Sorting in linear time and in place - algorithm

Suppose that n records have keys in the range from 1 to k.
Write an algorithm to sort the records in place in O(n+k) time.
You may use O(k) storage outside the input array.
Is your algorithm stable?
if we use counting sort to we can do it in O(n+k) time and is stable but its not in place.
if k=2 it can be done in place but its not stable (using two variables to maintain the indexes in the array for k=0 and k=1)
but for k>2 i couldnt think of any good algo

First, let's rehash how counting sort works:
Count how often every key exists in the array to be sorted. These counts are written to an array of size k.
Compute the partial sums of the key counts. This gives the starting position for every bin of equal keys in the sorted array.
Move the items in the array to their final position incrementing the starting position of the corresponding bin for every item.
Now the question is how to perform the final step in-place. The standard approach for an in-place permutation is to select the first element and swap it with the element that takes its correct position. This step is repeated with the swapped element until we hit a element that belongs in the first position (a cycle has been completed). Then the whole procedure is repeated for the elements at the second, third, etc. position until the whole array has been processed.
The problem with counting sort is that the final positions are not readily available but are computed by incrementing every bin's starting position in the final loop. In order to never increment the starting position twice for an element, we have to find a way to determine if an element at a certain position has been moved there already. This can be done by keeping track of the original starting position for every bin. If an element lies between the original starting position and the position for the next element of a bin, it has been already touched.
Here's an implementation in C99 that runs in O(n+k) and requires only two arrays of size k as extra storage. The final permutation step is not stable.
#include <stdlib.h>
void in_place_counting_sort(int *a, int n, int k)
{
int *start = (int *)calloc(k + 1, sizeof(int));
int *end = (int *)malloc(k * sizeof(int));
// Count.
for (int i = 0; i < n; ++i) {
++start[a[i]];
}
// Compute partial sums.
for (int bin = 0, sum = 0; bin < k; ++bin) {
int tmp = start[bin];
start[bin] = sum;
end[bin] = sum;
sum += tmp;
}
start[k] = n;
// Move elements.
for (int i = 0, cur_bin = 0; i < n; ++i) {
while (i >= start[cur_bin+1]) { ++cur_bin; }
if (i < end[cur_bin]) {
// Element has already been processed.
continue;
}
int bin = a[i];
while (bin != cur_bin) {
int j = end[bin]++;
// Swap bin and a[j]
int tmp = a[j];
a[j] = bin;
bin = tmp;
}
a[i] = bin;
++end[cur_bin];
}
free(start);
free(end);
}
Edit: Here's another version using only a single array of size k based on Mohit Bhura's approach.
#include <stdlib.h>
void in_place_counting_sort(int *a, int n, int k)
{
int *counts = (int *)calloc(k, sizeof(int));
// Count.
for (int i = 0; i < n; ++i) {
++counts[a[i]];
}
// Compute partial sums.
for (int val = 0, sum = 0; val < k; ++val) {
int tmp = counts[val];
counts[val] = sum;
sum += tmp;
}
// Move elements.
for (int i = n - 1; i >= 0; --i) {
int val = a[i];
int j = counts[val];
if (j < i) {
// Process a fresh cycle. Since the index 'i' moves
// downward and the counts move upward, it is
// guaranteed that a value is never moved twice.
do {
++counts[val];
// Swap val and a[j].
int tmp = val;
val = a[j];
a[j] = tmp;
j = counts[val];
} while (j < i);
// Move final value into place.
a[i] = val;
}
}
free(counts);
}

Here is my code that runs in O(n+k) time and uses only 1 extra array of size k ( apart from the main array of size n)
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int main(int argc, char const *argv[])
{
int n = atoi(argv[1]);
int k = atoi(argv[2]);
printf("%d\t%d",n,k);
int *a,*c;
int num,index,tmp,i;
a = (int*)malloc(n*sizeof(int));
c = (int*)calloc(k,sizeof(int));
srand(time(NULL));
for(i=0;i<n;i++)
{
num = (rand() % (k));
a[i] = num;
c[num]++;
}
printf("\n\nArray is : \n");
for(i=0;i<n;i++)
{
printf("\t%d",a[i]);
if(i%8==7)
printf("\n");
}
printf("\n\nCount Array is : \n");
for(i=0;i<k;i++)
{
printf("\t%d(%d)",c[i],i);
if(i%8==7)
printf("\n");
}
//Indexing count Array
c[0]--;
for(i=1;i<k;i++)
{
c[i] = c[i-1] + c[i];
}
printf("\n\nCount Array After Indexing is : \n");
for(i=0;i<k;i++)
{
printf("\t%d(%d)",c[i],i);
if(i%8==7)
printf("\n");
}
// Swapping Elements in Array
for(i=0;i<n;i++)
{
index = c[a[i]];
//printf("\na[%d] = %d, going to position %d",i,a[i],index);
c[a[i]]--;
if(index > i)
{
tmp = a[i];
a[i] = a[index];
a[index] = tmp;
i--;
}
}
printf("\n\n\tFinal Sorted Array is : \n\n");
for(i=0;i<n;i++)
{
printf("\t%d",a[i]);
if(i%8==7)
printf("\n");
}
printf("\n\n");
return 0;
}
Even this algo is not stable. All elements are in their reverse order.
P.s : keys are in the range 0 to (k-1)

An example for integer valued sequences. The sort is unstable. While it is not as concise as the answer provided by Mohit it is marginally faster (for the common case where k << n) by skipping elements already in their correct bins (time is asymptotically the same). In practice I prefer Mohit's sort for its tighter, simpler loop.
def sort_inplace(seq):
min_ = min(seq)
max_ = max(seq)
k = max_ - min_ + 1
stop = [0] * k
for i in seq:
stop[i - min_] += 1
for j in range(1, k):
stop[j] += stop[j - 1]
insert = [0] + stop[:k - 1]
for j in range(k):
while insert[j] < stop[j] and seq[insert[j]] == j + min_:
insert[j] += 1
tmp = None
for j in range(k):
while insert[j] < stop[j]:
tmp, seq[insert[j]] = seq[insert[j]], tmp
while tmp is not None:
bin_ = tmp - min_
tmp, seq[insert[bin_]] = seq[insert[bin_]], tmp
while insert[bin_] < stop[bin_] and seq[insert[bin_]] == bin_ + min_:
insert[bin_] += 1
With a tighter loop but still skipping already-relocated elements:
def dave_sort(seq):
min_ = min(seq)
max_ = max(seq)
k = max_ - min_ + 1
stop = [0] * k
for i in seq:
stop[i - min_] += 1
for i in range(1, k):
stop[i] += stop[i-1]
insert = [0] + stop[:k - 1]
for meh in range(0, k - 1):
i = insert[meh]
while i < stop[meh]:
bin_ = seq[i] - min_
if insert[bin_] > i:
tmp = seq[insert[bin_]]
seq[insert[bin_]] = seq[i]
seq[i] = tmp
insert[bin_] += 1
else:
i += 1
Edit: Mohit's approach in Python with extra bits to verify the effect on stability of the sort.
from collections import namedtuple
from random import randrange
KV = namedtuple("KV", "k v")
def mohit_sort(seq, key):
f = lambda v: getattr(v, key)
keys = map(f, seq)
min_ = min(keys)
max_ = max(keys)
k = max_ - min_ + 1
insert = [0] * k
for i in keys:
insert[i - min_] += 1
insert[0] -= 1
for i in range(1, k):
insert[i] += insert[i-1]
i = 0
n = len(seq)
while i < n:
bin_ = f(seq[i])
if insert[bin_] > i:
seq[i], seq[insert[bin_]] = seq[insert[bin_]], seq[i]
i -= 1
insert[bin_] -= 1
i += 1
def test(n, k):
seq = []
vals = [0] * k
for _ in range(n):
key = randrange(k)
seq.append(KV(key, vals[key]))
vals[key] += 1
print(seq)
mohit_sort(seq, "k")
print(seq)
if __name__ == "__main__":
test(20, 3)

I really don't know why all the source codes posted here are so unnecessarily compilcated.
Here is a python solution:
def inplaceCtsort(A):
b, e = min(A), max(A)
nelems = e - b + 1
CtsBeforeOrIn = [0]*nelems
for i in A:
CtsBeforeOrIn[i-b] += 1
for i in range(1, nelems):
CtsBeforeOrIn[i] += CtsBeforeOrIn[i-1]
for i in range(0, len(A)):
while i < CtsBeforeOrIn[A[i]-b] - 1:
validPosition = CtsBeforeOrIn[A[i]-b] - 1
A[i], A[validPosition] = A[validPosition], A[i]
CtsBeforeOrIn[A[i]-b] -= 1

