
std::vector<int> a(k);
recurse(a, 0, v);
return 0;
}
But I need something a bit more complex:
I need to find the compositions of a integer vector. That is, given a vector v=(v1, v2, v3) I need to find all their individual compositions and then create all possible combinations. If C is a matrix where I put a partition of v1 in the first row, a partition of v2 in the second row, and a partition of v3 in the third row, then the sum of row f in C gives v[f]
For instance, the vector (1,2) of size F=2, if we set K=2, can be decomposed in:
# all sets of K vectors such that their sum is (1,2)
C_1 = 1,0 C_2 = 1,0 C_3 = 1,0 C_4 = 0,1 C_5 = 0,1 C_6 = 0,1
2,0 1,1 0,2 2,0 1,1 0,2
The goal is to apply some function to each possible C. How can I do it it C++? I don't mind using generators, recursive or iterative algorithms as long as it does de job (as fast as possible).
Python
The implementation in Python is quite nice using recursions, yield, and the itertools library
import numpy as np
import itertools
# Generator to yield all K-size compositions of integer n
def findCombiR(n,K):
if K==1:
yield [n]
return
for i in range(0,n+1):
for result in findCombiR(n-i,K-1):
yield [i] + result
# Generator to yield all K-size compositions of a F-length vector
def findCombiR_v(v,K):
out = []
for f in range(0, len(v)):
out.append(findCombiR(v[f],K))
return out
# Main
####################
v = [1,2]
F = len(v)
K = 2
# C stores F composition generators, one for each element in v.
C = findCombiR_v(v,K)
#"product" combines all possible outputs of the F generators
for c in itertools.product(*C):
c = np.reshape(c, (F,K))
print(c, '\n')
A solution using recursivity:
We know how to generate all compositions of an integer (see code in the question). To generate matrices that represent all combinations of compositions of F integers, we just create all possible compositions of integer f, and each time we find a new composition we call the algorithm again to find all possible compositions of the integer f+1. Each time we find a composition in the last integer means we have completed a valid matrix C.
#include <iostream>
#include <armadillo>
using namespace arma;
void recursevec(arma::ivec v, arma::imat& C, int f, int pos, int remaining) {
// If there is no remaining left, we completed a new composition for v[f]
if (remaining == 0) {
// If elements in v left, get the combinations of v[f+1]
if(f < (C.n_rows-1)){
recursevec(v, C, f+1, 0, v[f+1]);
return;
}
// If last f, then we are done and we completed a new C
else {
std::cout << C << std::endl;
return;
}
}
// If position pointer got out of the vector,
// then there is nothing to do
if (pos == C.n_cols) { return; }
// Else, continue allocating the remaining in all possible ways
for (int i = remaining; i >= 0; --i) {
C(f, pos) = i;
recursevec(v, C, f, pos + 1, remaining - i);
}
}
// Test vector compositions
int main() {
arma::ivec v = {1,2};
int F = v.size();
int K = 2;
arma::imat C(F,K);
recursevec(v, C, 0, 0, v[0]);
return 0;
}

Algorithm - find all permutations of string a in string b

Say we have
string a = "abc"
string b = "abcdcabaabccbaa"
Find location of all permutations of a in b. I am trying to find an effective algorithm for this.
Pseudo code:
sort string a // O(a loga)
for windows of length a in b // O(b)?
sort that window of b // O(~a loga)?
compare to a
if equal
save the index
So would this be a correct algorithm? Run time would be around O(aloga + ba loga) ~= O(a loga b)? How efficient would this be? Possibly way to reduce to O(a*b) or better?
sorting is very expensive, and doesn't use the fact you move along b with a sliding window.
I would use a comparison method that is location agnostic (since any permutation is valid) - assign each letter a prime number, and each string will be the multiplication of its letter values.
this way, as you go over b, each step requires just dividing by the letter you remove from he left, and multiplying with the next letter.
You also need to convince yourself that this indeed matches uniquely for each string and covers all permutations - this comes from the uniqueness of prime decomposition. Also note that on larger strings the numbers get big so you may need some library for large numbers
There is no need to hash, you can just count frequencies on your sliding window, and check if it matches. Assuming the size of your alphabet is s, you get a very simple O(s(n + m)) algorithm.
// a = [1 .. m] and b = [1 .. n] are the input
cnta = [1 .. s] array initialized to 0
cntb = [1 .. s] array initialized to 0
// nb_matches = the number of i s.t. cnta[i] = cntb[i]
// thus the current subword = a iff. nb_matches = s
nb_matches = s
for i = 1 to m:
if cntb[a[i]] = 0: nb_matches -= 1
cntb[a[i]] += 1
ans = 0
for i = 1 to n:
if cntb[b[i]] = cnta[b[i]]: nb_matches -= 1
cntb[b[i]] += 1
if nb_matches = s: ans += 1
if cntb[b[i]] = cnta[b[i]]: nb_matches += 1
if i - m + 1 >= 1:
if cntb[b[i - m + 1]] = cnta[b[i - m + 1]]: nb_matches -= 1
cntb[b[i - m + 1]] += 1
if cntb[b[i - m + 1]] = cnta[b[i - m + 1]]: nb_matches += 1
cntb[b[i - m + 1]] -= 1
return ans
Write a function strcount() to count the number of occurrences of character ch in a string or sub-sring str.
