Related
Given two sorted arrays of numbers, we want to find the pair with the kth largest possible sum. (A pair is one element from the first array and one element from the second array). For example, with arrays
[2, 3, 5, 8, 13]
[4, 8, 12, 16]
The pairs with largest sums are
13 + 16 = 29
13 + 12 = 25
8 + 16 = 24
13 + 8 = 21
8 + 12 = 20
So the pair with the 4th largest sum is (13, 8). How to find the pair with the kth largest possible sum?
Also, what is the fastest algorithm? The arrays are already sorted and sizes M and N.
I am already aware of the O(Klogk) solution , using Max-Heap given here .
It also is one of the favorite Google interview question , and they demand a O(k) solution .
I've also read somewhere that there exists a O(k) solution, which i am unable to figure out .
Can someone explain the correct solution with a pseudocode .
P.S.
Please DON'T post this link as answer/comment.It DOESN'T contain the answer.
I start with a simple but not quite linear-time algorithm. We choose some value between array1[0]+array2[0] and array1[N-1]+array2[N-1]. Then we determine how many pair sums are greater than this value and how many of them are less. This may be done by iterating the arrays with two pointers: pointer to the first array incremented when sum is too large and pointer to the second array decremented when sum is too small. Repeating this procedure for different values and using binary search (or one-sided binary search) we could find Kth largest sum in O(N log R) time, where N is size of the largest array and R is number of possible values between array1[N-1]+array2[N-1] and array1[0]+array2[0]. This algorithm has linear time complexity only when the array elements are integers bounded by small constant.
Previous algorithm may be improved if we stop binary search as soon as number of pair sums in binary search range decreases from O(N2) to O(N). Then we fill auxiliary array with these pair sums (this may be done with slightly modified two-pointers algorithm). And then we use quickselect algorithm to find Kth largest sum in this auxiliary array. All this does not improve worst-case complexity because we still need O(log R) binary search steps. What if we keep the quickselect part of this algorithm but (to get proper value range) we use something better than binary search?
We could estimate value range with the following trick: get every second element from each array and try to find the pair sum with rank k/4 for these half-arrays (using the same algorithm recursively). Obviously this should give some approximation for needed value range. And in fact slightly improved variant of this trick gives range containing only O(N) elements. This is proven in following paper: "Selection in X + Y and matrices with sorted rows and columns" by A. Mirzaian and E. Arjomandi. This paper contains detailed explanation of the algorithm, proof, complexity analysis, and pseudo-code for all parts of the algorithm except Quickselect. If linear worst-case complexity is required, Quickselect may be augmented with Median of medians algorithm.
This algorithm has complexity O(N). If one of the arrays is shorter than other array (M < N) we could assume that this shorter array is extended to size N with some very small elements so that all calculations in the algorithm use size of the largest array. We don't actually need to extract pairs with these "added" elements and feed them to quickselect, which makes algorithm a little bit faster but does not improve asymptotic complexity.
If k < N we could ignore all the array elements with index greater than k. In this case complexity is equal to O(k). If N < k < N(N-1) we just have better complexity than requested in OP. If k > N(N-1), we'd better solve the opposite problem: k'th smallest sum.
I uploaded simple C++11 implementation to ideone. Code is not optimized and not thoroughly tested. I tried to make it as close as possible to pseudo-code in linked paper. This implementation uses std::nth_element, which allows linear complexity only on average (not worst-case).
A completely different approach to find K'th sum in linear time is based on priority queue (PQ). One variation is to insert largest pair to PQ, then repeatedly remove top of PQ and instead insert up to two pairs (one with decremented index in one array, other with decremented index in other array). And take some measures to prevent inserting duplicate pairs. Other variation is to insert all possible pairs containing largest element of first array, then repeatedly remove top of PQ and instead insert pair with decremented index in first array and same index in second array. In this case there is no need to bother about duplicates.
OP mentions O(K log K) solution where PQ is implemented as max-heap. But in some cases (when array elements are evenly distributed integers with limited range and linear complexity is needed only on average, not worst-case) we could use O(1) time priority queue, for example, as described in this paper: "A Complexity O(1) Priority Queue for Event Driven Molecular Dynamics Simulations" by Gerald Paul. This allows O(K) expected time complexity.
Advantage of this approach is a possibility to provide first K elements in sorted order. Disadvantages are limited choice of array element type, more complex and slower algorithm, worse asymptotic complexity: O(K) > O(N).
EDIT: This does not work. I leave the answer, since apparently I am not the only one who could have this kind of idea; see the discussion below.
A counter-example is x = (2, 3, 6), y = (1, 4, 5) and k=3, where the algorithm gives 7 (3+4) instead of 8 (3+5).
