I have been experimenting with bin packing algorithms for data visualizations, but none are quite doing what I want to accomplish. Essentially, I am trying to think of an algorithm to represent a set of numbers by a weighted grid. For example, given a set of numbers [25,25,25,25] you could represent this in a rectangle or square by like this-
However, given a set like this [10,1,1,1], it would look similar to this.
I am trying to wrap my head around this problem with non-even numbers, and it feels similar to bin packing, but in my case I don't necessarily care about the size of the child objects, I just care about them fitting inside the square or rectangle, and keeping their proportions to the other elements. Does this make sense? The problem seems similar to a the Android UI property weight..
I know it is probably simple, I am just not seeing the forest through the trees..
Treemapping is what I was looking for. Thanks Eugen!
Related
I'm working on an optimization problem and attempting to use simulated annealing as a heuristic. My goal is to optimize placement of k objects given some cost function. Solutions take the form of a set of k ordered pairs representing points in an M*N grid. I'm not sure how to best find a neighboring solution given a current solution. I've considered shifting each point by 1 or 0 units in a random direction. What might be a good approach to finding a neighboring solution given a current set of points?
Since I'm also trying to learn more about SA, what makes a good neighbor-finding algorithm and how close to the current solution should the neighbor be? Also, if randomness is involved, why is choosing a "neighbor" better than generating a random solution?
I would split your question into several smaller:
Also, if randomness is involved, why is choosing a "neighbor" better than generating a random solution?
Usually, you pick multiple points from a neighborhood, and you can explore all of them. For example, you generate 10 points randomly and choose the best one. By doing so you can efficiently explore more possible solutions.
Why is it better than a random guess? Good solutions tend to have a lot in common (e.g. they are close to each other in a search space). So by introducing small incremental changes, you would be able to find a good solution, while random guess could send you to completely different part of a search space and you'll never find an appropriate solution. And because of the curse of dimensionality random jumps are not better than brute force - there will be too many places to jump.
What might be a good approach to finding a neighboring solution given a current set of points?
I regret to tell you, that this question seems to be unsolvable in general. :( It's a mix between art and science. Choosing a right way to explore a search space is too problem specific. Even for solving a placement problem under varying constraints different heuristics may lead to completely different results.
You can try following:
Random shifts by fixed amount of steps (1,2...). That's your approach
Swapping two points
You can memorize bad moves for some time (something similar to tabu search), so you will use only 'good' ones next 100 steps
Use a greedy approach to generate a suboptimal placement, then improve it with methods above.
Try random restarts. At some stage, drop all of your progress so far (except for the best solution so far), raise a temperature and start again from a random initial point. You can do this each 10000 steps or something similar
Fix some points. Put an object at point (x,y) and do not move it at all, try searching for the best possible solution under this constraint.
Prohibit some combinations of objects, e.g. "distance between p1 and p2 must be larger than D".
Mix all steps above in different ways
Try to understand your problem in all tiniest details. You can derive some useful information/constraints/insights from your problem description. Assume that you can't solve placement problem in general, so try to reduce it to a more specific (== simpler, == with smaller search space) problem.
I would say that the last bullet is the most important. Look closely to your problem, consider its practical aspects only. For example, a size of your problems might allow you to enumerate something, or, maybe, some placements are not possible for you and so on and so forth. THere is no way for SA to derive such domain-specific knowledge by itself, so help it!
How to understand that your heuristic is a good one? Only by practical evaluation. Prepare a decent set of tests with obvious/well-known answers and try different approaches. Use well-known benchmarks if there are any of them.
I hope that this is helpful. :)
Suppose you have a rectangle surface and some round/rectangle objects (different size).
I want to write an algorithm that will tidy up those objects on the surface.
I have to put a maximum objects on the same surface.
I think i will have to put biggest objects first and smallest then.
Do you know if there is a specific algorithm in order to optimize this ?
It is a kind of tetris resolution but i can choose order of pieces.
Thanks
Since you want maximise the number of objects you are going to place, a greedy algorithm might work well in most of the cases:
Sort boxes according to length(ascending order).