Then just pass through the search string.
for(i=0;i<haystacklenN-NeedleN+1;i++)
{
for(j=0;j<needleN;j++)
if(strcount(haystack + i, Nneedle, needle[j]) != strcount(needles, needlesN, needle[j])
break
}
if(j == needleN)
/* found a permuatation */
Below is my solution. The space complexity is just O(a + b), and the running time (if I can calculate correctly..) is O(b*a), as for each character in b, we may do a recursion a levels deep.
md5's answer is a good one and will be faster!!
public class FindPermutations {
public static void main(String[] args) {
System.out.println(numPerms(new String("xacxzaa"),
new String("fxaazxacaaxzoecazxaxaz")));
System.out.println(numPerms(new String("ABCD"),
new String("BACDGABCDA")));
System.out.println(numPerms(new String("AABA"),
new String("AAABABAA")));
// prints 4, then 3, then 3
}
public static int numPerms(final String a, final String b) {
int sum = 0;
for (int i = 0; i < b.length(); i++) {
if (permPresent(a, b.substring(i))) {
sum++;
}
}
return sum;
}
// is a permutation of a present at the start of b?
public static boolean permPresent(final String a, final String b) {
if (a.isEmpty()) {
return true;
}
if (b.isEmpty()) {
return false;
}
final char first = b.charAt(0);
if (a.contains(b.substring(0, 1))) {
// super ugly, but removes first from a
return permPresent(a.substring(0, a.indexOf(first)) + a.substring(a.indexOf(first)+1, a.length()),
b.substring(1));
}
return false;
}
}
For searchability's sake, I arrive on this page afer looking for other solutions to compare mine to, with the problem originating from watching this clip: https://www.hackerrank.com/domains/tutorials/cracking-the-coding-interview. The original problem statement was something like 'find all permutations of s in b'.
Use 2 hash tables and with a sliding window of size = length of smaller string:
int premutations_of_B_in_A(string large, string small) {
unordered_map<char, int> characters_in_large;
unordered_map<char, int> characters_in_small;
int ans = 0;
for (char c : small) {
characters_in_small[c]++;
}
for (int i = 0; i < small.length(); i++) {
characters_in_large[large[i]]++;
ans += (characters_in_small == characters_in_large);
}
for (int i = small.length(); i < large.length(); i++) {
characters_in_large[large[i]]++;
if (characters_in_large[large[i - small.length()]]-- == 1)
characters_in_large.erase(large[i - small.length()]);
ans += (characters_in_small == characters_in_large);
}
return ans;
}
This is almost solution but will help you to count occurrences of permutations of small strings into larger string
made for only lower case chars
This solution having --
Time Complexity - O(L)
where L is length of large input provided to problem, the exact would be to include 26 too for every char present in Large array but by ignoring constant terms, I will solely stand for this.
Space Complexity - O(1)
because 26 is also constant and independent of how large input would be.
int findAllPermutations(string small, string larger) {
int freqSmall[26] = {0};
//window size
int n = small.length();
//to return
int finalAns = 0;
for (char a : small) {
freqSmall[a - 97]++;
}
int freqlarger[26]={0};
int count = 0;
int j = 0;
for (int i = 0; larger[i] != '\0'; i++) {
freqlarger[larger[i] - 97]++;
count++;
if (count == n) {
count = 0;
int i;
for (i = 0; i < 26; i++) {
if (freqlarger[i] != freqSmall[i]) {
break;
}
}
if (i == 26) {
finalAns++;
}
freqlarger[larger[j] - 97]--;
j++;
}
}
return finalAns;
}
int main() {
string s, t;
cin >> s >> t;
cout << findAllPermutations(s, t) << endl;
return 0;
}

Smallest number in a range [a,b] with maximum number of '1' in binary representation

Given a range [a,b] (both inclusive) I need to find the smallest number with the maximum number of '1's in binary representation. My current approach is I find the number of bits set in all numbers from a to b and keep track of the maximum.
However this is very slow, any faster method?
Let's find most significant bit which is different in a and b. It will be 0 in a, 1 in b. If we place all other bits to the right to 1 - resulting number will be still in range [a; b]. And it will the single number with maximum number of ones in representation.
