CUDA 5.0 Separate compilation & linking option and Visual Studio 2010 - visual-studio-2010

According to CUDA 5 and beyond and other sources I should be able to compile and link several separate .cu files through the -dc option. My only question is where exactly do I place this option in Visual Studio 2010. It probably is simple just can't figure it out :(

Okay after again a very good look it was simple :( Configuration -> CUDA C/C++ -> Command Line now you can add additional options below the printout of the command line parameters.

Related

Visual Studio, CMake and Toolchain Files

before I explain my current problem with Visual Studio in combination with CMake, I try to explain what I want to accomplish as there might be a better solution.
At our company we have a huge code base mainly written in C for QNX. For development we are using the standard IDE QNX momentics. As this is based on a quite old eclipse version ... the whole IDE sucks.
I'm currently evaluating to use Visual Studio as a replacement. With a really simple HelloWorld-programm I was able to build and debug the project from within VS using CMake and a CMakeSettings.json.
As our code base is basically organized in a tree-like structure, I've created a typical hierarchy of CMakeLists.txt which allows me to build single/multiple projects.
As QNX delivers its own compiler I've created a toolchain file, this is running fine so far, the required toolchain is invoked once a build is triggered via cmake.
Now for the part that I'm struggling with:
How to use this CMake setup in order to develop/debug code from VS?
I had two ideas in mind which don't really work or I'm doing something wrong.
Use the CMake generator for VS 2019 and generate a complete solution. Problem: The toolchain file is not "used" as all projects will be setup with the internal VS compilers. Is there any way to get this working? I thought calling cmake -G "Visual Studio 16 2019" -DCMAKE_TOOLCHAIN_FILE=$FILE would do the job. Additionally: how would I incorporate the debugger configuration? With this solution the CMakeSettings.json seems to be ignored as VS solutions are used.
Use File->Open->CMake to open the root project. Shouldn't this show all "contained" projects which also include a CMakeLists.txt as projects? I can only see the folder tree in the Solution Explorer. Build a single project from the solution explorer is also not possible ... there is simply no option.
Anyone with experience on this topic?
Minor comment please limit questions to 1 question in the future. Multiple questions clutters questions and makes search results worse.
============================================================
I'll answer question #1 this part of question number 1.
"Use the CMake generator for VS 2019 and generate a complete solution. Problem: The toolchain file is not "used" as all projects will be setup with the internal VS compilers. Is there any way to get this working? I thought calling cmake -G "Visual Studio 16 2019" -DCMAKE_TOOLCHAIN_FILE=$FILE would do the job."
Instead of using Visual Studio as your generator try using "Ninja" instead. Ninja will work if your toolchain code is correct. Toolchains and visual studio are complicated to say the least. If you wanna go down that rabbit hole I can help but that's a separate question
Basically try switching to Ninja instead of Visual Studio as your generator for CMakeSettings.json. Ninja is very easy to write toolchains for.
======================================================================
"Additionally: how would I incorporate the debugger configuration?"
The MSDN articles are actually quite good. I figured it out this week. In my opinion the debugger configurations are more powerful with the CMake approach than vanilla visual studio.
Configure CMake debugging sessions
https://learn.microsoft.com/en-us/cpp/build/configure-cmake-debugging-sessions?view=msvc-160
"Tutorial: Debug a CMake project on a remote Windows machine"
https://learn.microsoft.com/en-us/cpp/build/cmake-remote-debugging?view=msvc-160
Trust me once it clicks you'll love it.

