I need to Binarize an image in matlab with a static threshold of 10% of mean intensity. I find mean intensity using mean2(Image) and this returns a mean let say 15.10 in one of the image. Thus my mean threshold is 1.51.im2bw(image,level) takes threshold between 0 to 1. How to binarize my image in this case in matlab?
1) you can first convert the original image to double format using im2double(). Then all the pixels values will be between 0 and 1. Then you can use im2bw(im,level).
2) If you do not want to convert the image to double, then you can do it in this way. Let's say the threshold is 10 % of the the mean value, say threshold = 1.51. Let's denote the image you have is im. Then im(im<threshold) = 0; im(im>=threshold)=1. After these two operations, im will become a binary image.
You can binarize the image with a simple logical statement. For completeness, I've added the threshold determination as well.
threshold = mean(Image(:));
binaryMask = Image > 0.1 * threshold;
You need to normalize the result of the mean vs the max intensity of the image if you want to use im2bw (the other solutions mentioned are of course correct and work):
ImageN=Image./max(Image(:))
t = mean2(ImageN) * 0.1 % Find your threshold value
im2bw(Image,t)
Let's say your image is a matrix img, you can do the following:
t = mean2(img) * 0.1 % Find your threshold value
img(img < t) = 0 % Set everything below the treshold value to 0
img(img ̃= 0) = 1 % Set the rest to 1
Related
I am trying to "translate" what's mentioned in Gonzalez and Woods (2nd Edition) about the Laplacian filter.
I've read in the image and created the filter. However, when I try to display the result (by subtraction, since the center element in -ve), I don't get the image as in the textbook.
I think the main reason is the "scaling". However, I'm not sure how exactly to do that. From what I understand, some online resources say that the scaling is just so that the values are between 0-255. From my code, I see that the values are already within that range.
I would really appreciate any pointers.
Below is the original image I used:
Below is my code, and the resultant sharpened image.
Thanks!
clc;
close all;
a = rgb2gray(imread('e:\moon.png'));
lap = [1 1 1; 1 -8 1; 1 1 1];
resp = uint8(filter2(lap, a, 'same'));
sharpened = imsubtract(a, resp);
figure;
subplot(1,3,1);imshow(a); title('Original image');
subplot(1,3,2);imshow(resp); title('Laplacian filtered image');
subplot(1,3,3);imshow(sharpened); title('Sharpened image');
I have a few tips for you:
This is just a little thing but filter2 performs correlation. You actually need to perform convolution, which rotates the kernel by 180 degrees before performing the weighted sum between neighbourhoods of pixels and the kernel. However because the kernel is symmetric, convolution and correlation perform the same thing in this case.
I would recommend you use imfilter to facilitate the filtering as you are using methods from the Image Processing Toolbox already. It's faster than filter2 or conv2 and takes advantage of the Intel Integrated Performance Primitives.
I highly recommend you do everything in double precision first, then convert back to uint8 when you're done. Use im2double to convert your image (most likely uint8) to double precision. When performing sharpening, this maintains precision and prematurely casting to uint8 then performing the subtraction will give you unintended side effects. uint8 will cap results that are negative or beyond 255 and this may also be a reason why you're not getting the right results. Therefore, convert the image to double, filter the image, sharpen the result by subtracting the image with the filtered result (via the Laplacian) and then convert back to uint8 by im2uint8.
You've also provided a link to the pipeline that you're trying to imitate: http://www.idlcoyote.com/ip_tips/sharpen.html
The differences between your code and the link are:
The kernel has a positive centre. Therefore the 1s are negative while the centre is +8 and you'll have to add the filtered result to the original image.
In the link, they normalize the filtered response so that the minimum is 0 and the maximum is 1.
Once you add the filtered response onto the original image, you also normalize this result so that the minimum is 0 and the maximum is 1.
You perform a linear contrast enhancement so that intensity 60 becomes the new minimum and intensity 200 becomes the new maximum. You can use imadjust to do this. The function takes in an image as well as two arrays - The first array is the input minimum and maximum intensity and the second array is where the minimum and maximum should map to. As such, I'd like to map the input intensity 60 to the output intensity 0 and the input intensity 200 to the output intensity 255. Make sure the intensities specified are between 0 and 1 though so you'll have to divide each quantity by 255 as stated in the documentation.