Related

Dynamic Programming Coin Change Limited Coins

Dynamic Programming Change Problem (Limited Coins).
I'm trying to create a program that takes as INPUT:
int coinValues[]; //e.g [coin1,coin2,coin3]
int coinLimit[]; //e.g [2 coin1 available,1 coin2 available,...]
int amount; //the amount we want change for.
OUTPUT:
int DynProg[]; //of size amount+1.
And output should be an Array of size amount+1 of which each cell represents the optimal number of coins we need to give change for the amount of the cell's index.
EXAMPLE: Let's say that we have the cell of Array at index: 5 with a content of 2.
This means that in order to give change for the amount of 5(INDEX), you need 2(cell's content) coins (Optimal Solution).
Basically I need exactly the output of the first array of this video(C[p])
. It's exactly the same problem with the big DIFFERENCE of LIMITED COINS.
Link to Video.
Note: See the video to understand, ignore the 2nd array of the video, and have in mind that I don't need the combinations, but the DP array, so then I can find which coins to give as change.
Thank you.
Consider the next pseudocode:
for every coin nominal v = coinValues[i]:
loop coinLimit[i] times:
starting with k=0 entry, check for non-zero C[k]:
if C[k]+1 < C[k+v] then
replace C[k+v] with C[k]+1 and set S[k+v]=v
Is it clear?
O(nk) solution from an editorial I wrote a while ago:
We start with the basic DP solution that runs in O(k*sum(c)). We have our dp array, where dp[i][j] stores the least possible number of coins from the first i denominations that sum to j. We have the following transition: dp[i][j] = min(dp[i - 1][j - cnt * value[i]] + cnt) for cnt from 0 to j / value[i].
To optimize this to an O(nk) solution, we can use a deque to memorize the minimum values from the previous iteration and make the transitions O(1). The basic idea is that if we want to find the minimum of the last m values in some array, we can maintain an increasing deque that stores possible candidates for the minimum. At each step, we pop off values at the end of the deque greater than the current value before pushing the current value into the back deque. Since the current value is both further to the right and less than the values we popped off, we can be sure they will never be the minimum. Then, we pop off the first element in the deque if it is more than m elements away. The minimum value at each step is now simply the first element in the deque.
We can apply a similar optimization trick to this problem. For each coin type i, we compute the elements of the dp array in this order: For each possible value of j % value[i] in increasing order, we process the values of j which when divided by value[i] produces that remainder in increasing order. Now we can apply the deque optimization trick to find min(dp[i - 1][j - cnt * value[i]] + cnt) for cnt from 0 to j / value[i] in constant time.
Pseudocode:
let n = number of coin denominations
let k = amount of change needed
let v[i] = value of the ith denomination, 1 indexed
let c[i] = maximum number of coins of the ith denomination, 1 indexed
let dp[i][j] = the fewest number of coins needed to sum to j using the first i coin denominations
for i from 1 to k:
dp[0][i] = INF
for i from 1 to n:
for rem from 0 to v[i] - 1:
let d = empty double-ended-queue
for j from 0 to (k - rem) / v[i]:
let currval = rem + v[i] * j
if dp[i - 1][currval] is not INF:
while d is not empty and dp[i - 1][d.back() * v[i] + rem] + j - d.back() >= dp[i - 1][currval]:
d.pop_back()
d.push_back(j)
if d is not empty and j - d.front() > c[i]:
d.pop_front()
if d is empty:
dp[i][currval] = INF
else:
dp[i][currval] = dp[i - 1][d.front() * v[i] + rem] + j - d.front()
This is what you are looking for.
Assumptions made : Coin Values are in descending order
public class CoinChangeLimitedCoins {
public static void main(String[] args) {
int[] coins = { 5, 3, 2, 1 };
int[] counts = { 2, 1, 2, 1 };
int target = 9;
int[] nums = combine(coins, counts);
System.out.println(minCount(nums, target, 0, 0, 0));
}
private static int minCount(int[] nums, int target, int sum, int current, int count){
if(current > nums.length) return -1;
if(sum == target) return count;
if(sum + nums[current] <= target){
return minCount(nums, target, sum+nums[current], current+1, count+1);
} else {
return minCount(nums, target, sum, current+1, count);
}
}
private static int[] combine(int[] coins, int[] counts) {
int sum = 0;
for (int count : counts) {
sum += count;
}
int[] returnArray = new int[sum];
int returnArrayIndex = 0;
for (int i = 0; i < coins.length; i++) {
int count = counts[i];
while (count != 0) {
returnArray[returnArrayIndex] = coins[i];
returnArrayIndex++;
count--;
}
}
return returnArray;
}
}
You can check this question: Minimum coin change problem with limited amount of coins.
BTW, I created c++ program based above link's algorithm:
#include <iostream>
#include <map>
#include <vector>
#include <algorithm>
#include <limits>
using namespace std;
void copyVec(vector<int> from, vector<int> &to){
for(vector<int>::size_type i = 0; i < from.size(); i++)
to[i] = from[i];
}
vector<int> makeChangeWithLimited(int amount, vector<int> coins, vector<int> limits)
{
vector<int> change;
vector<vector<int>> coinsUsed( amount + 1 , vector<int>(coins.size()));
vector<int> minCoins(amount+1,numeric_limits<int>::max() - 1);
minCoins[0] = 0;
vector<int> limitsCopy(limits.size());
copy(limits.begin(), limits.end(), limitsCopy.begin());
for (vector<int>::size_type i = 0; i < coins.size(); ++i)
{
while (limitsCopy[i] > 0)
{
for (int j = amount; j >= 0; --j)
{
int currAmount = j + coins[i];
if (currAmount <= amount)
{
if (minCoins[currAmount] > minCoins[j] + 1)
{
minCoins[currAmount] = minCoins[j] + 1;
copyVec(coinsUsed[j], coinsUsed[currAmount]);
coinsUsed[currAmount][i] += 1;
}
}
}
limitsCopy[i] -= 1;
}
}
if (minCoins[amount] == numeric_limits<int>::max() - 1)
{
return change;
}
copy(coinsUsed[amount].begin(),coinsUsed[amount].end(), back_inserter(change) );
return change;
}
int main()
{
vector<int> coins;
coins.push_back(20);
coins.push_back(50);
coins.push_back(100);
coins.push_back(200);
vector<int> limits;
limits.push_back(100);
limits.push_back(100);
limits.push_back(50);
limits.push_back(20);
int amount = 0;
cin >> amount;
while(amount){
vector<int> change = makeChangeWithLimited(amount,coins,limits);
for(vector<int>::size_type i = 0; i < change.size(); i++){
cout << change[i] << "x" << coins[i] << endl;
}
if(change.empty()){
cout << "IMPOSSIBE\n";
}
cin >> amount;
}
system("pause");
return 0;
}
Code in c#
private static int MinCoinsChangeWithLimitedCoins(int[] coins, int[] counts, int sum)
{
var dp = new int[sum + 1];
Array.Fill(dp, int.MaxValue);
dp[0] = 0;
for (int i = 0; i < coins.Length; i++) // n
{
int coin = coins[i];
for (int j = 0; j < counts[i]; j++) //
{
for (int s = sum; s >= coin ; s--) // sum
{
int remainder = s - coin;
if (remainder >= 0 && dp[remainder] != int.MaxValue)
{
dp[s] = Math.Min(1 + dp[remainder], dp[s]);
}
}
}
}
return dp[sum] == int.MaxValue ? -1 : dp[sum];
}