How to configure nvidia CUDA for VIsual Studio 2017 [duplicate]

Visual Studio 2017 RC includes much tighter CMake integration, allowing one to skip the intermediate step of generating project/solution files and use CMake effectively as the project file itself. There is sufficient documentation from Microsoft for using these features with regular C++ files, and there is sufficient documentation on this website (example) for making CUDA and Cmake play nicely, when it comes to linking CUDA code to C++ code.
What I can't find information on is how to make CMake, Visual Studio 2017 RC, and CUDA 8.0 all play nicely. This is a difficult problem, because 2017RC has no integration for the CUDA SDK anyways, and I was hoping to use 2017RC so that my C++ interface to the CUDA code could use C++14 and/or C++17. I'm working on the beginning of a large project that will primarily involve writing a static CUDA library that is accessed through C++: so, I'd like to get the CMake to take care of compiling my CUDA sources into a static library, and for it to help with feeding the linking information to Visual Studio. So far, I haven't had any success with using FindCUDA's various features to accomplish this, but I'm assuming that's due to a misunderstanding on my part. I've read through the documentation on separable compilation from Nvidia, but that wasn't helpful for figuring out CMake.
Further, whenever I try to use CMake in VS2017RC, I still end up with the various vcxproj files that CMake likes to spit out. Is this due to an error on my part? How do I edit the build command arguments, or CMakeLists.txt, to get the functionality demonstrated here to work?
The very short (and only at the time of writing) answer is that you can't. CUDA 8 doesn't support VS2017. Only VS2015 is presently supported.
You can always find the compiler/IDE versions which the release version of CUDA supports here
Edit to add that the CUDA 9 release will add official support for VS2017.
All you need to do is set the CUDA_HOST_COMPILER variable to a supported compiler for example the visual studio 2015 compiler.
In my case this is:
C:/Program Files (x86)/Microsoft Visual Studio 14.0/VC/bin/amd64/cl.exe
As both runtime libraries are binary compatible you can use the 2015 compiler within CUDA and compile all the rest of the application with the 2017 compiler.

How do I set up CUDA v4.0 to work nicely with Visual Studio 2010? [duplicate]

Direct Question: How do I create a simple hello world CUDA project within visual studio 2010?
Background: I've written CUDA kernels. I'm intimately familiar with the .vcproj files from Visual Studio 2005 -- tweaked several by hand. In VS 2005, if I want to build a CUDA kernel, I add a custom build rule and then explicitly define the nvcc call to build the files.
I have migrated to Win 7, and VS 2010 because I really want to try out nSight. I have nSight 1.5 installed. But this is where I'm totally lost. If I proceed as before, nvcc reports that it only supports msvc 8.0 & 9.0. But the website clearly states that it supports VS 2010.
I read somewhere else that I need to have VS 2008 (msvc 9.0) also installed -- my word. Doing so now.
But I'm guessing that at least part of my problems stem from the homegrown custom build tool specifications. Several websites talk about adding a *.rules file to the build, but I've gathered that this is only applicable to VS 2008. Under "Build Customizations" I see CUDA 3.1 and 3.2, but when I add kernels to the project they aren't built. Another website proclaims that the key is three files: Cuda.props Cuda.xml Cuda.targets, but it doesn't say how or where to add these files -- or rather I'll gamble that I just don't understand the notes referenced in the website.
So does anyone know how to create a simple project in VS 2010 which builds a CUDA kernel -- using either the nSight 1.5 setup or the NvCudaRuntimeApi.v3.2.rules file which ships with the CUDA 3.2 RC?
Thanks in advance! I'd offer a bounty, but I only have 65 points total.
CUDA TOOLKIT 4.0 and later
The build customisations file (installed into the Program Files\MSBuild\Microsoft.Cpp\v4.0\BuildCustomizations directory) "teaches" Visual Studio how to compile and link any .cu files in your project into your application. If you chose to skip installing the customisations, or if you installed VS2010 after CUDA, you can add them later by following the instructions in Program Files\NVIDIA GPU Computing Toolkit\CUDA\v4.0\extras\visual_studio_integration.
Create a new project using the standard MS wizards (e.g. an empty console project)
Implement your host (serial) code in .c or .cpp files
Add the NVIDIA build customisation (right click on the project, Build customizations, tick the relevant CUDA box)
See note 1 if using CUDA 4.0
Implement your wrappers and kernels in .cu files
If you added .cu files before the build customisations, then you'll need to set the type of the .cu files to CUDA C/C++ (right-click on the file, Properties, set Item Type)
Add the CUDA runtime library (right click on the project and choose Properties, then in Linker -> Input add cudart.lib to the Additional Dependencies)
Then just build your project and the .cu files will be compiled to .obj and added to the link automatically
Incidentally I would advocate avoiding cutil if possible, instead roll your own checking. Cutil is not supported by NVIDIA, it's just used to try to keep the examples in the SDK focussed on the actual program and algorithm design and avoid repeating the same things in every example (e.g. command line parsing). If you write your own then you will have much better control and will know what is happening. For example, the cutilSafeCall wrapper calls exit() if the function fails - a real application (as opposed to a sample) should probably handle the failure more elegantly!
NOTE
For CUDA 4.0 only you may need to apply this fix to the build customisations. This patch fixes the following message:
The result "" of evaluating the value "$(CudaBuildTasksPath)" of the "AssemblyFile" attribute in the element is not valid
This answer applies to CUDA 3.2, from 4.0 onwards CUDA supports the VC 10 compiler directly, see other answers for more information
You need either VS 2008 or the 6.1 Windows SDK installed. That's because NSight 1.5 RC or the CUDA 3.2 SDK use the VC 9 compiler under the hood. I've got this working successfully with 2008 installed and am told it should work with the SDK but haven't tried.
With NSight 1.5 and/or the CUDA 3.2 SDK you shouldn't need to muck with any custom build rules. I've been there and it's painful. With the latest builds all that goes away:
Create your VC++ project.
Add a .CU file to it.
Select the project file in the Solution Explorer.
Open Project | Build Customizations...
Check the "CUDA 3.2 (.targets,
.props)" customization.
Select a .CU file in your project and hit Alt-Enter to show it's properties.
Make sure it's Item Type is set to "CUDA C/C++"
It should just build. Let me know if this helps and if you run into problems as this is from memory.
The good news it getting CUDA working with VS 2010 just got much easier.
Ade
BTW: I'll update my blog post.
Another Good tutorial here:
http://www.stevenmarkford.com/installing-nvidia-cuda-with-visual-studio-2010/
if you get an error about '<' note this step (from a previous answer):
If you added .cu files before the build customisations, then you'll need to set the type of the .cu files to CUDA C/C++ (right-click on the file, Properties, set Item Type)
But if you follow their steps, it should work!

