Why the data transfer is slow from GPU to CPU? - performance

Today I have figured out something that really made me wondering. I have the Samsung Exynos 4412 ARM9 CPU which has a GPU400(QuadCore). I tried to get a texture from the GPU to CPU by all known methods and its really slow. The same scenario and slow speed happens also in modern CPUs and GPUs in the PC Platform. My wondering is how that happens and the Samsung Exynos is an SoC and both of them has the same memory and I should not care about the bus.
Why that happens ?
The data from the GPU to the CPU is transferred by many methods which I have tried glReadpixels, gltexSubImage2D, gltexImage2d, FBO.
The frame rate drops from 40FPS to 7FPs or 7FPS while using any of those methods, on a texture 1024*1024 24bits.

Possible answers taken from the OpenGL forums:
Latency: it takes time for the read command to reach the hardware.
OpenGL command buffering: Reading the data requires the OpenGL driver to complete all outstanding commands.
Hardware buffering: Hardware must empty all GPU core pipelines before doing a readback.
Possible solution:
- Copy the data internally on the GPU to another location and read it back some number of frames after computing it. This should allow everything writing to that location to have completed before you attempt to read it.

Related

Linux device driver for display | Framebuffer

I am studying the display device driver for linux that runs TFT display, now framebuffer stores all the data that is to be displayed.
Question: does display driver have equvalant buffer of its own to handle framebuffer from the kernel?
My concern is that the processor has to take the output from the GPU and produce a framebuffer to be sent out to the display driver, but depending on the display there might be some latencies and other issues so do display driver access framebuffer directly or it uses its own buffer as well?
This is a rabbit-hole question; it seems simple on the surface, but a factual answer is bound to end up in fractal complexity.
It's literally impossible to give a generalized answer.
The cliff notes version is: GPUs have their own memory, which is directly visible to the CPU in the form of a memory mapping (you can query the actual range of physical addresses from e.g. /sys/class/drm/card0/device/resource). Somewhere in there, there's also the memory used for the display scanout buffer. When using GPU accelerated graphics, the GPU will write directly to those scanout buffers – possibly to memory that's on a different graphics card (that's how e.g. Hybrid graphics work).
My concern is that the processor has to take the output from the GPU and produce a framebuffer to be sent out to the display driver
Usually that's not the case. However even if there's a copy involved, these days bus bandwidths are large enough for that copy operation not to matter.
I am studying the display device driver for linux that runs TFT display
If this is a TFT display connected with SPI or an parallel bus made from GPIOs, then yes, there'll be some memory reserved for the image to reside on. Strictly speaking this can be in the RAM for the CPU, or in the VRAM of a GPU, if there is one. However as far as latencies go, the copy operations for scanout don't really matter these days.
20 years ago, yes, and even back then with clever scheduling you could avoid the latencies.

Does modern PC video hardware support VGA text mode in HW, or does the BIOS emulate it (with System Management Mode)?