Maximum subarray sum modulo M

Most of us are familiar with the maximum sum subarray problem. I came across a variant of this problem which asks the programmer to output the maximum of all subarray sums modulo some number M.
The naive approach to solve this variant would be to find all possible subarray sums (which would be of the order of N^2 where N is the size of the array). Of course, this is not good enough. The question is - how can we do better?
Example: Let us consider the following array:
6 6 11 15 12 1
Let M = 13. In this case, subarray 6 6 (or 12 or 6 6 11 15 or 11 15 12) will yield maximum sum ( = 12 ).
We can do this as follow:
Maintaining an array sum which at index ith, it contains the modulus sum from 0 to ith.
For each index ith, we need to find the maximum sub sum that end at this index:
For each subarray (start + 1 , i ), we know that the mod sum of this sub array is
int a = (sum[i] - sum[start] + M) % M
So, we can only achieve a sub-sum larger than sum[i] if sum[start] is larger than sum[i] and as close to sum[i] as possible.
This can be done easily if you using a binary search tree.
Pseudo code:
int[] sum;
sum[0] = A[0];
Tree tree;
tree.add(sum[0]);
int result = sum[0];
for(int i = 1; i < n; i++){
sum[i] = sum[i - 1] + A[i];
sum[i] %= M;
int a = tree.getMinimumValueLargerThan(sum[i]);
result = max((sum[i] - a + M) % M, result);
tree.add(sum[i]);
}
print result;
Time complexity :O(n log n)
Let A be our input array with zero-based indexing. We can reduce A modulo M without changing the result.
First of all, let's reduce the problem to a slightly easier one by computing an array P representing the prefix sums of A, modulo M:
A = 6 6 11 2 12 1
P = 6 12 10 12 11 12
Now let's process the possible left borders of our solution subarrays in decreasing order. This means that we will first determine the optimal solution that starts at index n - 1, then the one that starts at index n - 2 etc.
In our example, if we chose i = 3 as our left border, the possible subarray sums are represented by the suffix P[3..n-1] plus a constant a = A[i] - P[i]:
a = A[3] - P[3] = 2 - 12 = 3 (mod 13)
P + a = * * * 2 1 2
The global maximum will occur at one point too. Since we can insert the suffix values from right to left, we have now reduced the problem to the following:
Given a set of values S and integers x and M, find the maximum of S + x modulo M
This one is easy: Just use a balanced binary search tree to manage the elements of S. Given a query x, we want to find the largest value in S that is smaller than M - x (that is the case where no overflow occurs when adding x). If there is no such value, just use the largest value of S. Both can be done in O(log |S|) time.
Total runtime of this solution: O(n log n)
Here's some C++ code to compute the maximum sum. It would need some minor adaptions to also return the borders of the optimal subarray:
#include <bits/stdc++.h>
using namespace std;
int max_mod_sum(const vector<int>& A, int M) {
vector<int> P(A.size());
for (int i = 0; i < A.size(); ++i)
P[i] = (A[i] + (i > 0 ? P[i-1] : 0)) % M;
set<int> S;
int res = 0;
for (int i = A.size() - 1; i >= 0; --i) {
S.insert(P[i]);
int a = (A[i] - P[i] + M) % M;
auto it = S.lower_bound(M - a);
if (it != begin(S))
res = max(res, *prev(it) + a);
res = max(res, (*prev(end(S)) + a) % M);
}
return res;
}
int main() {
// random testing to the rescue
for (int i = 0; i < 1000; ++i) {
int M = rand() % 1000 + 1, n = rand() % 1000 + 1;
vector<int> A(n);
for (int i = 0; i< n; ++i)
A[i] = rand() % M;
int should_be = 0;
for (int i = 0; i < n; ++i) {
int sum = 0;
for (int j = i; j < n; ++j) {
sum = (sum + A[j]) % M;
should_be = max(should_be, sum);
}
}
assert(should_be == max_mod_sum(A, M));
}
}
For me, all explanations here were awful, since I didn't get the searching/sorting part. How do we search/sort, was unclear.
We all know that we need to build prefixSum, meaning sum of all elems from 0 to i with modulo m
I guess, what we are looking for is clear.
Knowing that subarray[i][j] = (prefix[i] - prefix[j] + m) % m (indicating the modulo sum from index i to j), our maxima when given prefix[i] is always that prefix[j] which is as close as possible to prefix[i], but slightly bigger.
E.g. for m = 8, prefix[i] being 5, we are looking for the next value after 5, which is in our prefixArray.
For efficient search (binary search) we sort the prefixes.
What we can not do is, build the prefixSum first, then iterate again from 0 to n and look for index in the sorted prefix array, because we can find and endIndex which is smaller than our startIndex, which is no good.
Therefore, what we do is we iterate from 0 to n indicating the endIndex of our potential max subarray sum and then look in our sorted prefix array, (which is empty at the beginning) which contains sorted prefixes between 0 and endIndex.
def maximumSum(coll, m):
n = len(coll)
maxSum, prefixSum = 0, 0
sortedPrefixes = []
for endIndex in range(n):
prefixSum = (prefixSum + coll[endIndex]) % m
maxSum = max(maxSum, prefixSum)
startIndex = bisect.bisect_right(sortedPrefixes, prefixSum)
if startIndex < len(sortedPrefixes):
maxSum = max(maxSum, prefixSum - sortedPrefixes[startIndex] + m)
bisect.insort(sortedPrefixes, prefixSum)
return maxSum
From your question, it seems that you have created an array to store the cumulative sums (Prefix Sum Array), and are calculating the sum of the sub-array arr[i:j] as (sum[j] - sum[i] + M) % M. (arr and sum denote the given array and the prefix sum array respectively)
Calculating the sum of every sub-array results in a O(n*n) algorithm.
The question that arises is -
Do we really need to consider the sum of every sub-array to reach the desired maximum?
No!
For a value of j the value (sum[j] - sum[i] + M) % M will be maximum when sum[i] is just greater than sum[j] or the difference is M - 1.
This would reduce the algorithm to O(nlogn).
You can take a look at this explanation! https://www.youtube.com/watch?v=u_ft5jCDZXk
There are already a bunch of great solutions listed here, but I wanted to add one that has O(nlogn) runtime without using a balanced binary tree, which isn't in the Python standard library. This solution isn't my idea, but I had to think a bit as to why it worked. Here's the code, explanation below:
def maximumSum(a, m):
prefixSums = [(0, -1)]
for idx, el in enumerate(a):
prefixSums.append(((prefixSums[-1][0] + el) % m, idx))
prefixSums = sorted(prefixSums)
maxSeen = prefixSums[-1][0]
for (a, a_idx), (b, b_idx) in zip(prefixSums[:-1], prefixSums[1:]):
if a_idx > b_idx and b > a:
maxSeen = max((a-b) % m, maxSeen)
return maxSeen
As with the other solutions, we first calculate the prefix sums, but this time we also keep track of the index of the prefix sum. We then sort the prefix sums, as we want to find the smallest difference between prefix sums modulo m - sorting lets us just look at adjacent elements as they have the smallest difference.
At this point you might think we're neglecting an essential part of the problem - we want the smallest difference between prefix sums, but the larger prefix sum needs to appear before the smaller prefix sum (meaning it has a smaller index). In the solutions using trees, we ensure that by adding prefix sums one by one and recalculating the best solution.
However, it turns out that we can look at adjacent elements and just ignore ones that don't satisfy our index requirement. This confused me for some time, but the key realization is that the optimal solution will always come from two adjacent elements. I'll prove this via a contradiction. Let's say that the optimal solution comes from two non-adjacent prefix sums x and z with indices i and k, where z > x (it's sorted!) and k > i:
x ... z
k ... i
Let's consider one of the numbers between x and z, and let's call it y with index j. Since the list is sorted, x < y < z.
x ... y ... z
k ... j ... i
The prefix sum y must have index j < i, otherwise it would be part of a better solution with z. But if j < i, then j < k and y and x form a better solution than z and x! So any elements between x and z must form a better solution with one of the two, which contradicts our original assumption. Therefore the optimal solution must come from adjacent prefix sums in the sorted list.
Here is Java code for maximum sub array sum modulo. We handle the case we can not find least element in the tree strictly greater than s[i]
public static long maxModulo(long[] a, final long k) {
long[] s = new long[a.length];
TreeSet<Long> tree = new TreeSet<>();
s[0] = a[0] % k;
tree.add(s[0]);
long result = s[0];
for (int i = 1; i < a.length; i++) {
s[i] = (s[i - 1] + a[i]) % k;