Let x and y be the two arrays, sorted in decreasing order; we want to construct the K-th largest sum.
The variables are: i the index in the first array (element x[i]), j the index in the second array (element y[j]), and k the "order" of the sum (k in 1..K), in the sense that S(k)=x[i]+y[j] will be the k-th greater sum satisfying your conditions (this is the loop invariant).
Start from (i, j) equal to (0, 0): clearly, S(1) = x[0]+y[0].
for k from 1 to K-1, do:
if x[i+1]+ y[j] > x[i] + y[j+1], then i := i+1 (and j does not change) ; else j:=j+1
To see that it works, consider you have S(k) = x[i] + y[j]. Then, S(k+1) is the greatest sum which is lower (or equal) to S(k), and such as at least one element (i or j) changes. It is not difficult to see that exactly one of i or j should change.
If i changes, the greater sum you can construct which is lower than S(k) is by setting i=i+1, because x is decreasing and all the x[i'] + y[j] with i' < i are greater than S(k). The same holds for j, showing that S(k+1) is either x[i+1] + y[j] or x[i] + y[j+1].
Therefore, at the end of the loop you found the K-th greater sum.
tl;dr: If you look ahead and look behind at each iteration, you can start with the end (which is highest) and work back in O(K) time.
Although the insight underlying this approach is, I believe, sound, the code below is not quite correct at present (see comments).
Let's see: first of all, the arrays are sorted. So, if the arrays are a and b with lengths M and N, and as you have arranged them, the largest items are in slots M and N respectively, the largest pair will always be a[M]+b[N].
Now, what's the second largest pair? It's going to have perhaps one of {a[M],b[N]} (it can't have both, because that's just the largest pair again), and at least one of {a[M-1],b[N-1]}. BUT, we also know that if we choose a[M-1]+b[N-1], we can make one of the operands larger by choosing the higher number from the same list, so it will have exactly one number from the last column, and one from the penultimate column.
Consider the following two arrays: a = [1, 2, 53]; b = [66, 67, 68]. Our highest pair is 53+68. If we lose the smaller of those two, our pair is 68+2; if we lose the larger, it's 53+67. So, we have to look ahead to decide what our next pair will be. The simplest lookahead strategy is simply to calculate the sum of both possible pairs. That will always cost two additions, and two comparisons for each transition (three because we need to deal with the case where the sums are equal);let's call that cost Q).
At first, I was tempted to repeat that K-1 times. BUT there's a hitch: the next largest pair might actually be the other pair we can validly make from {{a[M],b[N]}, {a[M-1],b[N-1]}. So, we also need to look behind.
So, let's code (python, should be 2/3 compatible):
def kth(a,b,k):
M = len(a)
N = len(b)
if k > M*N:
raise ValueError("There are only %s possible pairs; you asked for the %sth largest, which is impossible" % M*N,k)
(ia,ib) = M-1,N-1 #0 based arrays
# we need this for lookback
nottakenindices = (0,0) # could be any value
nottakensum = float('-inf')
for i in range(k-1):
optionone = a[ia]+b[ib-1]
optiontwo = a[ia-1]+b[ib]
biggest = max((optionone,optiontwo))
#first deal with look behind
if nottakensum > biggest:
if optionone == biggest:
newnottakenindices = (ia,ib-1)
else: newnottakenindices = (ia-1,ib)
ia,ib = nottakenindices
nottakensum = biggest
nottakenindices = newnottakenindices
#deal with case where indices hit 0
elif ia <= 0 and ib <= 0:
ia = ib = 0
elif ia <= 0:
ib-=1
ia = 0
nottakensum = float('-inf')
elif ib <= 0:
ia-=1
ib = 0
nottakensum = float('-inf')
#lookahead cases
elif optionone > optiontwo:
#then choose the first option as our next pair
nottakensum,nottakenindices = optiontwo,(ia-1,ib)
ib-=1
elif optionone < optiontwo: # choose the second
nottakensum,nottakenindices = optionone,(ia,ib-1)
ia-=1
#next two cases apply if options are equal
elif a[ia] > b[ib]:# drop the smallest
nottakensum,nottakenindices = optiontwo,(ia-1,ib)
ib-=1
else: # might be equal or not - we can choose arbitrarily if equal
nottakensum,nottakenindices = optionone,(ia,ib-1)
ia-=1
#+2 - one for zero-based, one for skipping the 1st largest
data = (i+2,a[ia],b[ib],a[ia]+b[ib],ia,ib)
narrative = "%sth largest pair is %s+%s=%s, with indices (%s,%s)" % data
print (narrative) #this will work in both versions of python
if ia <= 0 and ib <= 0:
raise ValueError("Both arrays exhausted before Kth (%sth) pair reached"%data[0])
return data, narrative
For those without python, here's an ideone: http://ideone.com/tfm2MA
At worst, we have 5 comparisons in each iteration, and K-1 iterations, which means that this is an O(K) algorithm.