What really happens on modern PC hardware booted in 16-bit legacy BIOS MBR mode when you store a byte such as '1' (0x31) into the VGA text (mode 03) framebuffer at physical linear address B8000? How slow is a mov [es:di], eax store with the MTRR for that region set to UC? (Experimental testing on one Kaby Lake iGPU laptop indicates that clflushopt on WC was roughly the same speed as UC for VGA memory. But without clflushopt, mov stores to WC memory never leave the CPU and don't update the screen at all, running super fast.)
If it's not an SMI for every store, is there any way to approximate this cost on a chunk of WB memory in user-space, for performance experiments without actually rebooting into real mode? (e.g. using a BSS page as a pretend framebuffer that doesn't actually display anywhere).
The corresponding font glyph appears on screen in the next refresh, but is hardware scan-out really reading that ASCII char from VRAM (or DRAM for an iGPU) and mapping to bitmap font glyphs on the fly? Or is there some software interception on each store or once per vblank so the real hardware only has to handle a bitmapped framebuffer?
Legacy BIOS booting is well known to use System Management Mode (SMM) to emulate USB kbd/mouse as a PS/2 devices. I'm wondering if it's also used for the VGA text mode framebuffer. I assume it is used for VGA I/O ports for mode-setting but it's plausible that a text framebuffer could be supported by hardware. However, most computers spend all their time in graphics mode so leaving out HW support for text mode seems like something vendors might want to do. (OTOH this blog suggests that a homebrew verilog VGA controller can implement text mode fairly simply.)
I'm specifically interested in systems using the iGPU in Intel Skylake, but would be interested in earlier / later iGPUs from Intel and AMD, and new or old discrete GPUs.
(Including vendors other than AMD and NVidia; there are some Skylake motherboards with PCI slots, not PCIe. If modern GPU firmware drivers do emulate text mode, presumably there are some old PCI video cards with hardware VGA text mode. And maybe such a card could make stores just be a PCI transaction instead of an SMI.)
My own desktop is an i7-6700k in an Asus Z170 Pro Gaming mobo, no add-on cards just iGPU with a 1920x1200 monitor on the DVI-D output. I don't know the details of the Kaby Lake i5-7300HQ system #Eldan is testing on, only the CPU model.
I found Phoenix BIOS's patent US20120159520 from 2011,
Emulating legacy video using uefi. Instead of requiring video hardware vendors to supply both UEFI and native 16-bit real mode option-ROM drivers, they propose a real-mode VGA driver (int 10h functions and so on) that calls a vendor-supplied UEFI video driver via SMM hooks.
Abstract
[...] The generic video option ROM notifies a generic video SMM driver of the request for video services. Such notification may be performed using a software system management interrupt (SMI). Upon notification, the generic video SMM driver notifies a third party UEFI video driver of the request for video services. The third party video driver provides the requested video services to the operating system. In this way, a third party UEFI graphics driver may support a wide variety of operating systems, even those that do not natively support the UEFI display protocols.
Much of the description covers handling int 10h calls and stuff like that which already obviously trap through the IVT, thus can easily run custom code that triggers an SMI on purpose. The relevant part is what they describe for direct stores into the text-mode framebuffer which need to work even for code that doesn't trigger any software or hardware interrupts. (Other than HW triggering SMI on such stores, which they say they can use if supported.)
Text Buffer Support
[0066] In certain embodiments, applications may manipulate the VGA's
text buffer directly. In such an embodiment, generic video SMM driver
130 support this in one of two ways, depending on whether the hardware
provides SMI trapping on read/write access to the 740 KB-768 KB memory
region (where the text buffers are located).
[0067] When SMI trapping is available, the hardware generates an SMI
on each read or write access. Using the trap address of the SMI trap,
the exact text column and row may be calculated and the corresponding
row and column in the virtual text screen accessed.
Alternately,
normal memory is enabled for this region and, using a periodic SMI,
generic video SMM driver 130 scans for changes in the emulated
hardware text buffer and updates the corresponding virtual text screen
maintained by the video driver. In both cases, when a change is
detected, the character is redrawn on the virtual text screen.
This is just one BIOS vendor's patent, and doesn't tell us which way most hardware actually works, or if other vendors do different things. It does essentially confirm that some hardware exists which can trap on stores in that range, though. (Unless that's just a hypothetical possibility that they decided to cover in their patent.)
For the use-case I have in mind, trapping only on screen refresh would be vastly faster than trapping on every store so I'm curious which hardware / firmware works which way.
Motivation for this question
Optimizing an incrementing ASCII decimal counter in video RAM on 7th gen Intel Core - repeatedly storing new digits for an ASCII text counter into the same few bytes of video RAM.
I tested a version of the code in 32-bit user-space under Linux, on WB memory, hoping to approximate the situation with movnti and different ways of getting the CPU to sync its WC buffer to video RAM after each store (or perhaps occasionally in a timer interrupt). But this is not realistic if the real-mode bootloader situation isn't just storing to DRAM, but instead triggering an SMI.
On WB memory, flushing movnti stores with a lock xor byte [esp], 0 is somewhat faster than flushing with clflushopt. But #Eldan reports no speed improvement for those on VGA memory after programming an MTRR to make it WC. (And the same speed as for the original doing normal stores, indicating that by default the VGA framebuffer was UC. Some older BIOSes had an option to make VGA memory WC, which they called USWC = Uncached Speculative Write Combining.)
It's not a real-world problem so I'm not looking for actual workarounds; although it would be interesting to know if manually storing pixel bytes into a VGA graphics mode could be much faster.
Summary
Do any / all real modern systems trigger an SMI on every store to the text-mode framebuffer?
If no, can we approximate a WC store+clflush to the framebuffer, using a movnti + something in user-space on WB memory? So we can easily profile with perf for performance counters.
If different BIOSes and/or hardware use different strategies, what are those strategies? (I don't want details, just a high level like "SMI every vblank to sync the VGA framebuffer to the actual hardware framebuffer")
Would a PCIe or PCI video card with hardware VGA textmode be faster than whatever integrated GPUs actually do? I'm guessing an actual PCIe write transaction would be slower than waiting for a store to hit DRAM, but that a PCIe write would be cheaper than an SMI on every store. A ballpark / order of magnitude comparison would be interesting.
These questions are all highly related, but I can split this up if there isn't as much overlap as I expect.
