numbers = [1, 2, 3, 4, 5]
for num in numbers
puts "insert q "
qanswer1 = gets.chomp.to_i
puts "insert 2nd q"
qanswer2 = gets.chomp.to_i
end
This code will repeat the questions 5 times. How do I retrieve the user-inputted data? I'm trying to calculate the total sum of all 10 responses and the index in which the sum of each pair was the highest.
nbr_pairs = 5
def ask(str)
print "#{str}: "
gets.to_i
end
arr = nbr_pairs.times.map { [ask("insert q"), ask("insert 2nd q")] }
#=> [[7, 3], [8, 6], [2, 9], [4, 6], [8, 3]]
Sum of all 10 replies
arr.flatten.sum
#=> 56
Index of largest sum of pairs
nbr_pairs.times.max_by { |i| arr[i].sum }
#=> 1 (8+6 = 14)
See Integer#times, Array#flatten, Enumerable#max_by and Array#sum.
I tried to make a solution as close as possible to yours while still producing the desired results :
numbers = [0,1,2,3,4]
pairs = Array.new(numbers.size, [])
numbers.each do |number|
pairs[number] = []
puts "q 1:"
pairs[number] << gets.to_i
puts "q 2:"
pairs[number] << gets.to_i
end
To get the pair with the max value:
max_value = pairs.max_by(&:sum)
To get the sum of all pairs:
sum_of_all_responses = pairs.flatten.sum
To get the index of the pair with the highest value:
pairs.index(max_value)
If you don't need to store all the data, you could just do calculations on the fly.
First move the input request to a method which returns the pair of value n an array:
def ask
puts "insert q "
qanswer1 = gets.to_i
puts "insert 2nd q"
qanswer2 = gets.to_i
[qanswer1, qanswer2]
end
Then set up variables
big_sum = 0
best_input = 0
best_input_q_number = nil
Finally loop as you did doing the math:
numbers = [1,2,3,4,5]
for n in numbers
# (1..5).each do |n| # this is more Ruby-ish
p qanswers = ask # p for debug
qanswers_sum = qanswers.sum
big_sum += qanswers_sum
if qanswers_sum > best_input
best_input = qanswers_sum # or qanswers if you want to keep the pairs
best_input_q_number = n
end
end
Suppose I have an object x, and an array y=[x] which contains x. If I manipulate x, then y does not change:
x = 1 # => 1
y = [x] # => [1]
x = x+1 # => 2
x # => 2
y # => [1]
and if I change y, then x does not change.
x = 1 # => 1
y = [x] # => [1]
y.map!{|a| a+1} # => [2]
y # => [2]
x # => 1
Is there a way to have them change in parallel? It feels like when I map! over an array the underlying values should change.
first of all
x = x + 1
will create a new variable with an old name x
x = 1
y = [x]
x.object_id
# 3
y[0].object_id
# 3
x = x + 1
x.object_id
# 5
y[0].object_id
# 3
Second, numbers are immutable objects in Ruby (and Strings, for example, are mutable). So you just can't do what you want using number objects in Ruby. What you can do is slightly more obscure. You can create your own mutable object (container for a number) and use a reference to this object in your array.
class MutableNumber
attr_accessor :n
def initialize(n)
#n = n
end
end
x = MutableNumber.new(1)
y = [x]
y[0].n
#=> 1
x.n += 1
y[0].n
#=> 2
You can go little bit further and to add more magic here to mimic numbers
class MutableNumber
attr_accessor :n
def initialize(n)
#n = n
end
def method_missing(m, *args, &blk)
#n = #n.send(m, *args, &blk)
self
end
end
x = MutableNumber.new(1)
y = [x]
y[0].n
#=> 1
x += 1
y[0].n
#=> 2
But I would not encourage you to do any of this.
Just stick to the idea that numbers are immutable. And overall you should be careful with mutability.
map! is mutable for the array, not for its elements. It means that the array gets new values in place (i.e. it's assigned to original array). Elements inside the array are not mutated, but replaced by new elements.
If you want to change old values, you can iterate using each and call mutating methods on each element. You can see this with array of strings:
a = "a"; b = "b"; aa = [a, b]
#=> ["a", "b"]
aa.map!{|e| e.capitalize }
#=> ["A", "B"]
[a, b]
#=> ["a", "b"]
a = "a"; b = "b"; aa = [a, b]
#=> ["a", "b"]
aa.each{|e| e.capitalize! }
#=> ["A", "B"]
[a, b]
#=> ["A", "B"]
Note that it won't work for immutable objects and numbers are immutable, as #fl00r explained in his answer.