// find least element in the tree strictly greater than s[i]
Long v = tree.higher(s[i]);
if (v == null) {
// can't find v, then compare v and s[i]
result = Math.max(s[i], result);
} else {
result = Math.max((s[i] - v + k) % k, result);
}
tree.add(s[i]);
}
return result;
}
Few points from my side that might hopefully help someone understand the problem better.
You do not need to add +M to the modulo calculation, as mentioned, % operator handles negative numbers well, so a % M = (a + M) % M
As mentioned, the trick is to build the proxy sum table such that
proxy[n] = (a[1] + ... a[n]) % M
This then allows one to represent the maxSubarraySum[i, j] as
maxSubarraySum[i, j] = (proxy[j] - proxy[j]) % M
The implementation trick is to build the proxy table as we iterate through the elements, instead of first pre-building it and then using. This is because for each new element in the array a[i] we want to compute proxy[i] and find proxy[j] that is bigger than but as close as possible to proxy[i] (ideally bigger by 1 because this results in a reminder of M - 1). For this we need to use a clever data structure for building proxy table while keeping it sorted and
being able to quickly find a closest bigger element to proxy[i]. bisect.bisect_right is a good choice in Python.
See my Python implementation below (hope this helps but I am aware this might not necessarily be as concise as others' solutions):
def maximumSum(a, m):
prefix_sum = [a[0] % m]
prefix_sum_sorted = [a[0] % m]
current_max = prefix_sum_sorted[0]
for elem in a[1:]:
prefix_sum_next = (prefix_sum[-1] + elem) % m
prefix_sum.append(prefix_sum_next)
idx_closest_bigger = bisect.bisect_right(prefix_sum_sorted, prefix_sum_next)
if idx_closest_bigger >= len(prefix_sum_sorted):
current_max = max(current_max, prefix_sum_next)
bisect.insort_right(prefix_sum_sorted, prefix_sum_next)
continue
if prefix_sum_sorted[idx_closest_bigger] > prefix_sum_next:
current_max = max(current_max, (prefix_sum_next - prefix_sum_sorted[idx_closest_bigger]) % m)
bisect.insort_right(prefix_sum_sorted, prefix_sum_next)
return current_max
Total java implementation with O(n*log(n))
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.TreeSet;
import java.util.stream.Stream;
public class MaximizeSumMod {
public static void main(String[] args) throws Exception{
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
Long times = Long.valueOf(in.readLine());
while(times --> 0){
long[] pair = Stream.of(in.readLine().split(" ")).mapToLong(Long::parseLong).toArray();
long mod = pair[1];
long[] numbers = Stream.of(in.readLine().split(" ")).mapToLong(Long::parseLong).toArray();
printMaxMod(numbers,mod);
}
}
private static void printMaxMod(long[] numbers, Long mod) {
Long maxSoFar = (numbers[numbers.length-1] + numbers[numbers.length-2])%mod;
maxSoFar = (maxSoFar > (numbers[0]%mod)) ? maxSoFar : numbers[0]%mod;
numbers[0] %=mod;
for (Long i = 1L; i < numbers.length; i++) {
long currentNumber = numbers[i.intValue()]%mod;
maxSoFar = maxSoFar > currentNumber ? maxSoFar : currentNumber;
numbers[i.intValue()] = (currentNumber + numbers[i.intValue()-1])%mod;
maxSoFar = maxSoFar > numbers[i.intValue()] ? maxSoFar : numbers[i.intValue()];
}
if(mod.equals(maxSoFar+1) || numbers.length == 2){
System.out.println(maxSoFar);
return;
}
long previousNumber = numbers[0];
TreeSet<Long> set = new TreeSet<>();
set.add(previousNumber);
for (Long i = 2L; i < numbers.length; i++) {
Long currentNumber = numbers[i.intValue()];
Long ceiling = set.ceiling(currentNumber);
if(ceiling == null){
set.add(numbers[i.intValue()-1]);
continue;
}
if(ceiling.equals(currentNumber)){
set.remove(ceiling);
Long greaterCeiling = set.ceiling(currentNumber);
if(greaterCeiling == null){
set.add(ceiling);
set.add(numbers[i.intValue()-1]);
continue;
}
set.add(ceiling);
ceiling = greaterCeiling;
}
Long newMax = (currentNumber - ceiling + mod);
maxSoFar = maxSoFar > newMax ? maxSoFar :newMax;
set.add(numbers[i.intValue()-1]);
}
System.out.println(maxSoFar);
}
}
Adding STL C++11 code based on the solution suggested by #Pham Trung. Might be handy.
#include <iostream>
#include <set>
int main() {
int N;
std::cin>>N;
for (int nn=0;nn<N;nn++){
long long n,m;
std::set<long long> mSet;
long long maxVal = 0; //positive input values
long long sumVal = 0;
std::cin>>n>>m;
mSet.insert(m);
for (long long q=0;q<n;q++){
long long tmp;
std::cin>>tmp;
sumVal = (sumVal + tmp)%m;
auto itSub = mSet.upper_bound(sumVal);
maxVal = std::max(maxVal,(m + sumVal - *itSub)%m);
mSet.insert(sumVal);
}
std::cout<<maxVal<<"\n";
}
}
As you can read in Wikipedia exists a solution called Kadane's algorithm, which compute the maximum subarray sum watching ate the maximum subarray ending at position i for all positions i by iterating once over the array. Then this solve the problem with with runtime complexity O(n).
Unfortunately, I think that Kadane's algorithm isn't able to find all possible solution when more than one solution exists.
An implementation in Java, I didn't tested it:
public int[] kadanesAlgorithm (int[] array) {
int start_old = 0;
int start = 0;
int end = 0;
int found_max = 0;
int max = array[0];
for(int i = 0; i<array.length; i++) {
max = Math.max(array[i], max + array[i]);
found_max = Math.max(found_max, max);
if(max < 0)
start = i+1;
else if(max == found_max) {
start_old=start;
end = i;
}
}
return Arrays.copyOfRange(array, start_old, end+1);
}
I feel my thoughts are aligned with what have been posted already, but just in case - Kotlin O(NlogN) solution:
val seen = sortedSetOf(0L)
var prev = 0L
return max(a.map { x ->
val z = (prev + x) % m
prev = z
seen.add(z)
seen.higher(z)?.let{ y ->
(z - y + m) % m
} ?: z
})
Implementation in java using treeset...
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.TreeSet;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader read = new BufferedReader(new InputStreamReader(System.in)) ;
String[] str = read.readLine().trim().split(" ") ;
int n = Integer.parseInt(str[0]) ;
long m = Long.parseLong(str[1]) ;
str = read.readLine().trim().split(" ") ;
long[] arr = new long[n] ;
for(int i=0; i<n; i++) {
arr[i] = Long.parseLong(str[i]) ;
}
long maxCount = 0L ;
TreeSet<Long> tree = new TreeSet<>() ;
tree.add(0L) ;
long prefix = 0L ;
for(int i=0; i<n; i++) {
prefix = (prefix + arr[i]) % m ;
maxCount = Math.max(prefix, maxCount) ;
Long temp = tree.higher(prefix) ;
System.out.println(temp);
if(temp != null) {
maxCount = Math.max((prefix-temp+m)%m, maxCount) ;
}
//System.out.println(maxCount);
tree.add(prefix) ;
}
System.out.println(maxCount);
}
}
Here is one implementation of solution in java for this problem which works using TreeSet in java for optimized solution !
public static long maximumSum2(long[] arr, long n, long m)
{
long x = 0;
long prefix = 0;
long maxim = 0;
TreeSet<Long> S = new TreeSet<Long>();
S.add((long)0);
// Traversing the array.
for (int i = 0; i < n; i++)
{
// Finding prefix sum.
prefix = (prefix + arr[i]) % m;
// Finding maximum of prefix sum.
maxim = Math.max(maxim, prefix);
// Finding iterator poing to the first
// element that is not less than value
// "prefix + 1", i.e., greater than or
// equal to this value.
long it = S.higher(prefix)!=null?S.higher(prefix):0;
// boolean isFound = false;
// for (long j : S)
// {
// if (j >= prefix + 1)
// if(isFound == false) {
// it = j;
// isFound = true;
// }
// else {
// if(j < it) {
// it = j;
// }
// }
// }
if (it != 0)
{
maxim = Math.max(maxim, prefix - it + m);
}
// adding prefix in the set.
S.add(prefix);
}
return maxim;
}
public static int MaxSequence(int[] arr)
{
int maxSum = 0;
int partialSum = 0;
int negative = 0;
for (int i = 0; i < arr.Length; i++)
{
if (arr[i] < 0)
{
negative++;
}
}
if (negative == arr.Length)
{
return 0;
}
foreach (int item in arr)
{
partialSum += item;
maxSum = Math.Max(maxSum, partialSum);
if (partialSum < 0)
{
partialSum = 0;
}
}
return maxSum;
}
Modify Kadane algorithm to keep track of #occurrence. Below is the code.
#python3
#source: https://github.com/harishvc/challenges/blob/master/dp-largest-sum-sublist-modulo.py
#Time complexity: O(n)
#Space complexity: O(n)
def maxContiguousSum(a,K):
sum_so_far =0
max_sum = 0
count = {} #keep track of occurrence
for i in range(0,len(a)):
sum_so_far += a[i]
sum_so_far = sum_so_far%K
if sum_so_far > 0:
max_sum = max(max_sum,sum_so_far)
if sum_so_far in count.keys():
count[sum_so_far] += 1
else:
count[sum_so_far] = 1
else:
assert sum_so_far < 0 , "Logic error"
#IMPORTANT: reset sum_so_far
sum_so_far = 0
return max_sum,count[max_sum]
a = [6, 6, 11, 15, 12, 1]
K = 13
max_sum,count = maxContiguousSum(a,K)
print("input >>> %s max sum=%d #occurrence=%d" % (a,max_sum,count))