As such:
clc;
close all;
a = im2double(imread('moon.png')); %// Read in your image
lap = [-1 -1 -1; -1 8 -1; -1 -1 -1]; %// Change - Centre is now positive
resp = imfilter(a, lap, 'conv'); %// Change
%// Change - Normalize the response image
minR = min(resp(:));
maxR = max(resp(:));
resp = (resp - minR) / (maxR - minR);
%// Change - Adding to original image now
sharpened = a + resp;
%// Change - Normalize the sharpened result
minA = min(sharpened(:));
maxA = max(sharpened(:));
sharpened = (sharpened - minA) / (maxA - minA);
%// Change - Perform linear contrast enhancement
sharpened = imadjust(sharpened, [60/255 200/255], [0 1]);
figure;
subplot(1,3,1);imshow(a); title('Original image');
subplot(1,3,2);imshow(resp); title('Laplacian filtered image');
subplot(1,3,3);imshow(sharpened); title('Sharpened image');
I get this figure now... which seems to agree with the figures seen in the link:
I am trying to do some image processing for which I am given an 8-bit grayscale image. I am supposed to change the contrast of the image by generating a lookup table that increases the contrast for pixel values between 50 and 205. I have generated a look up table using the following MATLAB code.
a = 2;
x = 0:255;
lut = 255 ./ (1+exp(-a*(x-127)/32));
When I plot lut, I get a graph shown below:
So far so good, but how do I go about increasing the contrast for pixel values between 50 and 205? Final plot of the transform mapping should be something like:
Judging from your comments, you simply want a linear map where intensities that are < 50 get mapped to 0, intensities that are > 205 get mapped to 255, and everything else is a linear mapping in between. You can simply do this by:
slope = 255 / (205 - 50); % // Generate equation of the line -
% // y = mx + b - Solve for m
intercept = -50*slope; %// Solve for b --> b = y - m*x, y = 0, x = 50
LUT = uint8(slope*(0:255) + intercept); %// Generate points
LUT(1:51) = 0; %// Anything < intensity 50 set to 0
LUT(206:end) = 255; %// Anything > intensity 205 set to 255
The LUT now looks like:
plot(0:255, LUT);
axis tight;
grid;
Take note at how I truncated the intensities when they're < 50 and > 205. MATLAB starts indexing at index 1, and so we need to offset the intensities by 1 so that they correctly map to pixel intensities which start at 0.
To finally apply this to your image, all you have to do is:
out = LUT(img + 1);
This is assuming that img is your input image. Again, take note that we had to offset the input by +1 as MATLAB starts indexing at location 1, while intensities start at 0.
Minor Note
You can easily do this by using imadjust, which basically does this for you under the hood. You call it like so:
outAdjust = imadjust(in, [low_in; high_in], [low_out; high_out]);
low_in and high_in represent the minimum and maximum input intensities that exist in your image. Note that these are normalized between [0,1]. low_out and high_out adjust the intensities of your image so that low_in maps to low_out, high_in maps to high_out, and everything else is contrast stretched in between. For your case, you would do:
outAdjust = imadjust(img, [0; 1], [50/255; 205/255]);
This should stretch the contrast such that the input intensity 50 maps to the output intensity 0 and the input intensity 205 maps to the output intensity 255. Any intensities < 50 and > 205 get automatically saturated to 0 and 255 respectively.
You need to take each pixel in your image and replace it with the corresponding value in the lookup table. This can be done with some nested for loops, but it is not the most idiomatic way to do it. I would recommend using arrayfun with a function that replaces a pixel.
new_image = arrayfun(#(pixel) lut(pixel), image);
It might be more efficient to use the code that generates lut directly on the image. If performance is a concern and you don't need to use a lookup table, try comparing both methods.
new_image = 255 ./ (1 + exp(-image * (x-127) / 32));
Note that the new_image variable will no longer be of type uint8. If you need to display it again (say, with imshow) you will need to convert it back by writing uint8(new_image).
I am interested in adding a single Gaussian shaped object to an existing image, something like in the attached image. The base image that I would like to add the object to is 8-bit unsigned with values ranging from 0-255. The bright object in the attached image is actually a tree represented by normalized difference vegetation index (NDVI) data. The attached script is what I have have so far. How can I add a a Gaussian shaped abject (i.e. a tree) with values ranging from 110-155 to an existing NDVI image?
