lobos.migrations not found in Maven-style project layout - maven

I'm having trouble getting the lobos database migrations library for Clojure to play with the maven-clojure-plugin and Maven-style project structure. Lobos looks for database migrations in the lobos.migrations namespace. If I layout the project Leiningen style:
src/
lobos/
migrations.clj
lobos correctly finds lobos.migrations at run time, when run via lein. However, if I lay out the project Maven-style:
src/
main/
clojure/
lobos/
migrations.clj
and use the maven-clojure-plugin to run the same tests, lobos no longer finds lobos.migrations. I thought this was an issue with the clojure-maven-plugin, but I have the same issue (lobos not finding lobos.migrations) if I run via leon, setting the source paths in project.clj appropriately:
:source-paths ["src/main/clojure"]
If I move lobos/ back under src/ and add src/ as a source path:
:source-paths ["src" "src/main/clojure"]
then lobos correctly finds lobos.migrations again.
I would like to use a Maven-style project layout (and eventually the maven-clojure-plugin). How can I help lobos find lobos.migrations? Where have I gone wrong?

The lobos.migration/*src-directory* variable indicates the source root for finding source for the *migrations-namespace*. If lobos.migration/*reload-migrations* is true (the default), then lobos.migrations looks for the migrations namespace in this source directory. The default is src/, so it needs to be rebound to src/main/clojure in order to use a Maven-style directory structure.
One other notable issue: when running from a JAR (i.e. not from source), you must disable reloading of the migrations namespace as well:
(binding [lobos.migration/*reload-migrations* false]
;; run migration
)

You need to change the dynamic variable lobos.migration/*migrations-namespace*. This is documented here: https://github.com/budu/lobos#migrations.

Related

Are pysa users expected to copy configuration files?

Facebook's Pysa tool looks useful, in the Pysa tutorial exercises they refer to files that are provided in the pyre-check repository using a relative path to include a path outside of the exercise directory.
https://github.com/facebook/pyre-check/blob/master/pysa_tutorial/exercise1/.pyre_configuration
{
"source_directories": ["."],
"taint_models_path": ["."],
"search_path": [
"../../stubs/"
],
"exclude": [
".*/integration_test/.*"
]
}
There are stubs provided for Django in the pyre-check repository which if I know the path where pyre check is installed I can hard-code in my .pyre_configuration and get something working but another developer may install pyre-check differently.
Is there a better way to refer to these provided stubs or should I copy them to the repository I'm working on?
Many projects have a standard development environment, allowing for hard coded paths in the .pyre_configuration file. These will usually point into the venv, or some other standard install location for dependencies.
For projects without a standard development environment, you could trying incorporating pyre init into your setup scripts. pyre init will setup a fresh .pyre_configuration file with paths that correspond to the current install of pyre. For additional configuration you want to add on top of the generated .pyre_configuration file (such as a pointer to local taint models), you can hand write a .pyre_configuration.local, which will act as an overlay and overwrite/add to the content of .pyre_configuration.
Pyre-check looks for the stubs in the directory specified by the typeshed directive in the configuration file.
The easiest way is to move stubs provided for Django in the pyre-check repository to the typeshed directory that is in the pyre-check directory.
For example, if you have installed pyre-check to the ~/.local/lib directory, move the django directory from ~/.local/lib/pyre_check/stubs to ~/.local/lib/pyre_check/typeshed/third_party/2and3/ and make sure your .pyre_configuration file will look like this:
{
"source_directories": ["~/myproject"],
"taint_models_path": "~/myproject/taint",
"typeshed": "~/.local/lib/pyre_check/typeshed"
}
In this case, your Django stubs directory will be ~/.local/lib/pyre_check/typeshed/third_parth/2and3/django
Pyre-check uses the following algorithm to traverse across the typeshed directory:
If it contains the third_party subdirectory, it uses a legacy method: enters just the two subdirectories: stdlib and third_party and there looks for any subdirectory except those with names starting with 2 but not 2and3, and looks for the modules in those subdirectories like 2and3, e.g. in third_party/2and3/
Otherwise, it enters the subdirectories stubs and stdlib, and looks for modules there, e.g. in stubs/, but not in stubs/2and3/.
That's why specifying multiple paths may be perplexing and confusing, and the easiest way is to setup the typeshed directory to ~/.local/lib/pyre_check/typeshed/ and move django to third_parth/2and3, so it will be ~/.local/lib/pyre_check/typeshed/third_parth/2and3/django.
Also don't forget to copy the .pysa files that you need to the taint_models_path directory. Don't set it up to the directory of the Pyre-check, create your own new directory and copy only those files that are relevant to you.