find the max difference between j and i indices such that j > i and a[j] > a[i] in O(n)

Given an unsorted array, find the max j - i difference between indices such that j > i and a[j] > a[i] in O(n). I am able to find j and i using trivial methods in O(n^2) complexity but would like to know how to do this in O(n)?
Input: {9, 2, 3, 4, 5, 6, 7, 8, 18, 0}
Output: 8 ( j = 8, i = 0)
Input: {1, 2, 3, 4, 5, 6}
Output: 5 (j = 5, i = 0)
For brevity's sake I am going to assume all the elements are unique. The algorithm can be extended to handle non-unique element case.
First, observe that if x and y are your desired max and min locations respectively, then there can not be any a[i] > a[x] and i > x, and similarly, no a[j] < a[y] and j < y.
So we scan along the array a and build an array S such that S[i] holds the index of the minimum element in a[0:i]. Similarly an array T which holds the index of the maximum element in a[n-1:i] (i.e., backwards).
Now we can see that a[S[i]] and a[T[i]] are necessarily decreasing sequences, since they were the minimum till i and maximum from n till i respectively.
So now we try to do a merge-sort like procedure. At each step, if a[S[head]] < a[T[head]], we pop off an element from T, otherwise we pop off an element from S. At each such step, we record the difference in the head of S and T if a[S[head]] < a[T[head]]. The maximum such difference gives you your answer.
EDIT: Here is a simple code in Python implementing the algorithm.
def getMaxDist(arr):
# get minima going forward
minimum = float("inf")
minima = collections.deque()
for i in range(len(arr)):
if arr[i] < minimum:
minimum = arr[i]
minima.append((arr[i], i))
# get maxima going back
maximum = float("-inf")
maxima = collections.deque()
for i in range(len(arr)-1,0,-1):
if arr[i] > maximum:
maximum = arr[i]
maxima.appendleft((arr[i], i))
# do merge between maxima and minima
maxdist = 0
while len(maxima) and len(minima):
if maxima[0][0] > minima[0][0]:
if maxima[0][1] - minima[0][1] > maxdist:
maxdist = maxima[0][1] - minima[0][1]
maxima.popleft()
else:
minima.popleft()
return maxdist
Let's make this simple observation: If we have 2 elements a[i], a[j] with i < j and a[i] < a[j] then we can be sure that j won't be part of the solution as the first element (he can be the second but that's a second story) because i would be a better alternative.
What this tells us is that if we build greedily a decreasing sequence from the elements of a the left part of the answer will surely come from there.
For example for : 12 3 61 23 51 2 the greedily decreasing sequence is built like this:
12 -> 12 3 -> we ignore 61 because it's worse than 3 -> we ignore 23 because it's worse than 3 -> we ignore 51 because it's worse than 3 -> 12 3 2.
So the answer would contain on the left side 12 3 or 2.
Now on a random case this has O(log N) length so you can binary search on it for each element as the right part of the answer and you would get O(N log log N) which is good, and if you apply the same logic on the right part of the string on a random case you could get O(log^2 N + N(from the reading)) which is O(N). But we can do O(N) on a non-random case too.
Suppose we have this decreasing sequence. We start from the right of the string and do the following while we can pair the last of the decreasing sequence with the current number
1) If we found a better solution by taking the last of the decreasing sequence and the current number than we update the answer
2) Even if we updated the answer or not we pop the last element of the decreasing sequence because we are it's perfect match (any other match would be to the left and would give an answer with smaller j - i)
3) Repeat while we can pair these 2
Example Code:
#include <iostream>
#include <vector>
using namespace std;
int main() {
int N; cin >> N;
vector<int> A(N + 1);
for (int i = 1; i <= N; ++i)
cin >> A[i];
// let's solve the problem
vector<int> decreasing;
pair<int, int> answer;
// build the decreasing sequence
decreasing.push_back(1);
for (int i = 1; i <= N; ++i)
if (A[i] < A[decreasing.back()])
decreasing.push_back(i); // we work with indexes because we might have equal values
for (int i = N; i > 0; --i) {
while (decreasing.size() and A[decreasing.back()] < A[i]) { // while we can pair these 2
pair<int, int> current_pair(decreasing.back(), i);
if (current_pair.second - current_pair.first > answer.second - answer.first)
answer = current_pair;
decreasing.pop_back();
}
}
cout << "Best pair found: (" << answer.first << ", " << answer.second << ") with values (" << A[answer.first] << ", " << A[answer.second] << ")\n";
}
Later Edit:
I see you gave an example: I indexed from 1 to make it clearer and I print (i, j) instead of (j, i). You can alter it as you see fit.
We can avoid checking the whole array by starting from the maximum difference of j-i and comparing arr[j]>arr[i] for all the possible combinations j and i for that particular maximum difference
Whenever we get a combination of (j,i) with arr[j]>arr[i] we can exit the loop
Example : In an array of {2,3,4,5,8,1}
first code will check for maximum difference 5(5-0) i.e (arr[0],arr[5]), if arr[5]>arr[0] function will exit else will take combinations of max diff 4 (5,1) and (4,0) i.e arr[5],arr[1] and arr[4],arr[0]
int maxIndexDiff(int arr[], int n)
{
int maxDiff = n-1;
int i, j;
while (maxDiff>0)
{
j=n-1;
while(j>=maxDiff)
{
i=j - maxDiff;
if(arr[j]>arr[i])
{
return maxDiff;
}
j=j-1;
}
maxDiff=maxDiff-1;
}
return -1;
}`
https://ide.geeksforgeeks.org/cjCW3wXjcj
Here is a very simple O(n) Python implementation of the merged down-sequence idea. The implementation works even in the case of duplicate values:
downs = [0]
for i in range(N):
if ar[i] < ar[downs[-1]]:
downs.append(i)
best = 0
i, j = len(downs)-1, N-1
while i >= 0:
if ar[downs[i]] <= ar[j]:
best = max(best, j-downs[i])
i -= 1
else:
j -= 1
print best
To solve this problem, we need to get two optimum indexes of arr[]: left index i and right index j. For an element arr[i], we do not need to consider arr[i] for left index if there is an element smaller than arr[i] on left side of arr[i]. Similarly, if there is a greater element on right side of arr[j] then we do not need to consider this j for right index. So we construct two auxiliary arrays LMin[] and RMax[] such that LMin[i] holds the smallest element on left side of arr[i] including arr[i], and RMax[j] holds the greatest element on right side of arr[j] including arr[j]. After constructing these two auxiliary arrays, we traverse both of these arrays from left to right. While traversing LMin[] and RMa[] if we see that LMin[i] is greater than RMax[j], then we must move ahead in LMin[] (or do i++) because all elements on left of LMin[i] are greater than or equal to LMin[i]. Otherwise we must move ahead in RMax[j] to look for a greater j – i value. Here is the c code running in O(n) time:
#include <stdio.h>
#include <stdlib.h>
/* Utility Functions to get max and minimum of two integers */
int max(int x, int y)
{
return x > y? x : y;
}
int min(int x, int y)
{
return x < y? x : y;
}
/* For a given array arr[], returns the maximum j – i such that
arr[j] > arr[i] */
int maxIndexDiff(int arr[], int n)
{
int maxDiff;
int i, j;
int *LMin = (int *)malloc(sizeof(int)*n);
int *RMax = (int *)malloc(sizeof(int)*n);
/* Construct LMin[] such that LMin[i] stores the minimum value
from (arr[0], arr[1], ... arr[i]) */
LMin[0] = arr[0];
for (i = 1; i < n; ++i)
LMin[i] = min(arr[i], LMin[i-1]);
/* Construct RMax[] such that RMax[j] stores the maximum value
from (arr[j], arr[j+1], ..arr[n-1]) */
RMax[n-1] = arr[n-1];
for (j = n-2; j >= 0; --j)
RMax[j] = max(arr[j], RMax[j+1]);
/* Traverse both arrays from left to right to find optimum j - i
This process is similar to merge() of MergeSort */
i = 0, j = 0, maxDiff = -1;
while (j < n && i < n)
{
if (LMin[i] < RMax[j])
{
maxDiff = max(maxDiff, j-i);
j = j + 1;
}
else
i = i+1;
}
return maxDiff;
}
/* Driver program to test above functions */
int main()
{
int arr[] = {1, 2, 3, 4, 5, 6};
int n = sizeof(arr)/sizeof(arr[0]);
int maxDiff = maxIndexDiff(arr, n);
printf("\n %d", maxDiff);
getchar();
return 0;
}
Simplified version of Subhasis Das answer using auxiliary arrays.
def maxdistance(nums):
n = len(nums)
minima ,maxima = [None]*n, [None]*n
minima[0],maxima[n-1] = nums[0],nums[n-1]
for i in range(1,n):
minima[i] = min(nums[i],minima[i-1])