EDIT. The result of this algorithm always returns the number with n-1 bits set to one, where n is number of bits which can be changed. As pointed in comments - there is a bug in case if all of there n bits in b are set to 1. Here is the fixed code snippet:
int maximizeBits(int a, int b) {
if (a == b) {
return a;
}
int m = a ^ b, pow2 = 1; // MSB of m=a^b is bit that we need to find
while (m > pow2) { // Set other bits to 0
if ((m & pow2) != 0) {
m ^= pow2;
}
pow2 <<= 1;
}
int res = a | (m - 1); // Now m is in form of 2^n and m - 1 would be mask of n-1 bits
if ((res | b) <= b) { // Fix of problem if all n bits in b are set to 1
res = b;
}
return res;
}
You can replace the loop in Jarlax' answer by a "parallel suffix OR", like this
uint32_t m = (a ^ b) >> 1;
m |= m >> 1;
m |= m >> 2;
m |= m >> 4;
m |= m >> 8;
m |= m >> 16;
uint32_t res = a | m;
if ((res | b) <= b)
res = b;
return res;
It generalizes to different sizes integer, using ceil(log(k)) steps in general. The initial test a == b is not necessary, a ^ b would be zero, therefore m is zero, so nothing interesting happens anyway.
Alternatively, here's a completely different approach: keep changing the lowest 0 to a 1 until it is no longer possible.
unsigned x = a;
while (x < b) {
unsigned newx = (x + 1) | x; // set lowest 0
if (newx <= b)
x = newx;
else
break;
}
return x;

How do I write merge in place? [duplicate]

I know the question is not too specific.
All I want is someone to tell me how to convert a normal merge sort into an in-place merge sort (or a merge sort with constant extra space overhead).
All I can find (on the net) is pages saying "it is too complex" or "out of scope of this text".
The only known ways to merge in-place (without any extra space) are too complex to be reduced to practical program. (taken from here)
Even if it is too complex, what is the basic concept of how to make the merge sort in-place?
Knuth left this as an exercise (Vol 3, 5.2.5). There do exist in-place merge sorts. They must be implemented carefully.
First, naive in-place merge such as described here isn't the right solution. It downgrades the performance to O(N2).
The idea is to sort part of the array while using the rest as working area for merging.
For example like the following merge function.
void wmerge(Key* xs, int i, int m, int j, int n, int w) {
while (i < m && j < n)
swap(xs, w++, xs[i] < xs[j] ? i++ : j++);
while (i < m)
swap(xs, w++, i++);
while (j < n)
swap(xs, w++, j++);
}
It takes the array xs, the two sorted sub-arrays are represented as ranges [i, m) and [j, n) respectively. The working area starts from w. Compare with the standard merge algorithm given in most textbooks, this one exchanges the contents between the sorted sub-array and the working area. As the result, the previous working area contains the merged sorted elements, while the previous elements stored in the working area are moved to the two sub-arrays.
However, there are two constraints that must be satisfied:
The work area should be within the bounds of the array. In other words, it should be big enough to hold elements exchanged in without causing any out-of-bound error.
The work area can be overlapped with either of the two sorted arrays; however, it must ensure that none of the unmerged elements are overwritten.
With this merging algorithm defined, it's easy to imagine a solution, which can sort half of the array; The next question is, how to deal with the rest of the unsorted part stored in work area as shown below:
... unsorted 1/2 array ... | ... sorted 1/2 array ...
One intuitive idea is to recursive sort another half of the working area, thus there are only 1/4 elements haven't been sorted yet.
... unsorted 1/4 array ... | sorted 1/4 array B | sorted 1/2 array A ...
The key point at this stage is that we must merge the sorted 1/4 elements B
with the sorted 1/2 elements A sooner or later.
Is the working area left, which only holds 1/4 elements, big enough to merge
A and B? Unfortunately, it isn't.
However, the second constraint mentioned above gives us a hint, that we can exploit it by arranging the working area to overlap with either sub-array if we can ensure the merging sequence that the unmerged elements won't be overwritten.
Actually, instead of sorting the second half of the working area, we can sort the first half, and put the working area between the two sorted arrays like this:
... sorted 1/4 array B | unsorted work area | ... sorted 1/2 array A ...
This setup effectively arranges the work area overlap with the sub-array A. This idea
is proposed in [Jyrki Katajainen, Tomi Pasanen, Jukka Teuhola. ``Practical in-place mergesort''. Nordic Journal of Computing, 1996].
So the only thing left is to repeat the above step, which reduces the working area from 1/2, 1/4, 1/8, … When the working area becomes small enough (for example, only two elements left), we can switch to a trivial insertion sort to end this algorithm.
Here is the implementation in ANSI C based on this paper.
void imsort(Key* xs, int l, int u);
void swap(Key* xs, int i, int j) {
Key tmp = xs[i]; xs[i] = xs[j]; xs[j] = tmp;
}
/*
* sort xs[l, u), and put result to working area w.
* constraint, len(w) == u - l
*/
void wsort(Key* xs, int l, int u, int w) {
int m;
if (u - l > 1) {
m = l + (u - l) / 2;
imsort(xs, l, m);
imsort(xs, m, u);
wmerge(xs, l, m, m, u, w);
}
else
while (l < u)
swap(xs, l++, w++);
}
void imsort(Key* xs, int l, int u) {
int m, n, w;
if (u - l > 1) {
m = l + (u - l) / 2;
w = l + u - m;
wsort(xs, l, m, w); /* the last half contains sorted elements */
while (w - l > 2) {
n = w;
w = l + (n - l + 1) / 2;
wsort(xs, w, n, l); /* the first half of the previous working area contains sorted elements */
wmerge(xs, l, l + n - w, n, u, w);
}
for (n = w; n > l; --n) /*switch to insertion sort*/
for (m = n; m < u && xs[m] < xs[m-1]; ++m)
swap(xs, m, m - 1);
}
}
Where wmerge is defined previously.