Do any / all real modern systems trigger an SMI on every store to the text-mode framebuffer?
For video cards, I very much doubt it. Video card manufacturers have had the "get pixel data from char+attribute" logic built into hardware since the 1980s (it predates VGA and hasn't changed much since CGA), and just cut&paste that logic into each newer design without caring much about it.
For things that are not video cards at all (e.g. remote system management tools using LAN) I don't know but suspect not (often they use a special management CPU rather than the main CPU/s so that it works even if the computer is turned "off").
If no, can we approximate a WC store+clflush to the framebuffer, using a movnti + something in user-space on WB memory?
If you're not in user-space, you can change MTTRs (on all CPUs - MTRRs must match and there's a special sequence involved) to make an area of RAM "uncached"; or use PAT in the page tables (much easier than messing with MTRRs, especially if you're using paging anyway, but slightly different behavior due to still needing cache coherency). If you are in user-space then you will have to rely on whatever the OS/kernel provides, and (depending on which OS it is) the OS/kernel may not provide any way to do this at all.
However; even if you find a way to make (an area of) RAM uncached it still won't be very similar, because you'll be writing directly to something attached to a memory controller built into the CPU (that CPU can write to extremely quickly) instead of talking to something at the other end of a PCI link (that will have higher latency and lower bandwidth from CPU's side). Even for integrated video (where it's technically the same RAM chips in the end) writes to VRAM go through a very different path (subject to remapping/GART/paging in the video card, effected by a "write mode" VGA register, effected by bit/plane mask VGA registers, etc).
Would a PCIe or PCI video card with hardware VGA textmode be faster than whatever integrated GPUs actually do?
For writes from CPU to VRAM; typically integrated video is significantly faster than discrete cards (at least for plain writes from CPU to linear frame buffers where none of the VGA's "write logic" is involved).
For extremely rough ballpark estimates; I'd expect a single write to RAM to be around 150 cycles and a single write to PCI to be close to 1000 cycles. For SMI I'd expect a few hundred cycles of latency before SMI arrives at CPU, then the cost of CPU pipeline flush, then about 500 cycles to save CPU's state (and same loading state on the return path); then the firmware's code would have to find the cause of the SMI (another few hundred cycles?) before it could know it was a write to VRAM and not something else; then it'd have to examine the saved CPU state and find and decode the instruction that made the write (because it can't know what data was being written, if it was a byte/word/dword write, etc) while taking into account previous CPU state (which mode CPU was in, code size, etc) and keeping track of how emulating the instruction effects the future CPU state (advancing RIP, etc - don't forget that they'll be emulating every instruction that can cause a write, including things like XADD, etc). Next it would have to analyze the state of (emulated) VGA registers (write mode, write mask, plane enable, whatever controls which 64 KiB bank is mapped into the legacy area, font height, ...). Basically; for SMI emulation of a write to text mode frame buffer; I'd expect it to take tens of thousands of cycles before the firmware's code overlooks a minor but important detail buried among a huge amount of complexity, causing it to do the wrong thing and be unusably broken.
Other Notes
I found Phoenix BIOS's patent US20120159520 from 2011, Emulating legacy video using uefi.
I doubt this was ever implemented, because I doubt it can ever work. There's far too many (common and obscure) things you can do with the legacy interfaces (e.g. detect vertical refresh, setup non-standard video modes like "mode X", fiddle with "display start" to implement smooth scrolling and/or page flipping, use "CRTC info" in VBE to alter video timings, etc) that isn't supported by UEFI and can't be done via. a third party video driver for UEFI.
Instead, video card manufacturers didn't bother providing UEFI drivers for about 10 years and UEFI firmware used the legacy interface to emulate UEFI services (often breaking secure boot while they were at it); until almost everything was UEFI anyway.
I assume it (SMM) is used for VGA I/O ports for mode-setting.
I assume not. The only thing vaguely related to video that I'd suspect SMM may be used for is controlling the brightness of the screen's backlight in laptops (especially for older laptops, and especially for "lid open/close events") during early boot (before OS takes over).
.. leaving out HW support for text mode seems like something vendors might want to do
I still believe that the (eventual, after the already too long "hybrid BIOS+UEFI" transition phase) removal of 30+ years of accumulated legacy mess (A20, VGA, PS/2, PIT, PIC, ...) from hardware is one of the main reasons hardware manufacturers (Intel) are/have been pushing for UEFI adoption.
Reading through various modern Intel CPU and Platform Controller Hub (PCH) datasheets, it doesn't appear that the necessary hardware is implemented. There doesn't seem to be any way to generate an SMI (System Management Interrupt) in response to processor accesses of the VGA frame buffer (physical addresses 0xA0000 - 0xBFFFF).
The memory controller in the CPU will either route accesses to VGA frame buffer to the integrated graphics controller, the PCI Express port connected directly to the CPU, or the DMI interface connecting the CPU to the PCH. While it's possible route parts VGA frame buffer separately, this appears only meant to support a separate MDA (Monochrome Display Adapter) device. The integrated graphics controller is not well documented so it's possible that it can be configured to generate an SMI on VGA frame buffer accesses, but this seems unlikely. In any case, it wouldn't work with discrete graphics.
Intel PCH's also don't seem to have any support for generating SMIs in response to VGA frame buffer accesses. This would be the most natural place for it, as it already has support for generating SMIs in response to I/O accesses to the keyboard controller, IDE controller and other legacy devices. It possible that there's some undocumented feature that does this, but it's not included in the lists of possible SMI sources given in the PCH datasheets.
Theoretically, it would be possible for a motherboard manufacture to connect a fake VGA device to the PCH through a PCI Express port and then generate SMIs using a PCH GPIO pin. However, I'm not sure this will work in practice. By the time the CPU gets the SMI it could have moved on to executing other instructions and it wouldn't be possible to examine the CPU state at the time of the frame buffer access.
(A similar problem happened with SoundBlaster 16 emulation on the SoundBlaster Live. It would generate a PCI SERR# when the legacy SoundBlaster ports were accessed, which would generate a NMI on the CPU. Unfortunately the emulation would break on many Pentium 4 motherboards because the NMI would arrive on the next or subsequent instruction.)

