I'm looking for optimal way to search through millions of records that contain serial number saved as varchar column which ends with specified string key.
I was using EndsWith, however performance is rather poor if several queries are sent.
Is there a better way to do it?
EDIT:
Since search key is of variable length, I can't create column that holds cut-off value of serial number. However, I've done some tests with using Substring and Equals vs EndsWith and I've lowered down execution speed to 40% of the one of EndsWith.
I'm still looking for better solution though :)
Unfortunately, searching for strings ending with a particular pattern is difficult on most databases+, because searching for string suffixes cannot use an index. This results in full table scans, which may be slow on tables with millions of rows.
If your database supports reverse indexes, add one for your string key column; otherwise, you can improve performance by simulating reverse indexes:
Add a column for storing your string key in reverse
If your RDBMS supports computed columns, add one for the reversed key
Otherwise, define a trigger that populates the reversed column from the key column
Create an index on the reversed column
Use the reversed column for your searches by passing in the reversed suffix that you are looking for.
For example, if you have data like this
key
-----------
01-02-3-xyz
07-12-8-abc
then the augmented table would have
key rev_key
----------- -----------
01-02-3-xyz zyx-3-20-10
07-12-8-abc cba-8-21-70
and your search for ENDS_WITH(key, '3-xyz') would ask for STARTS_WITH(rev_key, 'zyx-3'). Since string indexes speed up lookups by prefix, the "starts with" lookup would go much faster.
+ One notable exception is Oracle, which provides reverse key indexes specifically for situations like this.
Related
I'm trying to understand the sorting algorithm behind SQL ORDER BY clauses in the case that the properties are indexed.
Secondary indices are usually implemented as B+ Trees with a combined key, consisting of the indexed value and the associated primary key. For example, an index on first name may look like this:
Key
Value
John.id4
null
John.id5
null
Jane.id16
null
...
....
The task that sorting needs to perform is: given a set of IDs and a list of sort commands (consisting of column and ASC/DESC), sort the IDs.
If we only want to sort by a single column (e.g. ORDER BY FirstName), the algorithm is easy:
Iterate over the secondary index.
If the ID part of the Key occurs in the input set, remove it from the set and add it to the (sorted) output list
Stop if the input set becomes empty or the index has reached its end, whichever occurs first
Return the output list.
But how does the same thing work if we have multiple sortings? For example, the clause ORDER BY FirstName ASC LastName ASC? The main issue is of course that we cannot simply tie-break between two IDs simply by looking them up in the second index, because it's sorted by index value, not by primary key. We will have to minimize the number of scans per index as much as possible.
How do big databases, such as PostGreSQL or MySQL solve this issue?
I'm writing a script which supposed to merge some data from sql-based db. Each row has a long-integer as a primary key (incremental). I was thinking about hashing these ids so that they'll somehow 'look' like the other ids already in my RethinkDB table. What I'm trying to achive here is to avoid dups in case of an attempt to merge the same data again, but keeping the original integers as ids along with the generated ids of the data saved directly to RethinkDB's table feels weird.
Can I do that?
How does RethinkDB generate auto ids anyways?
And am I approaching this correctly..?
RethinkDB uses a string-encoding of 128 bit UUIDs (basically hashed integers).
The string format looks like this: "HHHHHHHH-HHHH-HHHH-HHHH-HHHHHHHHHHHH" where every 'H' is a hexadecimal digit of the 128 bit integer. The characters 0-9 and a-f (lower case) are used.
If you want to generate such UUIDs from an existing integer, I recommend hashing the integer first. This will give you an even distribution over the whole key space (this makes sharding easier and avoids hotspots).
As a second step you have to format the hash value in a string of the format shown above. If you don't have enough digits, it's fine to leave some of the last 'H' as constant 0.
If you really want to go into the details of UUID generation, here are two links for further reading:
RFC 4122 "A Universally Unique IDentifier (UUID) URN Namespace" https://www.rfc-editor.org/rfc/rfc4122
RethinkDB's implementation of UUID generation and formatting https://github.com/rethinkdb/rethinkdb/blob/next/src/containers/uuid.cc
I've been doing a lot of reading lately on Cassandra, and specifically how to structure rows to take advantage of indexing/sorting, but there is one thing I am still unclear on; how many "index" items (or filters if you will) should you include in a column family (CF) row?
Specifically: I am building an app and will be using Cassandra to archive log data, which I will use for analytics.
Example types of analytic searches will include (by date range):
total visits to specific site section
total visits by Country
traffic source
I plan to store the whole log object in JSON format, but to avoid having to go through each item to get basic data, or to create multiple CF just to get basic data, I am curious to know if it's a good idea to include these above "filters" as columns (compound column segment)?
Example:
Row Key | timeUUID:data | timeUUID:country | timeUUID:source |
======================================================
timeUUID:section | JSON Object | USA | example.com |
So as you can see from the structure, the row key would be a compound key of timeUUID (say per day) plus the site section I want to get stats for. This lets me query a date range quite easily.