The full source code can be found here and the detailed explanation can be found here
By the way, this version isn't the fastest merge sort because it needs more swap operations. According to my test, it's faster than the standard version, which allocates extra spaces in every recursion. But it's slower than the optimized version, which doubles the original array in advance and uses it for further merging.
Including its "big result", this paper describes a couple of variants of in-place merge sort (PDF):
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.5514&rep=rep1&type=pdf
In-place sorting with fewer moves
Jyrki Katajainen, Tomi A. Pasanen
It is shown that an array of n
elements can be sorted using O(1)
extra space, O(n log n / log log n)
element moves, and n log2n + O(n log
log n) comparisons. This is the first
in-place sorting algorithm requiring
o(n log n) moves in the worst case
while guaranteeing O(n log n)
comparisons, but due to the constant
factors involved the algorithm is
predominantly of theoretical interest.
I think this is relevant too. I have a printout of it lying around, passed on to me by a colleague, but I haven't read it. It seems to cover basic theory, but I'm not familiar enough with the topic to judge how comprehensively:
http://comjnl.oxfordjournals.org/cgi/content/abstract/38/8/681
Optimal Stable Merging
Antonios Symvonis
This paper shows how to stably merge
two sequences A and B of sizes m and
n, m ≤ n, respectively, with O(m+n)
assignments, O(mlog(n/m+1))
comparisons and using only a constant
amount of additional space. This
result matches all known lower bounds...
It really isn't easy or efficient, and I suggest you don't do it unless you really have to (and you probably don't have to unless this is homework since the applications of inplace merging are mostly theoretical). Can't you use quicksort instead? Quicksort will be faster anyway with a few simpler optimizations and its extra memory is O(log N).
Anyway, if you must do it then you must. Here's what I found: one and two. I'm not familiar with the inplace merge sort, but it seems like the basic idea is to use rotations to facilitate merging two arrays without using extra memory.
Note that this is slower even than the classic merge sort that's not inplace.
The critical step is getting the merge itself to be in-place. It's not as difficult as those sources make out, but you lose something when you try.
Looking at one step of the merge:
[...list-sorted...|x...list-A...|y...list-B...]
We know that the sorted sequence is less than everything else, that x is less than everything else in A, and that y is less than everything else in B. In the case where x is less than or equal to y, you just move your pointer to the start of A on one. In the case where y is less than x, you've got to shuffle y past the whole of A to sorted. That last step is what makes this expensive (except in degenerate cases).
It's generally cheaper (especially when the arrays only actually contain single words per element, e.g., a pointer to a string or structure) to trade off some space for time and have a separate temporary array that you sort back and forth between.
An example of bufferless mergesort in C.
#define SWAP(type, a, b) \
do { type t=(a);(a)=(b);(b)=t; } while (0)
static void reverse_(int* a, int* b)
{
for ( --b; a < b; a++, b-- )
SWAP(int, *a, *b);
}
static int* rotate_(int* a, int* b, int* c)
/* swap the sequence [a,b) with [b,c). */
{
if (a != b && b != c)
{
reverse_(a, b);
reverse_(b, c);
reverse_(a, c);
}
return a + (c - b);
}
static int* lower_bound_(int* a, int* b, const int key)
/* find first element not less than #p key in sorted sequence or end of
* sequence (#p b) if not found. */
{
int i;
for ( i = b-a; i != 0; i /= 2 )
{
int* mid = a + i/2;
if (*mid < key)
a = mid + 1, i--;
}
return a;
}
static int* upper_bound_(int* a, int* b, const int key)
/* find first element greater than #p key in sorted sequence or end of
* sequence (#p b) if not found. */
{
int i;
for ( i = b-a; i != 0; i /= 2 )
{
int* mid = a + i/2;
if (*mid <= key)
a = mid + 1, i--;
}
return a;
}
static void ip_merge_(int* a, int* b, int* c)
/* inplace merge. */
{
int n1 = b - a;
int n2 = c - b;
if (n1 == 0 || n2 == 0)
return;
if (n1 == 1 && n2 == 1)
{
if (*b < *a)
SWAP(int, *a, *b);
}
else
{
int* p, * q;
if (n1 <= n2)
p = upper_bound_(a, b, *(q = b+n2/2));
else
q = lower_bound_(b, c, *(p = a+n1/2));
b = rotate_(p, b, q);
ip_merge_(a, p, b);
ip_merge_(b, q, c);
}
}
void mergesort(int* v, int n)
{
if (n > 1)
{
int h = n/2;
mergesort(v, h); mergesort(v+h, n-h);
ip_merge_(v, v+h, v+n);
}
}
An example of adaptive mergesort (optimized).
