Optimization similar to Knapsack [closed] - algorithm

Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 9 years ago.
Improve this question
I am trying to find a way to solve an Optimization problem as follows:
I have 22 different objects that can be selected more than once. I have a evaluation function f that takes the multiplicities and calculates the total value.
f is a product over fractions of linear (affine) terms and as such, differentiable and even smooth in the allowed region.
I want to optimize f with respect to the 22 variables, with the additional conditions that certain sums may not exceed certain values (for example, if a,...,v are my variables, a + e + i + m + q + s <= 9). By this, all of the variables are bounded.
If f were strictly monotonuous, this could be solved optimally by a (minimalistically modified) knapsack solution. However, the function isnt convex. That means it is even impossible to assume that if taking an object A is better than B on an empty knapsack, that this choice holds even when adding a third object C (as C could modify B's benefit to be better than A). This means that a greedy algorithm cannot be used;
Are there similar algorithms that solve such a problem in a optimal (or at least, nearly optimal) way?
EDIT: As requested, an example of what the problem is (I chose 5 variables a,b,c,d,e for simplicity)
for example,
f(a,b,c,d,e) = e*(a*0.45+b*1.2-1)/(c+d)
(Every variable only appears once, if this helps at all)
Also, for example, a+b+c=4, d+e=3
The problem is to optimize that with respect to a,b,c,d,e as integers. There is a bunch of optimization algorithms that hold for convex functions, but very few for non-convex...

Related

Closest point to another point on a hypersphere [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 6 years ago.
Improve this question
I have n (about 10^5) points on a hypersphere of dimension m (between 10^4 to 10^6).
I am going to make a bunch of queries of the form "given a point p, find the closest of the n points to p". I'll make about n of these queries.
(Not sure if the hypersphere fact helps at all.)
The simple naive algorithm to solve this is, for each query, to compare p to all other n points. Doing this n times ends up with a runtime of O(n^2 m), which is far too big for me to be able to compute.
Is there a more efficient algorithm I can use? If I could get it to O(nm) with some log factors that'd be great.
Probably not. Having many dimensions makes efficient indexing extremely hard. That is why people look for opportunities to reduce the number of dimensions to something manageable.
See https://en.wikipedia.org/wiki/Curse_of_dimensionality and https://en.wikipedia.org/wiki/Dimensionality_reduction for more.
Divide your space up into hypercubes -- call these cells -- with edge size chosen so that on average you'll have one point per cube. You'll want a map from hypercells to the set of points they contain.
Then, given a point, check its hypercell for other points. If it is empty, look at the adjacent hypercells (I'd recommend a literal hypercube of hypercells for simplicity rather than some approximation to a hypersphere built out of hypercells). Check that for other points. Keep repeating until you get a point. Assuming your points are randomly distributed, odds are high that you'll find a second point within 1-2 expansions.
Once you find a point, check all hypercells that could possibly contain a closer point. This is possible because the point you find may be in a corner, but there's some closer point outside of the hypercube containing all the hypercells you've inspected so far.

Powers of a half that sum to one [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
Call every subunitary ratio with its denominator a power of 2 a perplex.
Number 1 can be written in many ways as a sum of perplexes.
Call every sum of perplexes a zeta.
Two zetas are distinct if and only if one of the zeta has as least one perplex that the other does not have. In the image shown above, the last two zetas are considered to be the same.
Find all the numbers of ways 1 can be written as a zeta with N perplexes. Because this number can be big, calculate it modulo 100003.
Please don't post the code, but rather the algorithm. Be as precise as you can.
This problem was given at a contest and the official solution, written in the Romanian language, has been uploaded at https://www.dropbox.com/s/ulvp9of5b3bfgm0/1112_descr_P2_fractii2.docx?dl=0 , as a docx file. (you can use google translate)
I do not understand what the author of the solution meant to say there.
Well, this reminds me of BFS algorithms(Breadth first search), where you radiate out from a single point to find multiple solutions w/ different permutations.
Here you can use recursion, and set the base case as when N perplexes have been reached in that 1 call stack of the recursive function.
So you can say:
function(int N <-- perplexes, ArrayList<Double> currentNumbers, double dividedNum)
if N == 0, then you're done - enter the currentNumbers array into a hashtable
clone the currentNumbers ArrayList as cloneNumbers
remove dividedNum from cloneNumbers and add 2 dividedNum/2
iterate through index of cloneNumbers
for every number x in cloneNumbers, call function(N--, cloneNumbers, x)
This is a rough, very inefficient but short way to do it. There's obviously a lot of ways you can prune the algorithm(reduce the amount of duplicates going into the hashtable, prevent cloning as much as possible, etc), but because this shows the absolute permutation of every number, and then enters that sequence into a hashtable, the hashtable will use its equals() comparison to see that the sequence already exists(such as your last 2 zetas), and reject the duplicate. That way, you'll be left with the answer you want.
The efficiency of the current algorithm: O(|E|^(N)), where |E| is the absolute number of numbers you can have inside of the array at the end of all insertions, and N is the number of insertions(or as you said, # of perplexes). Obviously this isn't the most optimal speed, but it does definitely work.
Hope this helps!