Next, my dilemma, the columns. Compound column name with timeUUID lets me sort & do a time based slice, but does the concept make sense?
Is this type of structure acceptable by the current "best practice", or would it be frowned upon? Would it be advisable to create a separate "index" CF for each metric I want to query on? (even when it's as simple as this?)
I would rather get this right the first time instead of having to restructure the data and refactor my application code later.
I think the idea behind this is OK. It's a pretty common way of doing timeslicing (assuming I've understood your schema anyway - a create table snippet would be great). Some minor tweaks ...
You don't need a timeUUID as your row key. Given that you suggest partitioning by individual days (which are inherently unique) you don't need a UUID aspect. A timestamp is probably fine, or even simpler a varchar in the format YYYYMMDD (or whatever arrangement you prefer).
You will probably also want to swap your row key composition around to section:time. The reason for this is that if you need to specify an IN clause (i.e. to grab multiple days) you can only do it on the last part of the key. This means you can do WHERE section = 'foo' and time IN (....). I imagine that's a more common use case - but the decision is obviously yours.
If your common case is querying the most recent data don't forget to cluster your timeUUID columns in descending order. This keeps the hot columns at the head.
Double storing content is fine (i.e. once for the JSON payload, and denormalised again for data you need to query). Storage is cheap.
I don't think you need indexes, but it depends on the queries you intend to run. If your queries are simple then you may want to store counters by (date:parameter) instead of values and just increment them as data comes in.
I have a course search engine and when I try to do a search, it takes too long to show search results. You can try to do a search here
http://76.12.87.164/cpd/testperformance.cfm
At that page you can also see the database tables and indexes, if any.
I'm not using Stored Procedures - the queries are inline using Coldfusion.
I think I need to create some indexes but I'm not sure what kind (clustered, non-clustered) and on what columns.
Thanks
You need to create indexes on columns that appear in your WHERE clauses. There are a few exceptions to that rule:
If the column only has one or two unique values (the canonical example of this is "gender" - with only "Male" and "Female" the possible values, there is no point to an index here). Generally, you want an index that will be able to restrict the rows that need to be processed by a significant number (for example, an index that only reduces the search space by 50% is not worth it, but one that reduces it by 99% is).
If you are search for x LIKE '%something' then there is no point for an index. If you think of an index as specifying a particular order for rows, then sorting by x if you're searching for "%something" is useless: you're going to have to scan all rows anyway.
So let's take a look at the case where you're searching for "keyword 'accounting'". According to your result page, the SQL that this generates is:
SELECT
*
FROM (
SELECT TOP 10
ROW_NUMBER() OVER (ORDER BY sq.name) AS Row,
sq.*
FROM (
SELECT
c.*,
p.providername,
p.school,
p.website,
p.type
FROM
cpd_COURSES c, cpd_PROVIDERS p
WHERE
c.providerid = p.providerid AND
c.activatedYN = 'Y' AND
(
c.name like '%accounting%' OR
c.title like '%accounting%' OR
c.keywords like '%accounting%'
)
) sq
) AS temp
WHERE
Row >= 1 AND Row <= 10
In this case, I will assume that cpd_COURSES.providerid is a foreign key to cpd_PROVIDERS.providerid in which case you don't need an index, because it'll already have one.
Additionally, the activatedYN column is a T/F column and (according to my rule above about restricting the possible values by only 50%) a T/F column should not be indexed, either.
Finally, because searching with a x LIKE '%accounting%' query, you don't need an index on name, title or keywords either - because it would never be used.
So the main thing you need to do in this case is make sure that cpd_COURSES.providerid actually is a foreign key for cpd_PROVIDERS.providerid.
SQL Server Specific
Because you're using SQL Server, the Management Studio has a number of tools to help you decide where you need to put indexes. If you use the "Index Tuning Wizard" it is actually usually pretty good at tell you what will give you the good performance improvements. You just cut'n'paste your query into it, and it'll come back with recommendations for indexes to add.
You still need to be a little bit careful with the indexes that you add, because the more indexes you have, the slower INSERTs and UPDATEs will be. So sometimes you'll need to consolidate indexes, or just ignore them altogether if they don't give enough of a performance benefit. Some judgement is required.
Is this the real live database data? 52,000 records is a very small table, relatively speaking, for what SQL 2005 can deal with.
I wonder how much RAM is allocated to the SQL server, or what sort of disk the database is on. An IDE or even SATA hard disk can't give the same performance as a 15K RPM SAS disk, and it would be nice if there was sufficient RAM to cache the bulk of the frequently accessed data.
Having said all that, I feel the " (c.name like '%accounting%' OR c.title like '%accounting%' OR c.keywords like '%accounting%') " clause is problematic.