Adds support code and modifications to accelerate the merge when an auxiliary buffer of any size is available (still works without additional memory). Uses forward and backward merging, ring rotation, small sequence merging and sorting, and iterative mergesort.
#include <stdlib.h>
#include <string.h>
static int* copy_(const int* a, const int* b, int* out)
{
int count = b - a;
if (a != out)
memcpy(out, a, count*sizeof(int));
return out + count;
}
static int* copy_backward_(const int* a, const int* b, int* out)
{
int count = b - a;
if (b != out)
memmove(out - count, a, count*sizeof(int));
return out - count;
}
static int* merge_(const int* a1, const int* b1, const int* a2,
const int* b2, int* out)
{
while ( a1 != b1 && a2 != b2 )
*out++ = (*a1 <= *a2) ? *a1++ : *a2++;
return copy_(a2, b2, copy_(a1, b1, out));
}
static int* merge_backward_(const int* a1, const int* b1,
const int* a2, const int* b2, int* out)
{
while ( a1 != b1 && a2 != b2 )
*--out = (*(b1-1) > *(b2-1)) ? *--b1 : *--b2;
return copy_backward_(a1, b1, copy_backward_(a2, b2, out));
}
static unsigned int gcd_(unsigned int m, unsigned int n)
{
while ( n != 0 )
{
unsigned int t = m % n;
m = n;
n = t;
}
return m;
}
static void rotate_inner_(const int length, const int stride,
int* first, int* last)
{
int* p, * next = first, x = *first;
while ( 1 )
{
p = next;
if ((next += stride) >= last)
next -= length;
if (next == first)
break;
*p = *next;
}
*p = x;
}
static int* rotate_(int* a, int* b, int* c)
/* swap the sequence [a,b) with [b,c). */
{
if (a != b && b != c)
{
int n1 = c - a;
int n2 = b - a;
int* i = a;
int* j = a + gcd_(n1, n2);
for ( ; i != j; i++ )
rotate_inner_(n1, n2, i, c);
}
return a + (c - b);
}
static void ip_merge_small_(int* a, int* b, int* c)
/* inplace merge.
* #note faster for small sequences. */
{
while ( a != b && b != c )
if (*a <= *b)
a++;
else
{
int* p = b+1;
while ( p != c && *p < *a )
p++;
rotate_(a, b, p);
b = p;
}
}
static void ip_merge_(int* a, int* b, int* c, int* t, const int ts)
/* inplace merge.
* #note works with or without additional memory. */
{
int n1 = b - a;
int n2 = c - b;
if (n1 <= n2 && n1 <= ts)
{
merge_(t, copy_(a, b, t), b, c, a);
}
else if (n2 <= ts)
{
merge_backward_(a, b, t, copy_(b, c, t), c);
}
/* merge without buffer. */
else if (n1 + n2 < 48)
{
ip_merge_small_(a, b, c);
}
else
{
int* p, * q;
if (n1 <= n2)
p = upper_bound_(a, b, *(q = b+n2/2));
else
q = lower_bound_(b, c, *(p = a+n1/2));
b = rotate_(p, b, q);
ip_merge_(a, p, b, t, ts);
ip_merge_(b, q, c, t, ts);
}
}
static void ip_merge_chunk_(const int cs, int* a, int* b, int* t,
const int ts)
{
int* p = a + cs*2;
for ( ; p <= b; a = p, p += cs*2 )
ip_merge_(a, a+cs, p, t, ts);
if (a+cs < b)
ip_merge_(a, a+cs, b, t, ts);
}
static void smallsort_(int* a, int* b)
/* insertion sort.
* #note any stable sort with low setup cost will do. */
{
int* p, * q;
for ( p = a+1; p < b; p++ )
{
int x = *p;
for ( q = p; a < q && x < *(q-1); q-- )
*q = *(q-1);
*q = x;
}
}
static void smallsort_chunk_(const int cs, int* a, int* b)
{
int* p = a + cs;
for ( ; p <= b; a = p, p += cs )
smallsort_(a, p);
smallsort_(a, b);
}
static void mergesort_lower_(int* v, int n, int* t, const int ts)
{
int cs = 16;
smallsort_chunk_(cs, v, v+n);
for ( ; cs < n; cs *= 2 )
ip_merge_chunk_(cs, v, v+n, t, ts);
}
static void* get_buffer_(int size, int* final)
{
void* p = NULL;
while ( size != 0 && (p = malloc(size)) == NULL )
size /= 2;
*final = size;
return p;
}
void mergesort(int* v, int n)
{
/* #note buffer size may be in the range [0,(n+1)/2]. */
int request = (n+1)/2 * sizeof(int);
int actual;
int* t = (int*) get_buffer_(request, &actual);
/* #note allocation failure okay. */
int tsize = actual / sizeof(int);
mergesort_lower_(v, n, t, tsize);
free(t);
}
This answer has a code example, which implements the algorithm described in the paper Practical In-Place Merging by Bing-Chao Huang and Michael A. Langston. I have to admit that I do not understand the details, but the given complexity of the merge step is O(n).
