fast multiplications - performance

When I am going to compute the following series 1+x+x^2+x^3+..., I would prefer to do like this: (1+x)(1+x^2)(1+x^4)... (which is like some sort of repeated squaring) so that the number of multiplications can be significantly reduced.
Now I want to compute the series 1+x/1!+(x^2)/2!+(x^3)/3!+..., how can I use the similar techniques to improve the number of multiplications?
Any suggestions are warmly welcome!

The method of optimization you refer, is probably Horner's method:
a + bx +cx^2 +dx^3 = ((c+dx)x + b)x + a
The alternating series A*(1-x)(1+x^2)(1-x^4)(1+x^8) ... OTOH is useful in calculating approximation for division of A/(1+x), where x is small.
The Taylor series sigma x^n/n! for exp(x) converges quite badly; other approximations are better suited to get accurate values; if there's a trick to make it with less multiplications, it is to iterate with a temporary value:
sum=1; temp=x; k=1;
// The sum after first iteration is (1+x) or 1+x^1/1!
for (i=1;i<=N;i++) { sum=sum+temp; k=k*(i+1); temp = temp * x / k; }
// or
prod=1.0; for (i=N;i>0;i--) prod = prod * x/(double)i + 1.0;
Multiplying the factorial should increase accuracy a bit -- in real life situation it's may be advisable to either combine temp=temp*x/(i+1) in order to be able to iterate much further, or to use a lookup table for the constant a_n / n!, as one typically needs just a few terms. (4 or 5 terms for sin/cos).
As it turned out, Horner's rule didn't have much role in the transformation of the geometric series Sigma x^n to product form. To calculate exponential, other powerful techniques have to be applied -- typically range reduction and rational (Pade), polynomial (chebyshev) approximations and such.

Converting comment to an answer:
Note that for first series, there is exact equivalence:
1+x+x^2+x^3+...+x^n = (1-x^(n+1))/(1-x)
Using it, you can compute it much, much faster.
Second one is convergence series for e^x, you might want to use standard math library functions pow(e, x) or exp(x) instead.

On your approach for the first series don't you think that using 1 + x(1+ x( 1+ x( 1+x)....)) would be a better approach. Similar approach can be applied for the second series. So 1 + x/1 ( 1+ x/2 (1 + x/3 * (1 + x/4(.....))))

Related

Math function with three variables (correlation)

I want to analyse some data in order to program a pricing algorithm.
Following dates are available:
I need a function/correlationfactor of the three variables/dimension which show the change of the Median (price) while the three dimensions (pers_capacity, amount of bedrooms, amount of bathrooms) grow.
e.g. Y(#pers_capacity,bedroom,bathroom) = ..
note:
- in the screenshot below are not all the data available (just a part of it)
- median => price per night
- yellow => #bathroom
e.g. For 2 persons, 2 bedrooms and 1 bathroom is the median price 187$ per night
Do you have some ideas how I can calculate the correlation/equation (f(..)=...) in order to get a reliable factor?
Kind regards
One typical approach would be formulating this as a linear model. Given three variables x, y and z which explain your observed values v, you assume v ≈ ax + by + cz + d and try to find a, b, c and d which match this as closely as possible, minimizing the squared error. This is called a linear least squares approximation. You can also refer to this Math SE post for one example of a specific linear least squares approximation.
If your your dataset is sufficiently large, you may consider more complicated formulas. Things like
v ≈
a1x2 +
a2y2 +
a3z2 +
a4xy +
a5xz +
a6yz +
a7x +
a8y +
a9z +
a10
The above is non-linear in the variables but still linear in the coefficients ai so it's still a linear least squares problem.
Or you could apply transformations to your variables, e.g.
v ≈
a1x +
a2y +
a3z +
a4exp(x) +
a5exp(y) +
a6exp(z) +
a7
Looking at the residual errors (i.e. difference between predicted and observed values) in any of these may indicate terms worth adding.
Personally I'd try all this in R, since computing linear models is just one line in that language, and visualizing data is fairly easy as well.

What is the most numerically precise method for dividing sums or differences?