Discrete GPU to reduce memory contention & improve CPU performance

I have long suspected the shared RAM of integrated GPUs causes memory contention and significantly slows the performance of the CPU. Especially in the context of compiler and IDE performance.
Have you done any experiments or noticed a difference when adding or removing a discrete graphics card?
Are you aware of any studies on this subject? (I could not find any)
For video there's 2 uses of memory - reading the frame buffer's contents and sending it to the monitor every frame; and whatever the GPU happens to be doing.
For the GPU there's no way to guess.
For reading the frame buffer; for a video mode like 1920x1600 with 32 bits per pixel you're looking at 12.288 MB per frame, so at 60 frames per second that's 0.737 GB/s. A single RAM module is typically capable of "tens of GB per second" (e.g. DDR4-3200 is 25.6 GB/s according to wikipedia). From this you can assume reading from the framebuffer consumes less than 10% of one RAM module's bandwidth. Of course for most systems there's multiple RAM modules and multiple memory channels; so it's likely to be significantly less than 10% of available RAM bandwidth.
Also note that CPUs typically use caches for most memory accesses and only need RAM bandwidth for "cache miss" (e.g. you could have 8 CPUs pounding caches and still have almost all of the usable RAM bandwidth wasted/being used for nothing); so devices of all types (e.g. disk controllers, network cards, USB controllers, sound cards, discrete and integrated video) using RAM bandwidth won't necessarily effect CPU performance.
There are also other (potentially more significant) factors for performance too. For example, for modern integrated video, GPU is in the same package as the CPUs, so when the GPU is going berserk heating up the package the CPUs may need to slow down to avoid melting everything. Discrete video cards don't have this problem (they have the "spend several hundred extra $$ to be deafened by excessive fan noise while you're sitting in a puddle of your own perspiration" problem instead ;) ).
Mostly; everything involved (which hardware, which software, which other devices) is too variable for a concrete measurement of one specific case to be meaningful; so I wouldn't expect to find any studies.