From a practical perspective, there is evidence that pure in-place implementations are not performing better in real world scenarios. For example, the C++ standard defines std::inplace_merge, which is as the name implies an in-place merge operation.
Assuming that C++ libraries are typically very well optimized, it is interesting to see how it is implemented:
1) libstdc++ (part of the GCC code base): std::inplace_merge
The implementation delegates to __inplace_merge, which dodges the problem by trying to allocate a temporary buffer:
typedef _Temporary_buffer<_BidirectionalIterator, _ValueType> _TmpBuf;
_TmpBuf __buf(__first, __len1 + __len2);
if (__buf.begin() == 0)
std::__merge_without_buffer
(__first, __middle, __last, __len1, __len2, __comp);
else
std::__merge_adaptive
(__first, __middle, __last, __len1, __len2, __buf.begin(),
_DistanceType(__buf.size()), __comp);
Otherwise, it falls back to an implementation (__merge_without_buffer), which requires no extra memory, but no longer runs in O(n) time.
2) libc++ (part of the Clang code base): std::inplace_merge
Looks similar. It delegates to a function, which also tries to allocate a buffer. Depending on whether it got enough elements, it will choose the implementation. The constant-memory fallback function is called __buffered_inplace_merge.
Maybe even the fallback is still O(n) time, but the point is that they do not use the implementation if temporary memory is available.
Note that the C++ standard explicitly gives implementations the freedom to choose this approach by lowering the required complexity from O(n) to O(N log N):
Complexity:
Exactly N-1 comparisons if enough additional memory is available. If the memory is insufficient, O(N log N) comparisons.
Of course, this cannot be taken as a proof that constant space in-place merges in O(n) time should never be used. On the other hand, if it would be faster, the optimized C++ libraries would probably switch to that type of implementation.
This is my C version:
void mergesort(int *a, int len) {
int temp, listsize, xsize;
for (listsize = 1; listsize <= len; listsize*=2) {
for (int i = 0, j = listsize; (j+listsize) <= len; i += (listsize*2), j += (listsize*2)) {
merge(& a[i], listsize, listsize);
}
}
listsize /= 2;
xsize = len % listsize;
if (xsize > 1)
mergesort(& a[len-xsize], xsize);
merge(a, listsize, xsize);
}
void merge(int *a, int sizei, int sizej) {
int temp;
int ii = 0;
int ji = sizei;
int flength = sizei+sizej;
for (int f = 0; f < (flength-1); f++) {
if (sizei == 0 || sizej == 0)
break;
if (a[ii] < a[ji]) {
ii++;
sizei--;
}
else {
temp = a[ji];
for (int z = (ji-1); z >= ii; z--)
a[z+1] = a[z];
ii++;
a[f] = temp;
ji++;
sizej--;
}
}
}
I know I'm late to the game, but here's a solution I wrote yesterday. I also posted this elsewhere, but this appears to be the most popular merge-in-place thread on SO. I've also not seen this algorithm posted anywhere else, so hopefully this helps some people.
This algorithm is in its most simple form so that it can be understood. It can be significantly tweaked for extra speed. Average time complexity is: O(n.log₂n) for the stable in-place array merge, and O(n.(log₂n)²) for the overall sort.
// Stable Merge In Place Sort
//
//
// The following code is written to illustrate the base algorithm. A good
// number of optimizations can be applied to boost its overall speed
// For all its simplicity, it does still perform somewhat decently.