Consider (a-b)/(c-d) operation, where a,b,c and d are floating-point numbers (namely, double type in C++). Both (a-b) and (c-d) are (sum-correction) pairs, as in Kahan summation algorithm. Briefly, the specific of these (sum-correction) pairs is that sum contains a large value relatively to what's in correction. More precisely, correction contains what didn't fit in sum during summation due to numerical limitations (53 bits of mantissa in double type).
What is the numerically most precise way to calculate (a-b)/(c-d) given the above speciality of the numbers?
Bonus question: it would be better to get the result also as (sum-correction), as in Kahan summation algorithm. So to find (e-f)=(a-b)/(c-d), rather than just e=(a-b)/(c-d) .
The div2 algorithm of Dekker (1971) is a good approach.
It requires a mul12(p,q) algorithm which can exactly computes a pair u+v = p*q. Dekker uses a method known as Veltkamp splitting, but if you have access to an fma function, then a much simpler method is
u = p*q
v = fma(p,q,-u)
the actual division then looks like (I've had to change some of the signs since Dekker uses additive pairs instead of subtractive):
r = a/c
u,v = mul12(r,c)
s = (a - u - v - b + r*d)/c
The the sum r+s is an accurate approximation to (a-b)/(c-d).
UPDATE: The subtraction and addition are assumed to be left-associative, i.e.
s = ((((a-u)-v)-b)+r*d)/c
This works because if we let rr be the error in the computation of r (i.e. r + rr = a/c exactly), then since u+v = r*c exactly, we have that rr*c = a-u-v exactly, so therefore (a-u-v-b)/c gives a fairly good approximation to the correction term of (a-b)/c.
The final r*d arises due to the following:
(a-b)/(c-d) = (a-b)/c * c/(c-d) = (a-b)/c *(1 + d/(c-d))
= [a-b + (a-b)/(c-d) * d]/c
Now r is also a fairly good initial approximation to (a-b)/(c-d) so we substitute that inside the [...], so we find that (a-u-v-b+r*d)/c is a good approximation to the correction term of (a-b)/(c-d)
For tiny corrections, maybe think of
(a - b) / (c - d) = a/b (1 - b/a) / (1 - c/d) ~ a/b (1 - b/a + c/d)

Can a Monte Carlo pi calculation be used for a world record?

I have this random function to calculate pi Monte Carlo style:
max=10000000;
format long;
in = 0;
tic
for k=1:max
x = rand();
y = rand();
if sqrt(x^2 + y^2) < 1
in = in + 1;
end
end
toc
calc_pi = 4*in/max
epsilon = abs(pi - calc_pi)
calcPi(100000000);
If I could iterate this 10e100 times, could this algorithm compete with the world record? If so, how can I find the number of iteration that will give the Nth digit?
This is a nice exercise for calculating pi, but it is probably a very inefficient one. Some remarks:
My statistics are rusty before I had my coffee, but I guess the error scales with 1 / sqrt(n_guess). To get N digits, you need an error of 10^(-N), so you would need roughly (10^N)^2 random guesses. If you would do 1e100 guesses, as you proposed, you would only get on the order of 50 digits of pi! The number of iteration is thus some exponentional function of the number of required digits, which is horribly slow. A good algorithm is maybe linear in the number of digits you want.
With the large number of guesses required, you have to start questioning the quality of your random number generator.
Your algorithm will be limited by floating-point errors to 1e-16 or so. Calculating digits of pi requires some sort of arbitrary precision number format.
To speed up your algorithm, you can leave out the sqrt().
Don't use a variable called max, this overwrites an existing function. Use n_guess or so.
Quick and dirty test to prove my theory (after coffee):
pie = #(n) 4 * nnz(rand(n,1).^2 + rand(n, 1).^2 < 1) / n;
ntrial = round(logspace(1, 8, 100));
pies = arrayfun(pie, ntrial);
loglog(ntrial, abs(pies - pi), '.k', ntrial, ntrial.^-.5, '--r')
xlabel('ntrials')
ylabel('epsilon')
legend('Monte Carlo', '1 / sqrt(ntrial)')
Short answer: no.
The world record is 1e13 digits, according to your link. If you could run the Monte Carlo algorithm to obtain 10e100 samples, you would obtain an estimate of pi with a relative RMS error of 1/sqrt(10e100) = .3e-50 (see below). This a precision of the order of the 50th digit only. Besides, it is only a "probabilistic" precision: you wouldn't be sure that the first 50 digits are correct; you could only tell that there would be a high probability of them being correct.
The general rule to find how many Monte Carlo samples you need for an N-digit precision is this: M Monte Carlo samples will give you a relative RMS precision of 1/sqrt(M). This means that the estimate deviates from the true value by a 1/sqrt(M) fraction of the true value, approximately. To be reasonably confident that the N-th digit is correct you need a relative RMS precision a little better than 10^-N, which according to the stated rule requires M = 10^(2N) samples.
Therefore, if you wanted a (probabilistic) precision of 1e13 digits you would need 10^2e13 Monte Carlo samples, which is unmanageable.