Now, it might be possible to exploit information about differences between values to optimise this a little bit, but this accomplishes the goal.
Here's a reference implementation (not O(K), but will always work, unless there's a corner case with cases where pairs have equal sums):
import itertools
def refkth(a,b,k):
(rightia,righta),(rightib,rightb) = sorted(itertools.product(enumerate(a),enumerate(b)), key=lamba((ia,ea),(ib,eb):ea+eb)[k-1]
data = k,righta,rightb,righta+rightb,rightia,rightib
narrative = "%sth largest pair is %s+%s=%s, with indices (%s,%s)" % data
print (narrative) #this will work in both versions of python
return data, narrative
This calculates the cartesian product of the two arrays (i.e. all possible pairs), sorts them by sum, and takes the kth element. The enumerate function decorates each item with its index.
The max-heap algorithm in the other question is simple, fast and correct. Don't knock it. It's really well explained too. https://stackoverflow.com/a/5212618/284795
Might be there isn't any O(k) algorithm. That's okay, O(k log k) is almost as fast.
If the last two solutions were at (a1, b1), (a2, b2), then it seems to me there are only four candidate solutions (a1-1, b1) (a1, b1-1) (a2-1, b2) (a2, b2-1). This intuition could be wrong. Surely there are at most four candidates for each coordinate, and the next highest is among the 16 pairs (a in {a1,a2,a1-1,a2-1}, b in {b1,b2,b1-1,b2-1}). That's O(k).
(No it's not, still not sure whether that's possible.)
[2, 3, 5, 8, 13]
[4, 8, 12, 16]
Merge the 2 arrays and note down the indexes in the sorted array. Here is the index array looks like (starting from 1 not 0)
[1, 2, 4, 6, 8]
[3, 5, 7, 9]
Now start from end and make tuples. sum the elements in the tuple and pick the kth largest sum.
public static List<List<Integer>> optimization(int[] nums1, int[] nums2, int k) {
// 2 * O(n log(n))
Arrays.sort(nums1);
Arrays.sort(nums2);
List<List<Integer>> results = new ArrayList<>(k);
int endIndex = 0;
// Find the number whose square is the first one bigger than k
for (int i = 1; i <= k; i++) {
if (i * i >= k) {
endIndex = i;
break;
}
}
// The following Iteration provides at most endIndex^2 elements, and both arrays are in ascending order,
// so k smallest pairs must can be found in this iteration. To flatten the nested loop, refer
// 'https://stackoverflow.com/questions/7457879/algorithm-to-optimize-nested-loops'
for (int i = 0; i < endIndex * endIndex; i++) {
int m = i / endIndex;
int n = i % endIndex;
List<Integer> item = new ArrayList<>(2);
item.add(nums1[m]);
item.add(nums2[n]);
results.add(item);
}
results.sort(Comparator.comparing(pair->pair.get(0) + pair.get(1)));
return results.stream().limit(k).collect(Collectors.toList());
}
Key to eliminate O(n^2):
Avoid cartesian product(or 'cross join' like operation) of both arrays, which means flattening the nested loop.
Downsize iteration over the 2 arrays.
So:
Sort both arrays (Arrays.sort offers O(n log(n)) performance according to Java doc)
Limit the iteration range to the size which is just big enough to support k smallest pairs searching.
This question is related to Which sort algorithm works best on mostly sorted data?
The difference is that I have other very important restriction: the values are changed with small amounts after every sort.
This means that the vector stays almost sorted and the displaced values are nearly in their position. After making some tests it seems same answer apply for my case.
Do you know other algorithms that may be better in this case?
Consider timsort or smoothsort. These are designed with mostly-sorted data in mind.
If frequent update is the case, maintain an index structure (i.e. a binary search tree) is perhaps a better choice than sorting the vector over and over again.
Insertion-Sort and Bubble-Sort both have linear best case complexity for an input, which is already sorted (which is optimal since the values are continuously changing, i.e. you have to have a look at each element of the input vector) and they are stable (which seems to be a useful property given your problem description).
Compare all the pairs a[i] <= a[i+1]. If this is false, move the second element to a new array.
Sort the new array (mergesort, heapsort or any other O(n*log n) algorithm), and merge the new and old array again.