What is the overhead of constantly uploading new Textures to the GPU in OpenGL?

What is the overhead of continually uploading textures to the GPU (and replacing old ones). I'm working on a new cross-platform 3D windowing system that uses OpenGL, and am planning on uploading a single Bitmap for each window (containing the UI elements). That Bitmap would be updated in sync with the GPU (using the VSync). I was wondering if this is a good idea, or if constantly writing bitmaps would incur too much of a performance overhead. Thanks!
Well something like nVidia's Geforce 460M has 60GB/sec bandwidth on local memory.
PCI express 2.0 x16 can manage 8GB/sec.
As such if you are trying to transfer too many textures over the PCIe bus you can expect to come up against memory bandwidth problems. It gives you about 136 meg per frame at 60Hz. Uncompressed 24-bit 1920x1080 is roughly 6 meg. So, suffice to say you could upload a fair few frames of video per frame on a 16x graphics card.
Sure its not as simple as that. There is PCIe overhead of around 20%. All draw commands must be uploaded over that link too.
In general though you should be fine providing you don't over do it. Bear in mind that it would be sensible to upload a texture in one frame that you aren't expecting to use until the next (or even later). This way you don't create a bottleneck where the rendering is halted waiting for a PCIe upload to complete.
Ultimately, your answer is going to be profiling. However, some early optimizations you can make are to avoid updating a texture if nothing has changed. Depending on the size of the textures and the pixel format, this could easily be prohibitively expensive.
Profile with a simpler situation that simulates the kind of usage you expect. I suspect the performance overhead (without the optimization I mentioned, at least) will be unusable if you have a handful of windows bigger, depending on the size of these windows.

GPU access to system RAM

I am currently involved in developing a large scientific computing project, and I am exploring the possibility of hardware acceleration with GPUs as an alternative to the MPI/cluster approach. We are in a mainly memory-bound situation, with too much data to put in memory to fit on a GPU. To this end, I have two questions:
1) The books I have read say that it is illegal to access memory on the host with a pointer on the device (for obvious reasons). Instead, one must copy the memory from the host's memory to the device memory, then do the computations, and then copy back. My question is whether there is a work-around for this -- is there any way to read a value in system RAM from the GPU?
2) More generally, what algorithms/solutions exist for optimizing the data transfer between the CPU and the GPU during memory-bound computations such as these?
Thanks for your help in this! I am enthusiastic about making the switch to CUDA, simply because the parallelization is much more intuitive!
1) Yes, you can do this with most GPGPU packages.
The one I'm most familair with -- the AMD Stream SDK lets you allocate a buffer in "system" memory and use that as a texture that is read or written by your kernel. Cuda and OpenCL have the same ability, the key is to set the correct flags on the buffer allocation.
BUT...
You might not want to do that because the data is being read/written across the PCIe bus, which has a lot of overhead.
The implementation is free to interpret your requests liberally. I mean you can tell it to locate the buffer in system memory, but the software stack is free to do things like relocate it into GPU memory on the fly -- as long as the computed results are the same
2) All of the major GPGPU software enviroments (Cuda, OpenCL, the Stream SDK) support DMA transfers, which is what you probably want.
Even if you could do this, you probably wouldn't want to, since transfers over PCI-whatever will tend to be a bottleneck, whereas bandwidth between the GPU and its own memory is typically very high.
Having said that, if you have relatively little computation to perform per element on a large data set then GPGPU is probably not going to work well for you anyway.
I suggest cuda programming guide.
you will find many answers there.
Check for streams, unified addressing, cudaHostRegister.

Resources