for i in range(n-2,-1,-1):
maxima[i]= max(nums[i],maxima[i+1])
i,j,maxdist = 0,0,-1
while(i<n and j<n):
if minima[i] <maxima[j]:
maxdist = max(j-i,maxdist)
j = j+1
else:
i += 1
print maxdist
I can think of improvement over O(n^2), but need to verify if this is O(n) in worse case or not.
Create a variable BestSoln=0; and traverse the array for first element
and store the best solution for first element i.e bestSoln=k;.
Now for 2nd element consider only elements which are k distances away
from the second element.
If BestSoln in this case is better than first iteration then replace
it otherwise let it be like that. Keep iterating for other elements.
It can be improved further if we store max element for each subarray starting from i to end.
This can be done in O(n) by traversing the array from end.
If a particular element is more than it's local max then there is no need to do evaluation for this element.
Input:
{9, 2, 3, 4, 5, 6, 7, 8, 18, 0}
create local max array for this array:
[18,18,18,18,18,18,18,0,0] O(n).
Now, traverse the array for 9 ,here best solution will be i=0,j=8.
Now for second element or after it, we don't need to evaluate. and best solution is i=0,j=8.
But suppose array is Input:
{19, 2, 3, 4, 5, 6, 7, 8, 18, 0,4}
Local max array [18,18,18,18,18,18,18,0,0] then in first iteration we don't need to evaluate as local max is less than current elem.
Now for second iteration best solution is, i=1,j=10. Now for other elements we don't need to consider evaluation as they can't give best solution.
Let me know your view your use case to which my solution is not applicable.
This is a very simple solution for O(2n) of speed and additional ~O(2n) of space (in addition to the input array). The following implementation is in C:
int findMaxDiff(int array[], int size) {
int index = 0;
int maxima[size];
int indexes[size];
while (index < size) {
int max = array[index];
int i;
for (i = index; i < size; i++) {
if (array[i] > max) {
max = array[i];
indexes[index] = i;
}
}
maxima[index] = max;
index++;
}
int j;
int result;
for (j = 0; j < size; j++) {
int max2 = 0;
if (maxima[j] - array[j] > max2) {
max2 = maxima[j] - array[j];
result = indexes[j];
}
}
return result;
}
The first loop scan the array once, finding for each element the maximum of the remaining elements to its right. We store also the relative index in a separate array.
The second loops finds the maximum between each element and the correspondent right-hand-side maximum, and returns the right index.
My Solution with in O(log n) (Please correct me here if I am wrong in calculating this complexity)time ...
Idea is to insert into a BST and then search for node and if the node has a right child then traverse through the right sub tree to calculate the node with maximum index..
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
class Ideone
{
public static void main (String[] args) throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t1 = Integer.parseInt(br.readLine());
for(int j=0;j<t1;j++){
int size = Integer.parseInt(br.readLine());
String input = br.readLine();
String[] t = input.split(" ");
Node root = new Node(Integer.parseInt(t[0]),0);
for(int i=1;i<size;i++){
Node addNode = new Node(Integer.parseInt(t[i]),i);
insertIntoBST(root,addNode);
}
for(String s: t){
Node nd = findNode(root,Integer.parseInt(s));
if(nd.right != null){
int i = nd.index;
int j1 = calculate(nd.right);
mVal = max(mVal,j1-i);
}
}
System.out.println(mVal);
mVal=0;
}
}
static int mVal =0;
public static int calculate (Node root){
if(root==null){
return -1;
}
int i = max(calculate(root.left),calculate(root.right));
return max(root.index,i);
}
public static Node findNode(Node root,int n){
if(root==null){
return null;
}
if(root.value == n){
return root;
}
Node result = findNode(root.left,n);
if(result ==null){
result = findNode(root.right,n);
}
return result;
}
public static int max(int a , int b){
return a<b?b:a;
}
public static class Node{
Node left;
Node right;
int value;
int index;
public Node(int value,int index){
this.value = value;
this.index = index;
}
}
public static void insertIntoBST(Node root, Node addNode){
if(root.value< addNode.value){
if(root.right!=null){
insertIntoBST(root.right,addNode);
}else{
root.right = addNode;
}
}
if(root.value>=addNode.value){
if(root.left!=null){
insertIntoBST(root.left,addNode);
}else{
root.left =addNode;
}
}
}
}
A simplified algorithm from Subhasis Das's answer:
# assume list is not empty
max_dist = 0
acceptable_min = (0, arr[0])
acceptable_max = (0, arr[0])
min = (0, arr[0])
for i in range(len(arr)):
if arr[i] < min[1]:
min = (i, arr[i])
elif arr[i] - min[1] > max_dist:
max_dist = arr[i] - min[1]
acceptable_min = min
acceptable_max = (i, arr[i])
# acceptable_min[0] is the i
# acceptable_max[0] is the j
# max_dist is the max difference
Below is a C++ solution for the condition a[i] <= a[j]. It needs a slight modification to handle the case a[i] < a[j].
template<typename T>
std::size_t max_dist_sorted_pair(const std::vector<T>& seq)
{
const auto n = seq.size();
const auto less = [&seq](std::size_t i, std::size_t j)
{ return seq[i] < seq[j]; };
// max_right[i] is the position of the rightmost
// largest element in the suffix seq[i..]
std::vector<std::size_t> max_right(n);
max_right.back() = n - 1;
for (auto i = n - 1; i > 0; --i)
max_right[i - 1] = std::max(max_right[i], i - 1, less);
std::size_t max_dist = 0;
for (std::size_t i = 0, j = 0; i < n; ++i)
while (!less(max_right[j], i))
{
j = max_right[j];
max_dist = std::max(max_dist, j - i);
if (++j == n)
return max_dist;
}
return max_dist;
}
Please review this solution and cases where it might fail:
def maxIndexDiff(arr, n):
j = n-1
for i in range(0,n):
if j > i:
if arr[j] >= arr[i]:
return j-i
elif arr[j-1] >= arr[i]:
return (j-1) - i
elif arr[j] >= arr[i+1]:
return j - (i+1)
j -= 1
return -1
int maxIndexDiff(int arr[], int n)
{
// Your code here
vector<int> rightMax(n);
rightMax[n-1] = arr[n-1];
for(int i =n-2;i>=0;i--){
rightMax[i] = max(rightMax[i+1],arr[i]);
}
int i = 0,j=0,maxDis = 0;
while(i<n &&j<n){
if(rightMax[j]>=arr[i]){
maxDis = max(maxDis,j-i);
j++;
} else
i++;
}
return maxDis;
}
There is concept of keeping leftMin and rightMax but leftMin is not really required and leftMin will do the work anyways.
We are choosing rightMax and traversing from start till we get a smaller value than that!
Create Arraylist of pairs where is key is array element and value is the index. Sort this arraylist of pairs. Traverse this arraylist of pairs to get the maximum gap between(maxj-i). Also keep a track of maxj and update when new maxj is found. Please find my java solution which takes O(nlogn) time complexity and O(n) space complexity.
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
class MaxDistanceSolution {
private class Pair implements Comparable<Pair> {
int key;
int value;
public int getKey() {
return key;
}
public int getValue() {
return value;
}
Pair(int key, int value) {
this.key = key;
this.value = value;
}
#Override
public int compareTo(Pair o) {
return this.getKey() - o.getKey();
}
}
public int maximumGap(final ArrayList<Integer> A) {
int n = A.size();
ArrayList<Pair> B = new ArrayList<>();
for (int i = 0 ; i < n; i++)
B.add(new Pair(A.get(i), i));
Collections.sort(B);
int maxJ = B.get(n-1).getValue();
int gaps = 0;
for (int i = n - 2; i >= 0; i--) {
gaps = Math.max(gaps, maxJ - B.get(i).getValue());
maxJ = Math.max(maxJ, B.get(i).getValue());
}
return gaps;
}
}
public class MaxDistance {
public static void main(String[] args) {
MaxDistanceSolution sol = new MaxDistanceSolution();
ArrayList<Integer> A = new ArrayList<>(Arrays.asList(3, 5, 4, 2));
int gaps = sol.maximumGap(A);
System.out.println(gaps);
}
}
I have solved this question here.
https://github.com/nagendra547/coding-practice/blob/master/src/arrays/FindMaxIndexDifference.java
Putting code here too. Thanks.
private static int findMaxIndexDifferenceOptimal(int[] a) {
int n = a.length;
// array containing minimums
int A[] = new int[n];
A[0] = a[0];
for (int i = 1; i < n; i++) {
A[i] = Math.min(a[i], A[i - 1]);
}
// array containing maximums
int B[] = new int[n];
B[n - 1] = a[n - 1];
for (int j = n - 2; j >= 0; j--) {
B[j] = Math.max(a[j], B[j + 1]);
}
int i = 0, maxDiff = -1;
int j = 0;
while (i < n && j < n) {
if (B[j] > A[i]) {
maxDiff = Math.max(j - i, maxDiff);
j++;
} else {
i++;
}
}
return maxDiff;
}