Sample data available here which can be used with this script to calculate NDVI
file = 'F:\path\to\fourband\image.tif';
[I R] = geotiffread(file);
outputdir = 'F:\path\to\output\directory\'
%% Make NDVI calculations
NIR = im2single(I(:,:,4));
red = im2single(I(:,:,1));
ndvi = (NIR - red) ./ (NIR + red);
ndvi = double(ndvi);
%% Stretch NDVI to 0-255 and convert to 8-bit unsigned integer
ndvi = floor((ndvi + 1) * 128); % [-1 1] -> [0 256]
ndvi(ndvi < 0) = 0; % not really necessary, just in case & for symmetry
ndvi(ndvi > 255) = 255; % in case the original value was exactly 1
ndvi = uint8(ndvi); % change data type from double to uint8
%% Need to add a random tree in the image here
%% Write to geotiff
tiffdata = geotiffinfo(file);
outfilename = [outputdir 'ndvi_' '.tif'];
geotiffwrite(outfilename, ndvi, R, 'GeoKeyDirectoryTag', tiffdata.GeoTIFFTags.GeoKeyDirectoryTag)
Your post is asking how to do three things:
How do we generate a Gaussian shaped object?
How can we do this so that the values range between 110 - 155?
How do we place this in our image?
Let's answer each one separately, where the order of each question builds on the knowledge from the previous questions.
How do we generate a Gaussian shaped object?
You can use fspecial from the Image Processing Toolbox to generate a Gaussian for you:
mask = fspecial('gaussian', hsize, sigma);
hsize specifies the size of your Gaussian. You have not specified it here in your question, so I'm assuming you will want to play around with this yourself. This will produce a hsize x hsize Gaussian matrix. sigma is the standard deviation of your Gaussian distribution. Again, you have also not specified what this is. sigma and hsize go hand-in-hand. Referring to my previous post on how to determine sigma, it is generally a good rule to set the standard deviation of your mask to be set to the 3-sigma rule. As such, once you set hsize, you can calculate sigma to be:
sigma = (hsize-1) / 6;
As such, figure out what hsize is, then calculate your sigma. After, invoke fspecial like I did above. It's generally a good idea to make hsize an odd integer. The reason why is because when we finally place this in your image, the syntax to do this will allow your mask to be symmetrically placed. I'll talk about this when we get to the last question.
How can we do this so that the values range between 110 - 155?
We can do this by adjusting the values within mask so that the minimum is 110 while the maximum is 155. This can be done by:
%// Adjust so that values are between 0 and 1
maskAdjust = (mask - min(mask(:))) / (max(mask(:)) - min(mask(:)));
%//Scale by 45 so the range goes between 0 and 45
%//Cast to uint8 to make this compatible for your image
maskAdjust = uint8(45*maskAdjust);
%// Add 110 to every value to range goes between 110 - 155
maskAdjust = maskAdjust + 110;
In general, if you want to adjust the values within your Gaussian mask so that it goes from [a,b], you would normalize between 0 and 1 first, then do:
maskAdjust = uint8((b-a)*maskAdjust) + a;
You'll notice that we cast this mask to uint8. The reason we do this is to make the mask compatible to be placed in your image.
How do we place this in our image?
All you have to do is figure out the row and column you would like the centre of the Gaussian mask to be placed. Let's assume these variables are stored in row and col. As such, assuming you want to place this in ndvi, all you have to do is the following:
hsizeHalf = floor(hsize/2); %// hsize being odd is important
%// Place Gaussian shape in our image
ndvi(row - hsizeHalf : row + hsizeHalf, col - hsizeHalf : col + hsizeHalf) = maskAdjust;
The reason why hsize should be odd is to allow an even placement of the shape in the image. For example, if the mask size is 5 x 5, then the above syntax for ndvi simplifies to:
ndvi(row-2:row+2, col-2:col+2) = maskAdjust;
From the centre of the mask, it stretches 2 rows above and 2 rows below. The columns stretch from 2 columns to the left to 2 columns to the right. If the mask size was even, then we would have an ambiguous choice on how we should place the mask. If the mask size was 4 x 4 as an example, should we choose the second row, or third row as the centre axis? As such, to simplify things, make sure that the size of your mask is odd, or mod(hsize,2) == 1.
