Restrict SSE instruction set - gcc

I want my compiler to use only instructions of the specified version of SSE.
For now, looks like -msse2 -mno-sse3 -mno-sse4 -mno-sse41 -mno-sse42 does it, however I'm looking for something like -monly-sse2.

Unless you specify -msse3/-march=<cpu-with-sse3> only SSE2 will be used on x86-64 (and even lower instruction sets on x86).

Related

The Effect of Architecture When Using SSE / AVX Intrinisics

I wonder how does a Compiler treats Intrinsics.
If one uses SSE2 Intrinsics (Using #include <emmintrin.h>) and compile with -mavx flag. What will the compiler generate? Will it generate AVX or SSE code?
If one uses AVX2 Intrinsics (Using #include <immintrin.h>) and compile with -msse2 flag. What will the compiler generate? Will it generate SSE Only or AVX code?
How does compilers treat Intrinsics?
If one uses Intrinsics, does it help the compiler understand the dependency in the loop for better vectorization?
For instance, what's going on here - https://godbolt.org/z/Y4J5OA (Or https://godbolt.org/z/LZOJ2K)?
See all 3 panes.
The Context
I'm trying to build various version of the same functions with different CPU features (SSE4 and AVX2).
I'm writing the same version one with SSE Intrinsics and once with AVX Intrinsics.
Let's say theyare name MyFunSSE() and MyFunAVX(). Both are in the same file.
How can I make the Compiler (Same method should work for MSVC, GCC and ICC) build each of them using only the respective functions?
GCC and clang require that you enable all extensions you use. Otherwise it's a compile-time error, like error: inlining failed to call always_inline error: inlining failed in call to always_inline ‘__m256d _mm256_mask_loadu_pd(__m256d, __mmask8, const void*)’: target specific option mismatch
Using -march=native or -march=haswell or whatever is preferred over enabling specific extensions, because that also sets appropriate tuning options. And you don't forget useful ones like -mpopcnt that will let std::bitset::count() inline a popcnt instruction, and make all variable-count shifts more efficient with BMI2 shlx / shrx (1 uop vs. 3)
MSVC and ICC do not, and will let you use intrinsics to emit instructions that they couldn't auto-vectorize with.
You should definitely enable AVX if you use AVX intrinsics. Older MSVC without enabling AVX didn't always use vzeroupper automatically where needed, but that's been fixed for a few years. Still, if your whole program can assume AVX support, definitely tell the compiler about it even for MSVC.
For compilers that support GNU extensions (GCC, clang, ICC), you can use stuff like __attribute__((target("avx"))) on specific functions in a compilation unit. Or better, __attribute__((target("arch=haswell"))) to maybe also set tuning options. (That also enables AVX2 and FMA, which you might not want. And I'm not sure if target attributes do set -mtune=xx). See
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
__attribute__((target())) will prevent them from inlining into functions with other target options, so be careful to use this on functions they will inline into, if the function itself is too small. Use it on a function containing a loop, not a helper function called in a loop.
See also
https://gcc.gnu.org/wiki/FunctionMultiVersioning for using different target options on multiple definitions of the same function name, for compiler supported runtime dispatching. But I don't think there's a portable (to MSVC) way to do that.
See specify simd level of a function that compiler can use for more about doing runtime dispatch on GCC/clang.
With MSVC you don't need anything, although like I said I think it's normally a bad idea to use AVX intrinsics without -arch:AVX, so you might be better off putting those in a separate file. But for AVX vs. AVX2 + FMA, or SSE2 vs. SSE4.2, you're fine without anything.
Just #define AVX2_FUNCTION to the empty string instead of __attribute__((target("avx2,fma")))
#if defined(__GNUC__) && !defined(__INTEL_COMPILER)
// apparently ICC doesn't support target attributes, despite supporting GNU C
#define TARGET_HASWELL __attribute__((target("arch=haswell")))
#else
#define TARGET_HASWELL // empty
// maybe warn if __AVX__ isn't defined for functions where this is used?
// if you need to make sure MSVC uses vzeroupper everywhere needed.
#endif
TARGET_HASWELL
void foo_avx(float *__restrict dst, float *__restrict src)
{
for (size_t i = 0 ; i<1024 ; i++) {
__m256 v = _mm256_loadu_ps(src);
...
...
}
}
With GCC and clang, the macro expands to the __attribute__((target)) stuff; with MSVC and ICC it doesn't.
ICC pragma:
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-optimization-parameter documents a pragma which you'd want to put before AVX functions to make sure vzeroupper is used properly in functions that use _mm256 intrinsics.
#pragma intel optimization_parameter target_arch=AVX
For ICC, you could #define TARGET_AVX as this, and always used it on a line by itself before the function, where you can put an __attribute__ or a pragma. You might also want separate macros for defining vs. declaring functions, if ICC doesn't want this on declarations. And a macro to end a block of AVX functions, if you want to have non-AVX functions after them. (For non-ICC compilers, this would be empty.)
If you compile code with -mavx2 enabled your compiler will (usually) generate so-called "VEX encoded" instructions. In case of _mm_loadu_ps, this will generate vmovups instead of movups, which is almost equivalent, except that the latter will only modify the lower 128 bit of the target register, whereas the former will zero-out everything above the lower 128 bits. However, it will only run on machines which support at least AVX. Details on [v]movups are here.
For other instructions like [v]addps, AVX has the additional advantage of allowing three operands (i.e., the target can be different from both sources), which in some cases can avoid copying registers. E.g.,
_mm_mul_ps(_mm_add_ps(a,b), _mm_sub_ps(a,b));
requires a register copy (movaps) when compiled for SSE, but not when compiled for AVX:
https://godbolt.org/z/YHN5OA
Regarding using AVX-intrinsics but compiling without AVX, compilers either fail (like gcc/clang) or silently generate the corresponding instructions which would then fail on machines without AVX support (see #PeterCordes answer for details on that).
Addendum: If you want to implement different functions depending on the architecture (at compile-time) you can check that using #ifdef __AVX__ or #if defined(__AVX__): https://godbolt.org/z/ZVAo-7
Implementing them in the same compilation unit is difficult, I think. The easiest solutions are to built different shared-libraries or even different binaries and have a small binary which detects the available CPU features and loads the corresponding library/binary. I assume there are related questions on that topic.