Given an array of numbers, find out if 3 of them add up to 0

Given an array of numbers, find out if 3 of them add up to 0.
Do it in N^2, how would one do this?
O(n^2) solution without hash tables (because using hash tables is cheating :P). Here's the pseudocode:
Sort the array // O(nlogn)
for each i from 1 to len(array) - 1
iter = i + 1
rev_iter = len(array) - 1
while iter < rev_iter
tmp = array[iter] + array[rev_iter] + array[i]
if tmp > 0
rev_iter--
else if tmp < 0
iter++
else
return true
return false
Basically using a sorted array, for each number (target) in an array, you use two pointers, one starting from the front and one starting from the back of the array, check if the sum of the elements pointed to by the pointers is >, < or == to the target, and advance the pointers accordingly or return true if the target is found.
Not for credit or anything, but here is my python version of Charles Ma's solution. Very cool.
def find_sum_to_zero(arr):
arr = sorted(arr)
for i, target in enumerate(arr):
lower, upper = 0, len(arr)-1
while lower < i < upper:
tmp = target + arr[lower] + arr[upper]
if tmp > 0:
upper -= 1
elif tmp < 0:
lower += 1
else:
yield arr[lower], target, arr[upper]
lower += 1
upper -= 1
if __name__ == '__main__':
# Get a list of random integers with no duplicates
from random import randint
arr = list(set(randint(-200, 200) for _ in range(50)))
for s in find_sum_to_zero(arr):
print s
Much later:
def find_sum_to_zero(arr):
limits = 0, len(arr) - 1
arr = sorted(arr)
for i, target in enumerate(arr):
lower, upper = limits
while lower < i < upper:
values = (arr[lower], target, arr[upper])
tmp = sum(values)
if not tmp:
yield values
lower += tmp <= 0
upper -= tmp >= 0
put the negative of each number into a hash table or some other constant time lookup data structure. (n)
loop through the array getting each set of two numbers (n^2), and see if their sum is in the hash table.
First sort the array, then for each negative number (A) in the array, find two elements in the array adding up to -A. Finding 2 elements in a sorted array that add up to the given number takes O(n) time, so the entire time complexity is O(n^2).
C++ implementation based on the pseudocode provided by Charles Ma, for anyone interested.
#include <iostream>
using namespace std;
void merge(int originalArray[], int low, int high, int sizeOfOriginalArray){
// Step 4: Merge sorted halves into an auxiliary array
int aux[sizeOfOriginalArray];
int auxArrayIndex, left, right, mid;
auxArrayIndex = low;
mid = (low + high)/2;
right = mid + 1;
left = low;
// choose the smaller of the two values "pointed to" by left, right
// copy that value into auxArray[auxArrayIndex]
// increment either left or right as appropriate
// increment auxArrayIndex
while ((left <= mid) && (right <= high)) {
if (originalArray[left] <= originalArray[right]) {
aux[auxArrayIndex] = originalArray[left];
left++;
auxArrayIndex++;
}else{
aux[auxArrayIndex] = originalArray[right];
right++;
auxArrayIndex++;
}
}
// here when one of the two sorted halves has "run out" of values, but
// there are still some in the other half; copy all the remaining values
// to auxArray
// Note: only 1 of the next 2 loops will actually execute
while (left <= mid) {
aux[auxArrayIndex] = originalArray[left];
left++;
auxArrayIndex++;
}
while (right <= high) {
aux[auxArrayIndex] = originalArray[right];
right++;
auxArrayIndex++;
}
// all values are in auxArray; copy them back into originalArray
int index = low;
while (index <= high) {
originalArray[index] = aux[index];
index++;
}
}
void mergeSortArray(int originalArray[], int low, int high){
int sizeOfOriginalArray = high + 1;
// base case
if (low >= high) {
return;
}
// Step 1: Find the middle of the array (conceptually, divide it in half)
int mid = (low + high)/2;
// Steps 2 and 3: Recursively sort the 2 halves of origianlArray and then merge those
mergeSortArray(originalArray, low, mid);
mergeSortArray(originalArray, mid + 1, high);
merge(originalArray, low, high, sizeOfOriginalArray);
}
//O(n^2) solution without hash tables
//Basically using a sorted array, for each number in an array, you use two pointers, one starting from the number and one starting from the end of the array, check if the sum of the three elements pointed to by the pointers (and the current number) is >, < or == to the targetSum, and advance the pointers accordingly or return true if the targetSum is found.
bool is3SumPossible(int originalArray[], int targetSum, int sizeOfOriginalArray){
int high = sizeOfOriginalArray - 1;
mergeSortArray(originalArray, 0, high);
int temp;
for (int k = 0; k < sizeOfOriginalArray; k++) {
for (int i = k, j = sizeOfOriginalArray-1; i <= j; ) {
temp = originalArray[k] + originalArray[i] + originalArray[j];
if (temp == targetSum) {
return true;
}else if (temp < targetSum){
i++;
}else if (temp > targetSum){
j--;
}
}
}
return false;
}
int main()
{
int arr[] = {2, -5, 10, 9, 8, 7, 3};
int size = sizeof(arr)/sizeof(int);
int targetSum = 5;
//3Sum possible?
bool ans = is3SumPossible(arr, targetSum, size); //size of the array passed as a function parameter because the array itself is passed as a pointer. Hence, it is cummbersome to calculate the size of the array inside is3SumPossible()
if (ans) {
cout<<"Possible";
}else{
cout<<"Not possible";
}
return 0;
}
This is my approach using Swift 3 in N^2 log N...
let integers = [-50,-40, 10, 30, 40, 50, -20, -10, 0, 5]
First step, sort array
let sortedArray = integers.sorted()
second, implement a binary search method that returns an index like so...
func find(value: Int, in array: [Int]) -> Int {
var leftIndex = 0
var rightIndex = array.count - 1
while leftIndex <= rightIndex {
let middleIndex = (leftIndex + rightIndex) / 2
let middleValue = array[middleIndex]
if middleValue == value {
return middleIndex
}
if value < middleValue {
rightIndex = middleIndex - 1
}
if value > middleValue {
leftIndex = middleIndex + 1
}
}
return 0
}
Finally, implement a method that keeps track of each time a set of "triplets" sum 0...
func getTimesTripleSumEqualZero(in integers: [Int]) -> Int {
let n = integers.count
var count = 0
//loop the array twice N^2
for i in 0..<n {
for j in (i + 1)..<n {
//Sum the first pair and assign it as a negative value
let twoSum = -(integers[i] + integers[j])
// perform a binary search log N
// it will return the index of the give number
let index = find(value: twoSum, in: integers)
//to avoid duplications we need to do this check by checking the items at correspondingly indexes
if (integers[i] < integers[j] && integers[j] < integers[index]) {
print("\([integers[i], integers[j], integers[index]])")
count += 1
}
}
}
return count
}
print("count:", findTripleSumEqualZeroBinary(in: sortedArray))
prints--- count: 7
void findTriplets(int arr[], int n)
{
bool found = false;
for (int i=0; i<n-1; i++)
{
unordered_set<int> s;
for (int j=i+1; j<n; j++)
{
int x = -(arr[i] + arr[j]);
if (s.find(x) != s.end())
{
printf("%d %d %d\n", x, arr[i], arr[j]);
found = true;
}
else
s.insert(arr[j]);
}
}
if (found == false)
cout << " No Triplet Found" << endl;
}