Polynomial Regression - results accuracy between two algorithms [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 9 years ago.
Improve this question
I know that I can find a polynomial regression's coefficients doing (X'X)^-1 * X'y (where X' is the transpose, see Wikipedia for details).
This is a way of finding the coefficients; now, there is (as far as I know) at least one other way, which is by minimizing a cost function using gradient descent. The former method seems to be the easiest to implement ( I did it in C++, I have the latter in Matlab ).
What I wanted to know is the advantage of one of these methods over the other.
Upon a particular dataset, with very few points, I found that I couldn't find a satisfactory solution using (X'X)^-1 * X'y, but gradient descent worked fine and I could get an estimation function that made sense.
So what's wrong with the matrix resolution over gradient descent ? And how would one test a regression results, having all the details hidden from the user ?
Both methods are equivalent. Iterative method is much more computationally efficient thanks to lower storage and the avoidance of matrix inverse calculation. The method outweighs the closed form (matrix equation) methods especially when X is huge and sparse.
Make sure the row number of X is larger than the column number of X to avoid the underdetermined problem. Also check out the condition number of X'X to see if the problem is ill-posedness. If that is the case, you may add a small regularization factor in the closed form ((X'X + lambda * I)^(-1) * X'y) where lambda is a small value and I is the identity matrix.

Do we really have case in this algorithm [closed]

Closed. This question needs details or clarity. It is not currently accepting answers.
Want to improve this question? Add details and clarify the problem by editing this post.
Closed 9 years ago.
Improve this question
I am having trouble for solving the running time of the following algorithm
Now first my question, is the case really important here(I can not come up with 2 different inputs of the same size that are different from each other) ?
Second, I think this algorithm runs in O(n^2). Am I right?
The comment you wrote in #OBu's answer is about only a quarter right:
1*n + 2*(n-1) + 3*(n-2) + ... +n*1
That equals to:
Sum(i=1..n, i*(n-i+1)) = n*Sum(i) - Sum(i*i) + n = n*[n(n+1)/2] - [n(n+1)(2n+1)/6] + n
If you want, feel free to compute the exact formula, but the overall complexity is O(n^3).
As a rule of thumb (more like a back-of-the-envelope computation trick I've picked up... just to give you a quick idea): if you are unsure about algorithms with multiple for's (with different lengths, but all in relation with n, as you have above) try to compute how many operations are performed around the middle of the algorithm (n/2). This usually gives you an idea on how the running time complexity for the whole thing might looks like - you are basically computing the largest element in the sum, so the overall complexity is always >= than the thing you compute (in most cases it's the same though).
Just to give you some hints:
How many loops do you have and how are they nested?
How often is each loop running (start solving this from the outer to the inner loop)
If in doubt, try it with n=4 or 5 and calculate each step. After this, you'll have a good feeling for what's going on.

Is there some way to bruteforce a mathematical function? [closed]

Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 9 years ago.
Improve this question
I'm not sure if this is a stupid question but I couldn't really find anything on Google. Given a few data points for a function f(x) would it be possible to bruteforce what the function f(x) itself might be?
This will rely on some prior knowledge of f(x).
If you know that the function is constant, one point is enough; a line, then two points, etc. for polynomial functions.
But if you have no restrictions, this isn't possible. Assuming function here means something like a real-valued function on the real numbers, there are (uncountably) infinitely many functions which will take the specified values on any finite set of data points.
This is mostly math question. It depends on number of data points that are available. You are basically fitting data to a function. You need two data points for straight line, etc. The commercial solution is TableCurve 2D, http://en.wikipedia.org/wiki/TableCurve_2D. I would search for nonlinear fit on Google.
Fitting algorithms are also described in Numerical Recipes (http://en.wikipedia.org/wiki/Numerical_Recipes). The simplest algorithm would look for deviations between assumed function and data points. If you assume certain error on your data points, you can calculate chi-square and goodness of your fit.

Resources