Efficient (fastest) way to sum elements of matrix in matlab

Lets have matrix A say A = magic(100);. I have seen 2 ways of computing sum of all elements of matrix A.
sumOfA = sum(sum(A));
Or
sumOfA = sum(A(:));
Is one of them faster (or better practise) then other? If so which one is it? Or are they both equally fast?
It seems that you can't make up your mind about whether performance or floating point accuracy is more important.
If floating point accuracy were of paramount accuracy, then you would segregate the positive and negative elements, sorting each segment. Then sum in order of increasing absolute value. Yeah, I know, its more work than anyone would do, and it probably will be a waste of time.
Instead, use adequate precision such that any errors made will be irrelevant. Use good numerical practices about tests, etc, such that there are no problems generated.
As far as the time goes, for an NxM array,
sum(A(:)) will require N*M-1 additions.
sum(sum(A)) will require (N-1)*M + M-1 = N*M-1 additions.
Either method requires the same number of adds, so for a large array, even if the interpreter is not smart enough to recognize that they are both the same op, who cares?
It is simply not an issue. Don't make a mountain out of a mole hill to worry about this.
Edit: in response to Amro's comment about the errors for one method over the other, there is little you can control. The additions will be done in a different order, but there is no assurance about which sequence will be better.
A = randn(1000);
format long g
The two solutions are quite close. In fact, compared to eps, the difference is barely significant.
sum(A(:))
ans =
945.760668102446
sum(sum(A))
ans =
945.760668102449
sum(sum(A)) - sum(A(:))
ans =
2.72848410531878e-12
eps(sum(A(:)))
ans =
1.13686837721616e-13
Suppose you choose the segregate and sort trick I mentioned. See that the negative and positive parts will be large enough that there will be a loss of precision.
sum(sort(A(A<0),'descend'))
ans =
-398276.24754782
sum(sort(A(A<0),'descend')) + sum(sort(A(A>=0),'ascend'))
ans =
945.7606681037
So you really would need to accumulate the pieces in a higher precision array anyway. We might try this:
[~,tags] = sort(abs(A(:)));
sum(A(tags))
ans =
945.760668102446
An interesting problem arises even in these tests. Will there be an issue because the tests are done on a random (normal) array? Essentially, we can view sum(A(:)) as a random walk, a drunkard's walk. But consider sum(sum(A)). Each element of sum(A) (i.e., the internal sum) is itself a sum of 1000 normal deviates. Look at a few of them:
sum(A)
ans =
Columns 1 through 6
-32.6319600960983 36.8984589766173 38.2749084367497 27.3297721091922 30.5600109446534 -59.039228262402
Columns 7 through 12
3.82231962760523 4.11017616179294 -68.1497901792032 35.4196443983385 7.05786623564426 -27.1215387236418
Columns 13 through 18
When we add them up, there will be a loss of precision. So potentially, the operation as sum(A(:)) might be slightly more accurate. Is it so? What if we use a higher precision for the accumulation? So first, I'll form the sum down the columns using doubles, then convert to 25 digits of decimal precision, and sum the rows. (I've displayed only 20 digits here, leaving 5 digits hidden as guard digits.)
sum(hpf(sum(A)))
ans =
945.76066810244807408
Or, instead, convert immediately to 25 digits of precision, then summing the result.
sum(hpf(A(:))
945.76066810244749807
So both forms in double precision were equally wrong here, in opposite directions. In the end, this is all moot, since any of the alternatives I've shown are far more time consuming compared to the simple variations sum(A(:)) or sum(sum(A)). Just pick one of them and don't worry.
Performance-wise, I'd say both are very similar (assuming a recent MATLAB version). Here is quick test using the TIMEIT function:
function sumTest()
M = randn(5000);
timeit( #() func1(M) )
timeit( #() func2(M) )
end
function v = func1(A)
v = sum(A(:));
end
function v = func2(A)
v = sum(sum(A));
end
the results were:
>> sumTest
ans =
0.0020917
ans =
0.0017159
What I would worry about is floating-point issues. Example:
>> M = randn(1000);
>> abs( sum(M(:)) - sum(sum(M)) )
ans =
3.9108e-11
Error magnitude increases for larger matrices
i think a simple way to understand is apply " tic_ toc "function in first and last of your code.
tic
A = randn(5000);
format long g
sum(A(:));
toc
but when you used randn function ,elements of it are random and time of calculation can
different in each cycle CPU calculation .
This better you used a unique matrix whit so large elements to compare time of calculation.