SCONS to Visual Studio 2008

I got a project, source code, etc, using SCONS. Could you recommend tools/ways to convert or integrate it in a Visual Studio C command line project ?
Hi this may be usefull http://www.scons.org/wiki/IDEIntegration#head-a0b9e629986abc8528bdd599bac43a22cd161bf4
I realize this doesn't directly answer your question but I'd reconsider against using SCONS. Native Visual Studio projects have too many advantages such as being able to use Incredibuild, Visual Assist et c.
Instead you might want to look at XPJ:
http://sourceforge.net/projects/xpj/
What it does is generates a vcproj from an XML file, which can also be used to generate a SCONS project if absolutely necessary.
If you are not convinced, you can custom command line project option in Visual Studio and have it invoke the SCONS build.

-D for visual studio

I have to compile one executable on Windows, the first time. I'm using visual studio 2003 and want the equivalent of a command line macro definition.
What's the VS equivalent of g++ -Dthismacro=1?
Update
For VS 2003, I found it this way. Right clicking on the project, I go to "Properties". From there, it's Configuration Properties -> C/C++ -> Preprocessor -> Preprocessor Definitions
since you seem to be coming from a linux-flavor, why not use the commandline: the argument for macro definition is actually the same, except the compiler executable is cl and not g++:
cl -Dthismacro=1
although the documentation says the convention is to use /D, most (all?) arguments can be used with the - switch.
When using visual Studio, you can verify this: if you add a preprocessor symbol the way earlz suggested, this can be seen as /D"thismacro=1" option under Configuration->C/C++->Command Line
If you right click on the project, it should bring up a project configuration page. Goto "build" and then you should be able to define preprocessor symbols.. (hopefully it works the same in 2003 as 2008)

Resources