Playframework: Custom template path

I was wondering if it is possible to override/add to the template paths for Playframework? For instance, the default templates are looked under views folder and are compiled automatically. These templates are further reachable directly using a URL without any additional config.
---app
|-controllers
|-models
|-templates //How do I compile templates under this folder?
|-views
What I would like to know is if it is possible to add a custom path in addition to the views folder that is also compiled with the build process. Alternatively, is it possible to block certain templates to be not reachable by direct URL ?
Thanks in advance!
Under the app directory, Play should automatically compile anything that looks like a Twirl template - that is, has a registered extension such as *.scala.html - regardless of what directory it's in. The views directory is just a convention, and compiling templates under an app/templates directory should already happen.
If you open an SBT prompt you can verify this by running the command:
show twirlCompileTemplates::sourceDirectories
Which should give you something like:
[info] my-project/compile:twirlCompileTemplates::sourceDirectories
[info] List(/home/me/my-project/app)
For adding a templates directory outside the app folder, you should be able to add something like the following in your build.sbt (for example, the directory extra_templates):
import play.twirl.sbt.Import.TwirlKeys._
sourceDirectories in (Compile, compileTemplates) += file("extra_templates")

Linking with a Windows library outside the build folder

Is there a way to link with a library that's not in the current package path.
This link suggests placing everything under the local directory. Our packages are installed in some repository elsewhere. I just want to specify the libpath to it on windows.
authors = ["Me"]
links = "CDbax"
[target.x86_64-pc-windows-gnu.CDbax]
rustc-link-lib = ["CDbax"]
rustc-link-search = ["Z:/Somepath//CPP/CDbax/x64/Debug/"]
root = "Z:/Somepath//CPP/CDbax/x64/Debug/"
But trying cargo build -v gives me
package `hello v0.1.0 (file:///H:/Users/Mushfaque.Cradle/Documents/Rustc/hello)` specifies that it links to `CDbax` but does not have a custom build script
From the cargo build script support guide, it seems to suggest that this should work. But I can see that it hasn't added the path. Moving the lib into the local bin\x68_64-pc-windows-gnu\ path works however.
Update
Thanks to the answer below, I thought I'd update this to give the final results of what worked on my machine so others find it useful.
In the Cargo.toml add
links = "CDbax"
build = "build.rs"
Even though there is no build.rs file, it seems to require it (?) otherwise complains with
package `xxx v0.1.0` specifies that it links to `CDbax` but does not have a custom build script
Followed by Vaelden answer's create a 'config' file in .cargo
If this is a sub crate, you don't need to put the links= tag in the parent crate, even though it's a dll; even with a 'cargo run'. I assume it adds the dll path to the execution environment
I think the issue is that you are mistaking the manifest of your project with the cargo
configuration.
The manifest is the Cargo.toml file at the root of your project. It describes your project itself.
The cargo configuration describes particular settings for cargo, and allow for example to override dependencies, or in your case override build scripts. The cargo configuration files have a hierarchical structure:
Cargo allows to have local configuration for a particular project or
global configuration (like git). Cargo also extends this ability to a
hierarchical strategy. If, for example, cargo were invoked in
/home/foo/bar/baz, then the following configuration files would be
probed for:
/home/foo/bar/baz/.cargo/config
/home/foo/bar/.cargo/config
/home/foo/.cargo/config
/home/.cargo/config
/.cargo/config
With this structure you can specify local configuration per-project,
and even possibly check it into version control. You can also specify
personal default with a configuration file in your home directory.
So if you move the relevant part:
[target.x86_64-pc-windows-gnu.CDbax]
rustc-link-lib = ["CDbax"]
rustc-link-search = ["Z:/Somepath//CPP/CDbax/x64/Debug/"]
root = "Z:/Somepath//CPP/CDbax/x64/Debug/"
to any correct location for a cargo configuration file, it should work.

CLIPSJNI.SymbolValue cannot be cast to CLIPSJNI.MultifieldValue

I'm trying to run the example CLIPS GUI projects, both versions 0.2 and 0.3, however without success. Nothing special - I create a simple Eclipse project with the codes, using Debian 64bit and I always end up with the "CLIPSJNI.SymbolValue cannot be cast to CLIPSJNI.MultifieldValue" exception. I got the libCLIPSJNI.so in /usr/lib64. Any help or suggestions appreciated.
I think your issue is that either the rule or resource files are not being found in your projects. There are probably multiple (or better) ways to do this, but what I did was create a CLIPSJNI project to contain the CLIPSJNI.dll, CLIPSJNI.jar, and libCLIPSJNI.jnilib files and then a separate project for each of the demos. I placed the clp files at the root level of the demo project, the java code within the src directory and the resources folder within the src directory:
Animal
src
AnimalDemo.java
resources
AnimalResources.properties
.
.
.
animaldemo.clp
bcdemo.clp
I placed an archive zip of the projects at https://sourceforge.net/projects/clipsrules/files/CLIPS/Misc/: CLIPSJNI_0_3_Eclipse_projects_64Bit.zip