How to calculate the sum of two normal distributions

I have a value type that represents a gaussian distribution:
struct Gauss {
double mean;
double variance;
}
I would like to perform an integral over a series of these values:
Gauss eulerIntegrate(double dt, Gauss iv, Gauss[] values) {
Gauss r = iv;
foreach (Gauss v in values) {
r += v*dt;
}
return r;
}
My question is how to implement addition for these normal distributions.
The multiplication by a scalar (dt) seemed simple enough. But it wasn't simple! Thanks FOOSHNICK for the help:
public static Gauss operator * (Gauss g, double d) {
return new Gauss(g.mean * d, g.variance * d * d);
}
However, addition eludes me. I assume I can just add the means; it's the variance that's causing me trouble. Either of these definitions seems "logical" to me.
public static Gauss operator + (Gauss a, Gauss b) {
double mean = a.mean + b.mean;
// Is it this? (Yes, it is!)
return new Gauss(mean, a.variance + b.variance);
// Or this? (nope)
//return new Gauss(mean, Math.Max(a.variance, b.variance));
// Or how about this? (nope)
//return new Gauss(mean, (a.variance + b.variance)/2);
}
Can anyone help define a statistically correct - or at least "reasonable" - version of the + operator?
I suppose I could switch the code to use interval arithmetic instead, but I was hoping to stay in the world of prob and stats.
The sum of two normal distributions is itself a normal distribution:
N(mean1, variance1) + N(mean2, variance2) ~ N(mean1 + mean2, variance1 + variance2)
This is all on wikipedia page.
Be careful that these really are variances and not standard deviations.
// X + Y
public static Gauss operator + (Gauss a, Gauss b) {
//NOTE: this is valid if X,Y are independent normal random variables
return new Gauss(a.mean + b.mean, a.variance + b.variance);
}
// X*b
public static Gauss operator * (Gauss a, double b) {
return new Gauss(a.mean*b, a.variance*b*b);
}
To be more precise:
If a random variable Z is defined as the linear combination of two uncorrelated Gaussian random variables X and Y, then Z is itself a Gaussian random variable, e.g.:
if Z = aX + bY,
then mean(Z) = a * mean(X) + b * mean(Y), and variance(Z) = a2 * variance(X) + b2 * variance(Y).
If the random variables are correlated, then you have to account for that. Variance(X) is defined by the expected value E([X-mean(X)]2). Working this through for Z = aX + bY, we get:
variance(Z) = a2 * variance(X) + b2 * variance(Y) + 2ab * covariance(X,Y)
If you are summing two uncorrelated random variables which do not have Gaussian distributions, then the distribution of the sum is the convolution of the two component distributions.
If you are summing two correlated non-Gaussian random variables, you have to work through the appropriate integrals yourself.
Well, your multiplication by scalar is wrong - you should multiply variance by the square of d. If you're adding a constant, then just add it to the mean, the variance stays the same. If you're adding two distributions, then add the means and add the variances.
Can anyone help define a statistically correct - or at least "reasonable" - version of the + operator?
Arguably not, as adding two distributions means different things - having worked in reliability and maintainablity my first reaction from the title would be the distribution of a system's mtbf, if the mtbf of each part is normally distributed and the system had no redundancy. You are talking about the distribution of the sum of two normally distributed independent variates, not the (logical) sum of two normal distributions' effect. Very often, operator overloading has surprising semantics. I'd leave it as a function and call it 'normalSumDistribution' unless your code has a very specific target audience.
Hah, I thought you couldn't add gaussian distributions together, but you can!
http://mathworld.wolfram.com/NormalSumDistribution.html
In fact, the mean is the sum of the individual distributions, and the variance is the sum of the individual distributions.
I'm not sure that I like what you're calling "integration" over a series of values. Do you mean that word in a calculus sense? Are you trying to do numerical integration? There are other, better ways to do that. Yours doesn't look right to me, let alone optimal.
The Gaussian distribution is a nice, smooth function. I think a nice quadrature approach or Runge-Kutta would be a much better idea.
I would have thought it depends on what type of addition you are doing. If you just want to get a normal distribution with properties (mean, standard deviation etc.) equal to the sum of two distributions then the addition of the properties as given in the other answers is fine. This is the assumption used in something like PERT where if a large number of normal probability distributions are added up then the resulting probability distribution is another normal probability distribution.
The problem comes when the two distributions being added are not similar. Take for instance adding a probability distribution with a mean of 2 and standard deviation of 1 and a probability distribution of 10 with a standard deviation of 2. If you add these two distributions up, you get a probability distribution with two peaks, one at 2ish and one at 10ish. The result is therefore not a normal distibution. The assumption about adding distributions is only really valid if the original distributions are either very similar or you have a lot of original distributions so that the peaks and troughs can be evened out.

Resources