Could you create a separate Course_Keywords table, with two columns "courseid" and "keyword" (varchar(24) should be sufficient for the longest keyword?), with a composite clustered index on courseid+keyword
Then, to make the UI even more friendly, use AJAX to apply keyword validation & auto-completion when people type words into the keywords input field. This gives you the behind-the-scenes benefit of having an exact keyword to search for, removing the need for pattern-matching with the LIKE operator...
Using CF9? Try using Solr full text search instead of %xxx%?
You'll want to create indexes on the fields you search by. An index is a secondary list of your records presorted by the indexed fields.
Think of an old-fashioned printed yellow pages - if you want to look up a person by their last name, the phonebook is already sorted in that way - Last Name is the clustered index field. If you wanted to find phone numbers for people named Jennifer or the person with the phone number 867-5309, you'd have to search through every entry and it would take a long time. If there were an index in the back with all the phone numbers or first names listed in order along with the page in the phonebook that the person is listed, it would be a lot faster. These would be the unclustered indexes.
I would try changing your IN statements to an EXISTS query to see if you get better performance on the Zip code lookup. My experience is that IN statements work great for small lists but the larger they get, you get better performance out of EXISTS as the query engine will stop searching for a specific value the first instance it runs into.
<CFIF zipcodes is not "">
EXISTS (
SELECT zipcode
FROM cpd_CODES_ZIPCODES
WHERE zipcode = p.zipcode
AND 3963 * (ACOS((SIN(#getzipcodeinfo.latitude#/57.2958) * SIN(latitude/57.2958)) +
(COS(#getzipcodeinfo.latitude#/57.2958) * COS(latitude/57.2958) *
COS(longitude/57.2958 - #getzipcodeinfo.longitude#/57.2958)))) <= #radius#
)
</CFIF>
just wondering does anyone in here have good idea about generating nice order id?
for example
832-28-394, which show a quite nice and formal order id (rather than just use an database auto increment number like ID=35).
the order id need to look random so it can not be able to guess by user.
e.g. 832-28-395 (shoudnt exist) so there will always some gap between each id.
just like the account number for your bank card?
Cheers
If you are using .NET you can use System.Guid.NewGuid()
The auto-incremented IDs are stored as integer or long integer data. One of the reasons for this is that this format is compact, saving space, including in indexes which are typically inclusive a primary key for use with joins and such.
If you wish to create a nice looking id following a particular format syntax, you'll need to manage the generation of the IDs yourself, and store these in a "regular" column not one that is auto-incremented.
I suggest you keep using "ugly looking" ids, be they auto-incremented or not, and format these value for display purposes only, using whatever format you may desire, including some format that use the values from several columns. Depending on the database system you are using you may be able to declare custom functions, at the level of the database itself, allowing you to obtain the readily formatted value with a simple query (as in
SELECT MakeAFancyId(id_field), some_other_columns, ..
FROM ...
If you cannot use some built-in or custom function at the level of SQL, you'll need to format the value supplied by SQL (an integer of sorts), into the desired format, on the client-side, using the language associated with your UI / presentation framework.
I'd create something where the first eight numbers are loosely in a pattern, and a third quartet looks random but is really a sort of checksum.
So, for example, the first eight digits increment based on the current seconds on the server clock.
The last four could be something like the sum of the first four, plus twice the sum of the second four, which will give either a two or three digit number. The final digit is calculated so that the sum of all 11 digits plus this last one is a multiple of 9.
This is slightly akin to how barcode numbers are verified. You can format the resulting 12 digits any way you want, although it is the first eight that are unique here.
Hash the clock time.
Mod by 100,000 or something.
Format with hyphens.
Check for duplicates. If found, restart.
I would suggest using a autoincrement ID in the database to link tables and as a primary key. Integer fields are always faster than string fields for indexing and well as searching.
You can have the order number field (which is for display) as a different field in the order table which will be used to display. And whenever you are planning to send a URl to a user or display a URL to the user which has order ID (which is a autoincremented number) you can encrypt it with some algorithm.
Both your purpose will be solved.
But I suggest not to make string as primary key. Though you can have a unique constraint on the order number which is going to be displayed.
Hope this helps.
Kalpak Luniya
I would suggest internally you keep the database derived primary key, which is auto-incremented.
For the visible order number, you will probably need a longer length than 8 characters, if you are using this for security.
If you are using Ruby, look at SecureRandom, which will generate sufficiently random strings to accomodate this. For example, you can use SecureRandom.hex(16), and it will give you a 16 digit hex number. I believe it can also give you base 64 strings, which will look weirder but be shorter.
Make sure this is not your only security on an order, as it may not be that hard to find a valid order number within your 8 digit code, especially if some are some sort of checksum.
For security reasons i suggest that you should use Criptographicaly secure random number generator. Think about idea on icreasing User Id length -if you have 1 million users then the probability to gues User ID in first try is 0.01 and 67 tries to increase probability over 0.5