Algorithm to find next greater permutation of a given string

I want an efficient algorithm to find the next greater permutation of the given string.
Wikipedia has a nice article on lexicographical order generation. It also describes an algorithm to generate the next permutation.
Quoting:
The following algorithm generates the next permutation lexicographically after a given permutation. It changes the given permutation in-place.
Find the highest index i such that s[i] < s[i+1]. If no such index exists, the permutation is the last permutation.
Find the highest index j > i such that s[j] > s[i]. Such a j must exist, since i+1 is such an index.
Swap s[i] with s[j].
Reverse the order of all of the elements after index i till the last element.
A great solution that works is described here: https://www.nayuki.io/page/next-lexicographical-permutation-algorithm. And the solution that, if next permutation exists, returns it, otherwise returns false:
function nextPermutation(array) {
var i = array.length - 1;
while (i > 0 && array[i - 1] >= array[i]) {
i--;
}
if (i <= 0) {
return false;
}
var j = array.length - 1;
while (array[j] <= array[i - 1]) {
j--;
}
var temp = array[i - 1];
array[i - 1] = array[j];
array[j] = temp;
j = array.length - 1;
while (i < j) {
temp = array[i];
array[i] = array[j];
array[j] = temp;
i++;
j--;
}
return array;
}
Using the source cited by #Fleischpfanzerl:
We follow the steps as below to find the next lexicographical permutation:
nums = [0,1,2,5,3,3,0]
nums = [0]*5
curr = nums[-1]
pivot = -1
for items in nums[-2::-1]:
if items >= curr:
pivot -= 1
curr = items
else:
break
if pivot == - len(nums):
print('break') # The input is already the last possible permutation
j = len(nums) - 1
while nums[j] <= nums[pivot - 1]:
j -= 1
nums[j], nums[pivot - 1] = nums[pivot - 1], nums[j]
nums[pivot:] = nums[pivot:][::-1]
> [1, 3, 0, 2, 3, 5]
So the idea is:
The idea is to follow steps -
Find a index 'pivot' from the end of the array such that nums[i - 1] < nums[i]
Find index j, such that nums[j] > nums[pivot - 1]
Swap both these indexes
Reverse the suffix starting at pivot
Homework? Anyway, can look at the C++ function std::next_permutation, or this:
http://blog.bjrn.se/2008/04/lexicographic-permutations-using.html
We can find the next largest lexicographic string for a given string S using the following step.
1. Iterate over every character, we will get the last value i (starting from the first character) that satisfies the given condition S[i] < S[i + 1]
2. Now, we will get the last value j such that S[i] < S[j]
3. We now interchange S[i] and S[j]. And for every character from i+1 till the end, we sort the characters. i.e., sort(S[i+1]..S[len(S) - 1])
The given string is the next largest lexicographic string of S. One can also use next_permutation function call in C++.
nextperm(a, n)
1. find an index j such that a[j….n - 1] forms a monotonically decreasing sequence.
2. If j == 0 next perm not possible
3. Else
1. Reverse the array a[j…n - 1]
2. Binary search for index of a[j - 1] in a[j….n - 1]
3. Let i be the returned index
4. Increment i until a[j - 1] < a[i]
5. Swap a[j - 1] and a[i]
O(n) for each permutation.
I came across a great tutorial.
link : https://www.youtube.com/watch?v=quAS1iydq7U
void Solution::nextPermutation(vector<int> &a) {
int k=0;
int n=a.size();
for(int i=0;i<n-1;i++)
{
if(a[i]<a[i+1])
{
k=i;
}
}
int ele=INT_MAX;
int pos=0;
for(int i=k+1;i<n;i++)
{
if(a[i]>a[k] && a[i]<ele)
{
ele=a[i];pos=i;
}
}
if(pos!=0)
{
swap(a[k],a[pos]);
reverse(a.begin()+k+1,a.end());
}
}
void Solution::nextPermutation(vector<int> &a) {
int i, j=-1, k, n=a.size();
for(i=0; i<n-1; i++) if(a[i] < a[i+1]) j=i;
if(j==-1) reverse(a.begin(), a.end());
else {
for(i=j+1; i<n; i++) if(a[j] < a[i]) k=i;
swap(a[j],a[k]);
reverse(a.begin()+j+1, a.end());
}}
A great solution that works is described here: https://www.nayuki.io/page/next-lexicographical-permutation-algorithm.
and if you are looking for
source code:
/**
* method to find the next lexicographical greater string
*
* #param w
* #return a new string
*/
static String biggerIsGreater(String w) {
char charArray[] = w.toCharArray();
int n = charArray.length;
int endIndex = 0;
// step-1) Start from the right most character and find the first character
// that is smaller than previous character.
for (endIndex = n - 1; endIndex > 0; endIndex--) {
if (charArray[endIndex] > charArray[endIndex - 1]) {
break;
}
}
// If no such char found, then all characters are in descending order
// means there cannot be a greater string with same set of characters
if (endIndex == 0) {
return "no answer";
} else {
int firstSmallChar = charArray[endIndex - 1], nextSmallChar = endIndex;
// step-2) Find the smallest character on right side of (endIndex - 1)'th
// character that is greater than charArray[endIndex - 1]
for (int startIndex = endIndex + 1; startIndex < n; startIndex++) {
if (charArray[startIndex] > firstSmallChar && charArray[startIndex] < charArray[nextSmallChar]) {
nextSmallChar = startIndex;
}
}
// step-3) Swap the above found next smallest character with charArray[endIndex - 1]
swap(charArray, endIndex - 1, nextSmallChar);
// step-4) Sort the charArray after (endIndex - 1)in ascending order
Arrays.sort(charArray, endIndex , n);
}
return new String(charArray);
}
/**
* method to swap ith character with jth character inside charArray
*
* #param charArray
* #param i
* #param j
*/
static void swap(char charArray[], int i, int j) {
char temp = charArray[i];
charArray[i] = charArray[j];
charArray[j] = temp;
}
If you are looking for video explanation for the same, you can visit here.
This problem can be solved just by using two simple algorithms searching and find smaller element in just O(1) extra space and O(nlogn ) time and also easy to implement .
To understand this approach clearly . Watch this Video : https://www.youtube.com/watch?v=DREZ9pb8EQI
def result(lst):
if len(lst) == 0:
return 0
if len(lst) == 1:
return [lst]
l = []
for i in range(len(lst)):
m = lst[i]
remLst = lst[:i] + lst[i+1:]
for p in result(remLst):
l.append([m] + p)
return l
result(['1', '2', '3'])
Start traversing from the end of the list. Compare each one with the previous index value.
If the previous index (say at index i-1) value, consider x, is lower than the current index (index i) value, sort the sublist on right side starting from current position i.
Pick one value from the current position till end which is just higher than x, and put it at index i-1. At the index the value was picked from, put x. That is:
swap(list[i-1], list[j]) where j >= i, and the list is sorted from index "i" onwards
Code:
public void nextPermutation(ArrayList<Integer> a) {
for (int i = a.size()-1; i > 0; i--){
if (a.get(i) > a.get(i-1)){
Collections.sort(a.subList(i, a.size()));
for (int j = i; j < a.size(); j++){
if (a.get(j) > a.get(i-1)) {
int replaceWith = a.get(j); // Just higher than ith element at right side.
a.set(j, a.get(i-1));
a.set(i-1, replaceWith);
return;
}
}
}
}
// It means the values are already in non-increasing order. i.e. Lexicographical highest
// So reset it back to lowest possible order by making it non-decreasing order.
for (int i = 0, j = a.size()-1; i < j; i++, j--){
int tmp = a.get(i);
a.set(i, a.get(j));
a.set(j, tmp);
}
}
Example :
10 40 30 20 => 20 10 30 40 // 20 is just bigger than 10
10 40 30 20 5 => 20 5 10 30 40 // 20 is just bigger than 10. Numbers on right side are just sorted form of this set {numberOnRightSide - justBigger + numberToBeReplaced}.
This is efficient enough up to strings with 11 letters.
// next_permutation example
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
void nextPerm(string word) {
vector<char> v(word.begin(), word.end());
vector<string> permvec; // permutation vector
string perm;
int counter = 0; //
int position = 0; // to find the position of keyword in the permutation vector
sort (v.begin(),v.end());
do {
perm = "";
for (vector<char>::const_iterator i = v.begin(); i != v.end(); ++i) {
perm += *i;
}
permvec.push_back(perm); // add permutation to vector
if (perm == word) {
position = counter +1;
}
counter++;
} while (next_permutation(v.begin(),v.end() ));
if (permvec.size() < 2 || word.length() < 2) {
cout << "No answer" << endl;
}
else if (position !=0) {
cout << "Answer: " << permvec.at(position) << endl;
}
}
int main () {
string word = "nextperm";
string key = "mreptxen";
nextPerm(word,key); // will check if the key is a permutation of the given word and return the next permutation after the key.
return 0;
}
I hope this code might be helpful.
int main() {
char str[100];
cin>>str;
int len=strlen(len);
int f=next_permutation(str,str+len);
if(f>0) {
print the string
} else {
cout<<"no answer";
}
}

Resources