class Triplet
def initialize(array,sum)
#array = array.sort()
#array_size = array.size()
#sum = sum
#result = []
end
def get_triplet
#array[0..-3].each_with_index do |arr, ind|
pointer_one = ind + 1
pointer_two = #array_size - 1
while (pointer_one < pointer_two)
temp_sum = #array[pointer_one] + #array[pointer_two] + arr
if(temp_sum == #sum)
#result.push([#array[pointer_one], #array[pointer_two], arr])
elsif temp_sum < #sum
pointer_one = pointer_one +1
else
pointer_two = pointer_two -1
end
end
end
end
def get_result
#result.each do |res|
puts res
end
end
end
puts "Enter the array of numbers"
array = gets.chomp
array = array.split(' ')
array_integer = array.map{|a| a.to_i}
puts array_integer
puts "Enter the sum"
sum = gets.chomp
puts sum
t1 = Triplet.new(array_integer,sum.to_i)
t1.get_triplet
t1.get_result
Can anyone suggest me the fix so that it doesn't loop infinitly. It is program to find triplet in array whose sum is #sum. Its looping in get_triplet method. Initialize method sets the array,array size. get_triplet method should store all three number whose sum is #sum in result array.
Usually a tangle of code like this is a sign something's not right, and in this case the source of the problem is not knowing about the combination method. Here's a functionally equivalent solution:
def triplet(list, target)
list.combination(3).find do |a,b,c|
a + b + c == target
end
end
For example:
arr = [ 1, 2, 3, 4, 5, 6, 7, 8 ]
p triplet(arr, 6)
# => [1, 2, 3]
p triplet(arr, 4)
# => nil
p triplet(arr, 10)
# => [1, 2, 7]
The algorithm used in your code looks problematic, or at least implemented incorrectly, and is also strictly limited to triplets. This code is far more generic and uses a proven, tested algorithm, so it's probably better suited to solving your particular problem.
Maybe it's just my lack of abilities to find stuff here that is the problem, but I can't find anything about how to create multidimensional arrays in Ruby.
Could someone please give me an example on how to do it?
Strictly speaking it is not possible to create multi dimensional arrays in Ruby. But it is possible to put an array in another array, which is almost the same as a multi dimensional array.
This is how you could create a 2D array in Ruby:
a = [[1,2,3], [4,5,6], [7,8,9]]
As stated in the comments, you could also use NArray which is a Ruby numerical array library:
require 'narray'
b = NArray[ [1,2,3], [4,5,6], [7,8,9] ]
Use a[i][j] to access the elements of the array. Basically a[i] returns the 'sub array' stored on position i of a and thus a[i][j] returns element number j from the array that is stored on position i.
you can pass a block to Array.new
Array.new(n) {Array.new(n,default_value)}
the value that returns the block will be the value of each index of the first array,
so..
Array.new(2) {Array.new(2,5)} #=> [[5,5],[5,5]]
and you can access this array using array[x][y]
also for second Array instantiation, you can pass a block as default value too. so
Array.new(2) { Array.new(3) { |index| index ** 2} } #=> [[0, 1, 4], [0, 1, 4]]
Just a clarification:
arr = Array.new(2) {Array.new(2,5)} #=> [[5,5],[5,5]]
is not at all the same as:
arr = Array.new(2, Array.new(2, 5))
in the later case, try:
arr[0][0] = 99
and this is what you got:
[[99,5], [99,5]]
There are two ways to initialize multi array (size of 2).
All the another answers show examples with a default value.
Declare each of sub-array (you can do it in a runtime):
multi = []
multi[0] = []
multi[1] = []
or declare size of a parent array when initializing:
multi = Array.new(2) { Array.new }
Usage example:
multi[0][0] = 'a'
multi[0][1] = 'b'
multi[1][0] = 'c'
multi[1][1] = 'd'
p multi # [["a", "b"], ["c", "d"]]
p multi[1][0] # "c"
So you can wrap the first way and use it like this:
#multi = []
def multi(x, y, value)
#multi[x] ||= []
#multi[x][y] = value
end
multi(0, 0, 'a')
multi(0, 1, 'b')
multi(1, 0, 'c')
multi(1, 1, 'd')
p #multi # [["a", "b"], ["c", "d"]]
p #multi[1][0] # "c"
The method given above don't works.
n = 10
arr = Array.new(n, Array.new(n, Array.new(n,0.0)))
arr[0][1][2] += 1
puts arr[0][2][2]
is equivalent to
n = 10
a = Array.new(n,0.0)
b = Array.new(n,a)
arr = Array.new(n, b)
arr[0][1][2] += 1
puts arr[0][2][2]
and will print 1.0, not 0.0, because we are modifiyng array a and printing the element of array a.