Start from the smallest box:
for every box :
try to place it in a already occupied row
if not possible place it in a new row.
if not possible to place - break; //since anything bigger than would not fit.
If you are considering height also, this is called Packing Problem.
You can check related algorithms here
This is called the Knapsack problem
EDIT:
It's actually a subtype of the Knapsack problem: Bin Packing Problem
I can't figure out how to implement this in a performing way, so I decided to ask you guys.
I have a list of rectangles - actually atm only squares, but I might have to migrate to rectangles later, so let's stick to them and keep it a bit more general - in a 2 dimensional space. Each rectangle is specified by two points, rectangles can overlap and I don't care all too much about setup time, because the rectangles are basicly static and there's some room for precalculate any setup stuff (like building trees, sorting, precalculating additional vectors, whatever etc). Oh I am developing in JavaScript if this is of any concern.
To my actual question: given a point, how do I get a set of all rectangles that include that point?
Linear approaches do not perform well enough. So I look for something that performs better than O(n). I read some stuff, like on Bounding Volume Hierarchies and similar things, but whatever I tried the fact that rectangles can overlap (and I actually want to get all of them, if the point lies within multiple rectangles) seems to always get into my way.
Are there any suggestions? Have I missed something obvious? Are BVH even applicable to possibly overlapping bounds? If so, how do I build such a possibly overlapping tree? If not, what else could I use? It is of no concern to me if borders are inside, outside or not determined.
If someone could come up with anything helpfull like a link or a rant on how stupid I am to use BVH and not Some_Super_Cool_Structure_Perfectly_Suited_For_My_Problem I'd really appreciate it!
Edit: Ok, I played around a bit with R-Trees and this is exactly what I was looking for. Infact I am currently using the RTree implementation http://stackulator.com/rtree/ as suggested by endy_c. It performs really well and fullfills my requirements entirely. Thanks alot for your support guys!
You could look at R-Trees
Java code
there's also a wiki, but can only post one link ;-)
You can divide the space into grid, and for each grid cell have a list of rectangles (or rectangle identifiers) that exist at least partially in that grid. Search for rectangles only in corresponding grid's cell. The complexity should be O(sqrt(n)).
Another approach is to maintain four sorted arrays of x1,y1,x2,y2 values, and binary search your point within those 4 arrays. The result of each search is a set of rectangle candidates, and the final result is intersection of those 4 sets. Depending on how set intersection is implemented this should be efficient than O(n).
I'm in the process of learning about simulated annealing algorithms and have a few questions on how I would modify an example algorithm to solve a 0-1 knapsack problem.
I found this great code on CP:
http://www.codeproject.com/KB/recipes/simulatedAnnealingTSP.aspx
I'm pretty sure I understand how it all works now (except the whole Bolzman condition, as far as I'm concerned is black magic, though I understand about escaping local optimums and apparently this does exactly that). I'd like to re-design this to solve a 0-1 knapsack-"ish" problem. Basically I'm putting one of 5,000 objects in 10 sacks and need to optimize for the least unused space. The actual "score" I assign to a solution is a bit more complex, but not related to the algorithm.
This seems easy enough. This means the Anneal() function would be basically the same. I'd have to implement the GetNextArrangement() function to fit my needs. In the TSM problem, he just swaps two random nodes along the path (ie, he makes a very small change each iteration).
For my problem, on the first iteration, I'd pick 10 random objects and look at the leftover space. For the next iteration, would I just pick 10 new random objects? Or am I best only swapping out a few of the objects, like half of them or only even one of them? Or maybe the number of objects I swap out should be relative to the temperature? Any of these seem doable to me, I'm just wondering if someone has some advice on the best approach (though I can mess around with improvements once I have the code working).
Thanks!
Mike
With simulated annealing, you want to make neighbour states as close in energy as possible. If the neighbours have significantly greater energy, then it will just never jump to them without a very high temperature -- high enough that it will never make progress. On the other hand, if you can come up with heuristics that exploit lower-energy states, then exploit them.