// Average case time complexity appears to be: O(n.(log₂n)²)
#include <stddef.h>
#include <stdio.h>
#define swap(x, y) (t=(x), (x)=(y), (y)=t)
// Both sorted sub-arrays must be adjacent in 'a'
// Assumes that both 'an' and 'bn' are always non-zero
// 'an' is the length of the first sorted section in 'a', referred to as A
// 'bn' is the length of the second sorted section in 'a', referred to as B
static void
merge_inplace(int A[], size_t an, size_t bn)
{
int t, *B = &A[an];
size_t pa, pb; // Swap partition pointers within A and B
// Find the portion to swap. We're looking for how much from the
// start of B can swap with the end of A, such that every element
// in A is less than or equal to any element in B. This is quite
// simple when both sub-arrays come at us pre-sorted
for(pa = an, pb = 0; pa>0 && pb<bn && B[pb] < A[pa-1]; pa--, pb++);
// Now swap last part of A with first part of B according to the
// indicies we found
for (size_t index=pa; index < an; index++)
swap(A[index], B[index-pa]);
// Now merge the two sub-array pairings. We need to check that either array
// didn't wholly swap out the other and cause the remaining portion to be zero
if (pa>0 && (an-pa)>0)
merge_inplace(A, pa, an-pa);
if (pb>0 && (bn-pb)>0)
merge_inplace(B, pb, bn-pb);
} // merge_inplace
// Implements a recursive merge-sort algorithm with an optional
// insertion sort for when the splits get too small. 'n' must
// ALWAYS be 2 or more. It enforces this when calling itself
static void
merge_sort(int a[], size_t n)
{
size_t m = n/2;
// Sort first and second halves only if the target 'n' will be > 1
if (m > 1)
merge_sort(a, m);
if ((n-m)>1)
merge_sort(a+m, n-m);
// Now merge the two sorted sub-arrays together. We know that since
// n > 1, then both m and n-m MUST be non-zero, and so we will never
// violate the condition of not passing in zero length sub-arrays
merge_inplace(a, m, n-m);
} // merge_sort
// Print an array */
static void
print_array(int a[], size_t size)
{
if (size > 0) {
printf("%d", a[0]);
for (size_t i = 1; i < size; i++)
printf(" %d", a[i]);
}
printf("\n");
} // print_array
// Test driver
int
main()
{
int a[] = { 17, 3, 16, 5, 14, 8, 10, 7, 15, 1, 13, 4, 9, 12, 11, 6, 2 };
size_t n = sizeof(a) / sizeof(a[0]);
merge_sort(a, n);
print_array(a, n);
return 0;
} // main
Leveraging C++ std::inplace_merge, in-place merge sort can be implemented as follows:
template< class _Type >
inline void merge_sort_inplace(_Type* src, size_t l, size_t r)
{
if (r <= l) return;
size_t m = l + ( r - l ) / 2; // computes the average without overflow
merge_sort_inplace(src, l, m);
merge_sort_inplace(src, m + 1, r);
std::inplace_merge(src + l, src + m + 1, src + r + 1);
}
More sorting algorithms, including parallel implementations, are available in https://github.com/DragonSpit/ParallelAlgorithms repo, which is open source and free.
I just tried in place merge algorithm for merge sort in JAVA by using the insertion sort algorithm, using following steps.
1) Two sorted arrays are available.
2) Compare the first values of each array; and place the smallest value into the first array.
3) Place the larger value into the second array by using insertion sort (traverse from left to right).
4) Then again compare the second value of first array and first value of second array, and do the same. But when swapping happens there is some clue on skip comparing the further items, but just swapping required.
I have made some optimization here; to keep lesser comparisons in insertion sort. The only drawback i found with this solutions is it needs larger swapping of array elements in the second array.
e.g)
First___Array : 3, 7, 8, 9
Second Array : 1, 2, 4, 5
Then 7, 8, 9 makes the second array to swap(move left by one) all its elements by one each time to place himself in the last.
So the assumption here is swapping items is negligible compare to comparing of two items.
https://github.com/skanagavelu/algorithams/blob/master/src/sorting/MergeSort.java
package sorting;
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] array = { 5, 6, 10, 3, 9, 2, 12, 1, 8, 7 };
mergeSort(array, 0, array.length -1);
System.out.println(Arrays.toString(array));
int[] array1 = {4, 7, 2};
System.out.println(Arrays.toString(array1));
mergeSort(array1, 0, array1.length -1);
System.out.println(Arrays.toString(array1));
System.out.println("\n\n");
int[] array2 = {4, 7, 9};
System.out.println(Arrays.toString(array2));
mergeSort(array2, 0, array2.length -1);
System.out.println(Arrays.toString(array2));
System.out.println("\n\n");
int[] array3 = {4, 7, 5};
System.out.println(Arrays.toString(array3));
mergeSort(array3, 0, array3.length -1);
System.out.println(Arrays.toString(array3));
System.out.println("\n\n");
int[] array4 = {7, 4, 2};
System.out.println(Arrays.toString(array4));
mergeSort(array4, 0, array4.length -1);
System.out.println(Arrays.toString(array4));
System.out.println("\n\n");
int[] array5 = {7, 4, 9};
System.out.println(Arrays.toString(array5));
mergeSort(array5, 0, array5.length -1);
System.out.println(Arrays.toString(array5));
System.out.println("\n\n");
int[] array6 = {7, 4, 5};
System.out.println(Arrays.toString(array6));
mergeSort(array6, 0, array6.length -1);
System.out.println(Arrays.toString(array6));
System.out.println("\n\n");
//Handling array of size two
int[] array7 = {7, 4};
System.out.println(Arrays.toString(array7));
mergeSort(array7, 0, array7.length -1);
System.out.println(Arrays.toString(array7));
System.out.println("\n\n");
int input1[] = {1};
int input2[] = {4,2};
int input3[] = {6,2,9};
int input4[] = {6,-1,10,4,11,14,19,12,18};
System.out.println(Arrays.toString(input1));
mergeSort(input1, 0, input1.length-1);
System.out.println(Arrays.toString(input1));
System.out.println("\n\n");
System.out.println(Arrays.toString(input2));
mergeSort(input2, 0, input2.length-1);
System.out.println(Arrays.toString(input2));
System.out.println("\n\n");
System.out.println(Arrays.toString(input3));
mergeSort(input3, 0, input3.length-1);
System.out.println(Arrays.toString(input3));
System.out.println("\n\n");
System.out.println(Arrays.toString(input4));
mergeSort(input4, 0, input4.length-1);
System.out.println(Arrays.toString(input4));
System.out.println("\n\n");
}
private static void mergeSort(int[] array, int p, int r) {
//Both below mid finding is fine.