Directory layout for pure Ruby project

I'm starting to learn ruby. I'm also a day-to-day C++ dev.
For C++ projects I usually go with following dir structure
/
-/bin <- built binaries
-/build <- build time temporary object (eg. .obj, cmake intermediates)
-/doc <- manuals and/or Doxygen docs
-/src
--/module-1
--/module-2
-- non module specific sources, like main.cpp
- IDE project files (.sln), etc.
What dir layout for Ruby (non-Rails, non-Merb) would you suggest to keep it clean, simple and maintainable?
As of 2011, it is common to use jeweler instead of newgem as the latter is effectively abandoned.
Bundler includes the necessary infrastructure to generate a gem:
$ bundle gem --coc --mit --test=minitest --exe spider
Creating gem 'spider'...
MIT License enabled in config
Code of conduct enabled in config
create spider/Gemfile
create spider/lib/spider.rb
create spider/lib/spider/version.rb
create spider/spider.gemspec
create spider/Rakefile
create spider/README.md
create spider/bin/console
create spider/bin/setup
create spider/.gitignore
create spider/.travis.yml
create spider/test/test_helper.rb
create spider/test/spider_test.rb
create spider/LICENSE.txt
create spider/CODE_OF_CONDUCT.md
create spider/exe/spider
Initializing git repo in /Users/francois/Projects/spider
Gem 'spider' was successfully created. For more information on making a RubyGem visit https://bundler.io/guides/creating_gem.html
Then, in lib/, you create modules as needed:
lib/
spider/
base.rb
crawler/
base.rb
spider.rb
require "spider/base"
require "crawler/base"
Read the manual page for bundle gem for details on the --coc, --exe and --mit options.
The core structure of a standard Ruby project is basically:
lib/
foo.rb
foo/
share/
foo/
test/
helper.rb
test_foo.rb
HISTORY.md (or CHANGELOG.md)
LICENSE.txt
README.md
foo.gemspec
The share/ is rare and is sometimes called data/ instead. It is for general purpose non-ruby files. Most projects don't need it, but even when they do many times everything is just kept in lib/, though that is probably not best practice.
The test/ directory might be called spec/ if BDD is being used instead of TDD, though you might also see features/ if Cucumber is used, or demo/ if QED is used.
These days foo.gemspec can just be .gemspec --especially if it is not manually maintained.
If your project has command line executables, then add:
bin/
foo
man/
foo.1
foo.1.md or foo.1.ronn
In addition, most Ruby project's have:
Gemfile
Rakefile
The Gemfile is for using Bundler, and the Rakefile is for Rake build tool. But there are other options if you would like to use different tools.
A few other not-so-uncommon files:
VERSION
MANIFEST
The VERSION file just contains the current version number. And the MANIFEST (or Manifest.txt) contains a list of files to be included in the project's package file(s) (e.g. gem package).
What else you might see, but usage is sporadic:
config/
doc/ (or docs/)
script/
log/
pkg/
task/ (or tasks/)
vendor/
web/ (or site/)
Where config/ contains various configuration files; doc/ contains either generated documentation, e.g. RDoc, or sometimes manually maintained documentation; script/ contains shell scripts for use by the project; log/ contains generated project logs, e.g. test coverage reports; pkg/ holds generated package files, e.g. foo-1.0.0.gem; task/ could hold various task files such as foo.rake or foo.watchr; vendor/ contains copies of the other projects, e.g. git submodules; and finally web/ contains the project's website files.
Then some tool specific files that are also relatively common:
.document
.gitignore
.yardopts
.travis.yml
They are fairly self-explanatory.
Finally, I will add that I personally add a .index file and a var/ directory to build that file (search for "Rubyworks Indexer" for more about that) and often have a work directory, something like:
work/
NOTES.md
consider/
reference/
sandbox/
Just sort of a scrapyard for development purposes.
#Dentharg: your "include one to include all sub-parts" is a common pattern. Like anything, it has its advantages (easy to get the things you want) and its disadvantages (the many includes can pollute namespaces and you have no control over them). Your pattern looks like this:
- src/
some_ruby_file.rb:
require 'spider'
Spider.do_something
+ doc/
- lib/
- spider/
spider.rb:
$: << File.expand_path(File.dirname(__FILE__))
module Spider
# anything that needs to be done before including submodules
end
require 'spider/some_helper'
require 'spider/some/other_helper'
...
I might recommend this to allow a little more control:
- src/
some_ruby_file.rb:
require 'spider'
Spider.include_all
Spider.do_something
+ doc/
- lib
- spider/
spider.rb:
$: << File.expand_path(File.dirname(__FILE__))
module Spider
def self.include_all
require 'spider/some_helper'
require 'spider/some/other_helper'
...
end
end
Why not use just the same layout? Normally you won't need build because there's no compilation step, but the rest seems OK to me.
I'm not sure what you mean by a module but if it's just a single class a separate folder wouldn't be necessary and if there's more than one file you normally write a module-1.rb file (at the name level as the module-1 folder) that does nothing more than require everything in module-1/.
Oh, and I would suggest using Rake for the management tasks (instead of make).
I would stick to something similar to what you are familiar with: there's no point being a stranger in your own project directory. :-)
Typical things I always have are lib|src, bin, test.
(I dislike these monster generators: the first thing I want to do with a new project is get some code down, not write a README, docs, etc.!)
So I went with newgem.
I removed all unnecessary RubyForge/gem stuff (hoe, setup, etc.), created git repo, imported project into NetBeans. All took 20 minutes and everything's on green.
That even gave me a basic rake task for spec files.
Thank you all.

Resources