For the TSP, this means swapping adjacent cities. For your problem, I'd suggest a conditional neighbour selection algorithm as follows:
If there are objects that fit in the empty space, then it always puts the biggest one in.
If no objects fit in the empty space, then pick an object to swap out -- but prefer to swap objects of similar sizes.
That is, objects have a probability inverse to the difference in their sizes. You might want to use something like roulette selection here, with the slice size being something like (1 / (size1 - size2)^2).
Ah, I think I found my answer on Wikipedia.. It suggests moving to a "neighbor" state, which usually implies changing as little as possible (like swapping two cities in a TSM problem)..
From: http://en.wikipedia.org/wiki/Simulated_annealing
"The neighbours of a state are new states of the problem that are produced after altering the given state in some particular way. For example, in the traveling salesman problem, each state is typically defined as a particular permutation of the cities to be visited. The neighbours of some particular permutation are the permutations that are produced for example by interchanging a pair of adjacent cities. The action taken to alter the solution in order to find neighbouring solutions is called "move" and different "moves" give different neighbours. These moves usually result in minimal alterations of the solution, as the previous example depicts, in order to help an algorithm to optimize the solution to the maximum extent and also to retain the already optimum parts of the solution and affect only the suboptimum parts. In the previous example, the parts of the solution are the parts of the tour."
So I believe my GetNextArrangement function would want to swap out a random item with an item unused in the set..
I'm faced with a 3 dimensional bin packing problem and am currently conducting some preliminary research as to which algorithms/heuristics are currently yielding the best results. Since the problem is NP hard I do not expect to find the optimal solution in every case, but I was wondering:
1) what are the best exact solvers? Branch and Bound? What problem instance sizes can I expect to solve with reasonable computing resources?
2) what are the best heuristic solvers?
3) What off-the-shelf solutions exist to conduct some experiments with?
As far as off the shelf solutions, check out MAXLOADPRO for loading trucks. It may be able to be configured to load any rectangular volume, but I haven't tried that yet. In general 3d bin-packing problems have the added complication that the objects can be rotated into different positions so for any object with a given length, width and height, you effectively have to create three variables representing each position, but you only use one in the solution.
In general, stand-alone MIP formulations (or branch and bound) don't work well for the 2d or 3d problem but constraint programming has met with some success producing exact solutions for the 2d problem. Check out this abstract. Without looking at the paper, I like the decomposition approach for the problem where you're trying to minimize the number of same-sized bins. I haven't seen as many results for the 3d problem, but let us know if you find any that are implementable.
Good luck !
I've written a program which tests three various algorithms. Also this is a good source of information: A Thousand Ways to Pack the Bin - A Practical Approach to Two-Dimensional Rectangle Bin Packing. It is for two-dimensional rectangle bin, but you can always transform it to 3D.
From wikipedia:
Although these simple strategies are often good enough, efficient approximation algorithms have been demonstrated that can solve the bin packing problem within any fixed percentage of the optimal solution for sufficiently large inputs
Here are the two sources they give for this:
Approximation Algorithms
Bin packing can be solved within 1 + ε in linear time
Best exact solver: Use dynamic programming.
State variables:
Items you have packed and discarded.
Space filled in the container.
If the container is a parallelepiped grid, and the items "fit" in exact cells of the grid, you can use a 3-dimensional array to represent state variable 2. Otherwise, you will have to use more complex data structures.
Best heuristic solvers
I don't know. Perhaps Variable Neighborhood Search. There are some similarities between your problem and the timetable construction problem (which I'm working on), so the same heuristic might be good for both.
Off-the-shelf solutions to conduct experiments
I'm sorry, I don't even have a clue.
You question is similar to:
3d bin packing algorithm
Although, because you dis-allow rotation, you can get pretty good results. I suggest looking more towards a FIRST-FIT-DECREASING solution.
3dbinpacking is a commercial solution (not an algorithm) exposing an API to consume with nice visualization. It offers:
Single bin packing
Multi bin packing
Find third dimension
Find a bin dimensions