What happens if we define wrong flag for -mfpu?

For example, if I have a chip -mcpu=cortex-a7 , I should define -mfpu=neon-vfpv4 , not -mfpu=neon . However, I'm wondering what will happen if I define -mfpu=neon on Cortex-A7? Will it just ignore the flag and don't do the SIMD, or what will it do with the wrong flag like that?
It will use an older set of NEON instructions (-mfpu=neon is for selecting the NEON instructions that are available on the Cortex-A8 core). For example, it will not include the VFMA instructions.
Note that from GCC 8 (still in development) you will be able to just use -mfpu=auto or leave out the -mfpu entirely and have the compiler pick the optimal FPU setting for the -mcpu option you selected
If you do this compiler won't use VFPv4 instructions and potentially generate suboptimal code.

How to turn on Fused Multiply Add in GCC for ARM processor

In my C program, I want the processor to compute a*b +c using FMADD instruction rather than MUL and ADD. How do I specify this to the compiler to do this. Also I would like to see FMADD instruction in the assembly code after compile.
gcc version 4.9.2
ARM v7 Processor
You need to have one of the following FPUs,
vfpv4
vfpv4-d16
fpv4-sp-d16
fpv5-sp-d16
fpv5-d16
neon-vfpv4
fp-armv8
neon-fp-armv8
crypto-neon-fp-armv8
You must use the hard-float ABI option.
An example with integers.
An example with floats.
You shouldn't need to specify any special function calls; the compiler will use the instruction if it finds they are beneficial.
The code in arm.c responsible for generation is,
case FMA:
if (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_FMA)
With TARGET_FMA being a version '4' or better FPU.

gcc; Aarch64; Armv8; enable crypto; -mcpu=cortex-a53+crypto

I am trying to optimize an Arm processor (Corte-A53) with an Armv8 architecture for crypto purposes.
The problem is that however the compiler accepts -mcpu=cortex-a53+crypto etc it doesn't change the output (I checked the assembly output).
Changing mfpu, mcpu add futures like crypto or simd, it doesn't matter, it is completely ignored.
To enable Neon code -ftree-vectorize is needed, how to make use of crypto?
(I checked the -O(1,2,3) flags, it won't help).
Edit: I realized I made a mistake by thinking the crypto flag works like an optimization flag solved by the compiler. My bad.
You had two questions...
Why does -mcpu=cortex-a53+crypto not change code output?
The crypto extensions are an optional feature under the AArch64 state of ARMv8-A. The +crypto feature flag indicates to the compiler that these instructions are available use. From a practical perspective, in GCC 4.8/4.9/5.1, this defines the macro __ARM_FEATURE_CRYPTO, and controls whether or not you can use the crypto intrinsics defined in ACLE, for example:
uint8x16_t vaeseq_u8 (uint8x16_t data, uint8x16_t key)
There is no optimisation in current GCC which will automatically convert a sequence of C code to use the cryptography instructions. If you want to make this transformation, you have to do it by hand (and guard it by the appropriate feature macro).
Why do the +fpu and +simd flags not change code output?
For -mcpu=cortex-a53 the +fp and +simd flags are implied by default (for some configurations of GCC +crypto may also be implied by default). Adding these feature flags will therefore not change code generation.

How to get GCC to use more than two SIMD registers when using intrinsics?

I am writing some code and trying to speed it up using SIMD intrinsics SSE2/3. My code is of such nature that I need to load some data into an XMM register and act on it many times. When I'm looking at the assembler code generated, it seems that GCC keeps flushing the data back to the memory, in order to reload something else in XMM0 and XMM1. I am compiling for x86-64 so I have 15 registers. Why is GCC using only two and what can I do to ask it to use more? Is there any way that I can "pin" some value in a register? I added the "register" keyword to my variable definition, but the generated assembly code is identical.
Yes, you can. Explicit Reg Vars talks about the syntax you need to pin a variable to a specific register.
If you're getting to the point where you're specifying individual registers for each intrinsic, you might as well just write the assembly directory, especially given gcc's nasty habit of pessimizing intrinsics unnecessarily in many cases.
It sounds like you compiled with optimization disabled, so no variables are kept in registers between C statements, not even int.
Compile with gcc -O3 -march=native to let the compiler make non-terrible asm, optimized for your machine. The default is -O0 with a "generic" target ISA and tuning.
See also Why does clang produce inefficient asm with -O0 (for this simple floating point sum)? for more about why "debug" builds in general are like that, and the fact that register int foo; or register __m128 bar; can stay in a register even in a debug build. But it's much better to actually have the compiler optimize, as well as using registers, if you want your code to run fast overall!

Resources