int mid = (r - p)/2 + p;
int mid1 = (r + p)/2;
if(mid != mid1) {
System.out.println(" Mid is mismatching:" + mid + "/" + mid1+ " for p:"+p+" r:"+r);
}
if(p < r) {
mergeSort(array, p, mid);
mergeSort(array, mid+1, r);
// merge(array, p, mid, r);
inPlaceMerge(array, p, mid, r);
}
}
//Regular merge
private static void merge(int[] array, int p, int mid, int r) {
int lengthOfLeftArray = mid - p + 1; // This is important to add +1.
int lengthOfRightArray = r - mid;
int[] left = new int[lengthOfLeftArray];
int[] right = new int[lengthOfRightArray];
for(int i = p, j = 0; i <= mid; ){
left[j++] = array[i++];
}
for(int i = mid + 1, j = 0; i <= r; ){
right[j++] = array[i++];
}
int i = 0, j = 0;
for(; i < left.length && j < right.length; ) {
if(left[i] < right[j]){
array[p++] = left[i++];
} else {
array[p++] = right[j++];
}
}
while(j < right.length){
array[p++] = right[j++];
}
while(i < left.length){
array[p++] = left[i++];
}
}
//InPlaceMerge no extra array
private static void inPlaceMerge(int[] array, int p, int mid, int r) {
int secondArrayStart = mid+1;
int prevPlaced = mid+1;
int q = mid+1;
while(p < mid+1 && q <= r){
boolean swapped = false;
if(array[p] > array[q]) {
swap(array, p, q);
swapped = true;
}
if(q != secondArrayStart && array[p] > array[secondArrayStart]) {
swap(array, p, secondArrayStart);
swapped = true;
}
//Check swapped value is in right place of second sorted array
if(swapped && secondArrayStart+1 <= r && array[secondArrayStart+1] < array[secondArrayStart]) {
prevPlaced = placeInOrder(array, secondArrayStart, prevPlaced);
}
p++;
if(q < r) { //q+1 <= r) {
q++;
}
}
}
private static int placeInOrder(int[] array, int secondArrayStart, int prevPlaced) {
int i = secondArrayStart;
for(; i < array.length; i++) {
//Simply swap till the prevPlaced position
if(secondArrayStart < prevPlaced) {
swap(array, secondArrayStart, secondArrayStart+1);
secondArrayStart++;
continue;
}
if(array[i] < array[secondArrayStart]) {
swap(array, i, secondArrayStart);
secondArrayStart++;
} else if(i != secondArrayStart && array[i] > array[secondArrayStart]){
break;
}
}
return secondArrayStart;
}
private static void swap(int[] array, int m, int n){
int temp = array[m];
array[m] = array[n];
array[n] = temp;
}
}

how to calculate combination of large numbers

I calculated permutation of numbers as:-
nPr = n!/(n-r)!
where n and r are given .
1<= n,r <= 100
i find p=(n-r)+1
and
for(i=n;i>=p;i--)
multiply digit by digit and store in array.
But how will I calculate the nCr = n!/[r! * (n-r)!] for the same range.?
I did this using recursion as follow :-
#include <stdio.h>
typedef unsigned long long i64;
i64 dp[100][100];
i64 nCr(int n, int r)
{
if(n==r) return dp[n][r] = 1;
if(r==0) return dp[n][r] = 1;
if(r==1) return dp[n][r] = (i64)n;
if(dp[n][r]) return dp[n][r];
return dp[n][r] = nCr(n-1,r) + nCr(n-1,r-1);
}
int main()
{
int n, r;
while(scanf("%d %d",&n,&r)==2)
{
r = (r<n-r)? r : n-r;
printf("%llu\n",nCr(n,r));
}
return 0;
}
but range for n <=100 , and this is not working for n>60 .
Consider using a BigInteger type of class to represnet your big numbers. BigInteger is available in Java and C# (version 4+ of the .NET Framework). From your question, it looks like you are using C++ (which you should always add as a tag). So try looking here and here for a usable C++ BigInteger class.
One of the best methods for calculating the binomial coefficient I have seen suggested is by Mark Dominus. It is much less likely to overflow with larger values for N and K than some other methods.
static long GetBinCoeff(long N, long K)
{
// This function gets the total number of unique combinations based upon N and K.
// N is the total number of items.
// K is the size of the group.
// Total number of unique combinations = N! / ( K! (N - K)! ).
// This function is less efficient, but is more likely to not overflow when N and K are large.
// Taken from: http://blog.plover.com/math/choose.html
//
if (K > N) return 0;
long r = 1;
long d;
for (d = 1; d <= K; d++)
{
r *= N--;
r /= d;
}
return r;
}
Just replace all the long definitions with BigInt and you should be good to go.

Resources