Actually this is much quicker than the block method given above:
arr = Array.new(n, Array.new(n, Array.new(n,0.0)))
arr[0][1][2] += 1
I had to reproduce PHP-style multidimensional array in Ruby recently. Here is what I did:
# Produce PHP-style multidimensional array.
#
# Example
#
# arr = Marray.new
#
# arr[1][2][3] = "foo"
# => "foo"
#
# arr[1][2][3]
# => "foo"
class Marray < Array
def [](i)
super.nil? ? self[i] = Marray.new : super
end
end
Perhaps you can simulate your multidimensional Array with a Hash. The Hash-key can by any Ruby object, so you could also take an array.
Example:
marray = {}
p marray[[1,2]] #-> nil
marray[[1,2]] = :a
p marray[[1,2]] #-> :a
Based on this idea you could define a new class.
Just a quick scenario:
=begin rdoc
Define a multidimensional array.
The keys must be Fixnum.
The following features from Array are not supported:
* negative keys (Like Array[-1])
* No methods <<, each, ...
=end
class MArray
INFINITY = Float::INFINITY
=begin rdoc
=end
def initialize(dimensions=2, *limits)
#dimensions = dimensions
raise ArgumentError if limits.size > dimensions
#limits = []
0.upto(#dimensions-1){|i|
#limits << (limits[i] || INFINITY)
}
#content = {}
end
attr_reader :dimensions
attr_reader :limits
=begin rdoc
=end
def checkkeys(keys)
raise ArgumentError, "Additional key values for %i-dimensional Array" % #dimensions if keys.size > #dimensions
raise ArgumentError, "Missing key values for %i-dimensional Array" % #dimensions if keys.size != #dimensions
raise ArgumentError, "No keys given" if keys.size == 0
keys.each_with_index{|key,i|
raise ArgumentError, "Exceeded limit for %i dimension" % (i+1) if key > #limits[i]
raise ArgumentError, "Only positive numbers allowed" if key < 1
}
end
def[]=(*keys)
data = keys.pop
checkkeys(keys)
#content[keys] = data
end
def[](*keys)
checkkeys(keys)
#content[keys]
end
end
This can be used as:
arr = MArray.new()
arr[1,1] = 3
arr[2,2] = 3
If you need a predefined matrix 2x2 you can use it as:
arr = MArray.new(2,2,2)
arr[1,1] = 3
arr[2,2] = 3
#~ arr[3,2] = 3 #Exceeded limit for 1 dimension (ArgumentError)
I could imagine how to handle commands like << or each in a two-dimensional array, but not in multidimensional ones.
It might help to remember that the array is an object in ruby, and objects are not (by default) created simply by naming them or naming a the object reference. Here is a routine for creating a 3 dimension array and dumping it to the screen for verification:
def Create3DimensionArray(x, y, z, default)
n = 0 # verification code only
ar = Array.new(x)
for i in 0...x
ar[i] = Array.new(y)
for j in 0...y
ar[i][j] = Array.new(z, default)
for k in 0...z # verification code only
ar[i][j][k] = n # verification code only
n += 1 # verification code only
end # verification code only
end
end
return ar
end
# Create sample and verify
ar = Create3DimensionArray(3, 7, 10, 0)
for x in ar
puts "||"
for y in x
puts "|"
for z in y
printf "%d ", z
end
end
end
Here is an implementation of a 3D array class in ruby, in this case the default value is 0
class Array3
def initialize
#store = [[[]]]
end
def [](a,b,c)
if #store[a]==nil ||
#store[a][b]==nil ||
#store[a][b][c]==nil
return 0
else
return #store[a][b][c]
end
end
def []=(a,b,c,x)
#store[a] = [[]] if #store[a]==nil
#store[a][b] = [] if #store[a][b]==nil
#store[a][b][c] = x
end
end
array = Array3.new
array[1,2,3] = 4
puts array[1,2,3] # => 4
puts array[1,1,1] # => 0
m = /(.)(.)(\d+)(\d)/.match("THX1138.")
puts m[0]
c = m.captures #=> HX1138
puts c[0] #=> H
puts m.begin(0) #=> 1
puts c[1] #=> X
puts m.begin(1) #=> 1
puts c[2] #=> 113
puts m.begin(2) #=> 2
I was expecting m.begin(1) to return 2 since X is two elements after the beginning of string.
I am reading the book well grounded rubyist which says
To get the information for capture n,
you provide n as the argument to begin
and/or end.
Similarly I was expecing m.begin(2) to rerturn 3.
Read carefully:
Returns the offset of the start of the nth element of the match array in the string.
So the match array is actually [HX1138,H,X,113,8]
SO
m.begin(0) => offset of HX1138 => 1 in "THX1138"
m.begin(1) => offset of H => 1 in "THX1138"
m.begin(2) => offset of X => 2 in "THX1138"