This should hopefully and adequately answer your questions. Good luck!
I have a picture of a handwritten letter (say the letter, "y"). Keeping only the first of the three color values (since it is a grayscale image), I get a 111x81 matrix which I call aLetter. I can see this image (please ignore the title) using:
colormap gray; image(aLetter,'CDataMapping','scaled')
What I want is to remove the white space around this letter and somehow average the remaining pixels so that I have an 8x8 matrix (let's call it simpleALetter). Now if I use:
colormap gray; image(simpleALetter,'CDataMapping','scaled')
I should see a pixellated version of the letter:
Any advice on how to do this would be greatly appreciated!
You need several steps to achieve what you want (updated in the light of #rwong's observation that I had white and black flipped…):
Find the approximate 'bounding box' of the letter:
make sure that "text" is the highest value in the image
set things that are "not text" to zero - anything below a threshold
sum along row and column, find non-zero pixels
upsample the image in the bounding box to a multiple of 8
downsample to 8x8
Here is how you might do that with your situation
aLetter = max(aLetter(:)) - aLetter; % invert image: now white = close to zero
aLetter = aLetter - min(aLetter(:)); % make the smallest value zero
maxA = max(aLetter(:));
aLetter(aLetter < 0.1 * maxA) = 0; % thresholding; play with this to set "white" to zero
% find the bounding box:
rowsum = sum(aLetter, 1);
colsum = sum(aLetter, 2);
nonzeroH = find(rowsum);
nonzeroV = find(colsum);
smallerLetter = aLetter(nonzeroV(1):nonzeroV(end), nonzeroH(1):nonzeroH(end));
% now we have the box, but it's not 8x8 yet. Resampling:
sz = size(smallerLetter);
% first upsample in both X and Y by a factor 8:
bigLetter = repmat(reshape(smallerLetter, [1 sz(1) 1 sz(2)]), [8 1 8 1]);
% then reshape and sum so you end up with 8x8 in the final matrix:
letter8 = squeeze(sum(sum(reshape(bigLetter, [sz(1) 8 sz(2) 8]), 3), 1));
% finally, flip it back "the right way" black is black and white is white:
letter8 = 255 - (letter8 * 255 / max(letter8(:)));
You can do this with explicit for loops but it would be much slower.
You can also use some of the blockproc functions in Matlab but I am using Freemat tonight and it doesn't have those… Neither does it have any image processing toolbox functions, so this is "hard core".
As for picking a good threshold: if you know that > 90% of your image is "white", you could determine the correct threshold by sorting the pixels and finding the threshold dynamically - as I mentioned in my comment in the code "play with it" until you find something that works in your situation.
how do i convert an image represented as double into an image that i can use to produce a histogram?
(with dohist:)
% computes the histogram of a given image into num bins.
% values less than 0 go into bin 1, values bigger than 255
% go into bin 255
% if show=0, then do not show. Otherwise show in figure(show)
function thehist = dohist(theimage,show)
% set up bin edges for histogram
edges = zeros(256,1);
for i = 1 : 256;
edges(i) = i-1;
end
[R,C] = size(theimage);
imagevec = reshape(theimage,1,R*C); % turn image into long array
thehist = histc(imagevec,edges)'; % do histogram
if show > 0
figure(show)
clf
pause(0.1)
plot(thehist)
axis([0, 256, 0, 1.1*max(thehist)])
end
I am guessing that you just need to normalize your image first, to do this you can use:
255*(theimage./(max(theimage(:)));
Your code seems fine, you could make sure the bounds get treated correctly with:
theimage(theimage<0) = 0;
theimage(theimage>255) = 255;
But this shouldnt be necessary, usually you either get a double image ranging [0,1] or uint8 [0,255] when you read an image with imread(). Just rescale to [0,255] in this case if needed.
Some other tips:
You can make the edges-vector like this:
edges = 0:255;
And theimage(:) is the same as reshape(theimage,1,R*C) in this case since you want one long vector.
The built-in function hist can be applied directly to images of class double.
Matlab documentation link
If you have an image which you suspect to have N bits of resolution on the interval [A,B], you can call hist directly on the image (without conversion) like:
[H,bins] = hist(IM,linspace(A,B,2^N));
to retrieve the histogram and bins or
hist(IM,linspace(A,B,2^N));
to simply plot the histogram.