How about this:
Def CheckedMergeSort(L)
Count = 0
S(1) = 0
For I in 2 to |L|
If (L(I-1) < L(I))
Count = Count + 1
S(I) = Count
Def MergeSort(A, B)
If (A != B and S(B)-S(A) != B-A)
C = (B + A) / 2
MergeSort(A,C)
MergeSort(C+1,B)
InplaceMerge(L(A..C), L(C+1..B))
MergeSort(1, |L|)
A linear time prepass of the input is made to fill in S(i) which keeps track of how many pairs previous to i have been in sorted order.
Then by subtracting two bounds S(j)-S(i) and comparing it to j-1 we can determine if any subsequence L(i..j) is in sorted order.
The merge sort then can skip any sorted sequences it finds in its recursion in constant time.
(For example if the array is sorted at entry then MergeSort(1, |L|) becomes a noop.)
I tried to find a solution to this but couldn't get much out of my head.
We are given two unsorted integer arrays A and B. We have to check whether array B is a permutation of A. How can this be done.? Even XORing the numbers wont work as there can be several counterexamples which have same XOR value bt are not permutation of each other.
A solution needs to be O(n) time and with space O(1)
Any help is welcome!!
Thanks.
The question is theoretical but you can do it in O(n) time and o(1) space. Allocate an array of 232 counters and set them all to zero. This is O(1) step because the array has constant size. Then iterate through the two arrays. For array A, increment the counters corresponding to the integers read. For array B, decrement them. If you run into a negative counter value during iteration of array B, stop --- the arrays are not permutations of each others. Otherwise at the end (assuming A and B have the same size, a prerequisite) the counter array is all zero and the two arrays are permutations of each other.
This is O(1) space and O(n) time solution. However it is not practical, but would easily pass as a solution to the interview question. At least it should.
More obscure solutions
Using a nondeterministic model of computation, checking that the two arrays are not permutations of each others can be done in O(1) space, O(n) time by guessing an element that has differing count on the two arrays, and then counting the instances of that element on both of the arrays.
In randomized model of computation, construct a random commutative hash function and calculate the hash values for the two arrays. If the hash values differ, the arrays are not permutations of each others. Otherwise they might be. Repeat many times to bring the probability of error below desired threshold. Also on O(1) space O(n) time approach, but randomized.
In parallel computation model, let 'n' be the size of the input array. Allocate 'n' threads. Every thread i = 1 .. n reads the ith number from the first array; let that be x. Then the same thread counts the number of occurrences of x in the first array, and then check for the same count on the second array. Every single thread uses O(1) space and O(n) time.
Interpret an integer array [ a1, ..., an ] as polynomial xa1 + xa2 + ... + xan where x is a free variable and the check numerically for the equivalence of the two polynomials obtained. Use floating point arithmetics for O(1) space and O(n) time operation. Not an exact method because of rounding errors and because numerical checking for equivalence is probabilistic. Alternatively, interpret the polynomial over integers modulo a prime number, and perform the same probabilistic check.
If we are allowed to freely access a large list of primes, you can solve this problem by leveraging properties of prime factorization.
For both arrays, calculate the product of Prime[i] for each integer i, where Prime[i] is the ith prime number. The value of the products of the arrays are equal iff they are permutations of one another.
Prime factorization helps here for two reasons.
Multiplication is transitive, and so the ordering of the operands to calculate the product is irrelevant. (Some alluded to the fact that if the arrays were sorted, this problem would be trivial. By multiplying, we are implicitly sorting.)
Prime numbers multiply losslessly. If we are given a number and told it is the product of only prime numbers, we can calculate exactly which prime numbers were fed into it and exactly how many.
Example:
a = 1,1,3,4
b = 4,1,3,1
Product of ith primes in a = 2 * 2 * 5 * 7 = 140
Product of ith primes in b = 7 * 2 * 5 * 2 = 140
That said, we probably aren't allowed access to a list of primes, but this seems a good solution otherwise, so I thought I'd post it.
I apologize for posting this as an answer as it should really be a comment on antti.huima's answer, but I don't have the reputation yet to comment.
The size of the counter array seems to be O(log(n)) as it is dependent on the number of instances of a given value in the input array.
For example, let the input array A be all 1's with a length of (2^32) + 1. This will require a counter of size 33 bits to encode (which, in practice, would double the size of the array, but let's stay with theory). Double the size of A (still all 1 values) and you need 65 bits for each counter, and so on.
This is a very nit-picky argument, but these interview questions tend to be very nit-picky.
If we need not sort this in-place, then the following approach might work:
Create a HashMap, Key as array element, Value as number of occurances. (To handle multiple occurrences of the same number)
Traverse array A.
Insert the array elements in the HashMap.
Next, traverse array B.
Search every element of B in the HashMap. If the corresponding value is 1, delete the entry. Else, decrement the value by 1.
If we are able to process entire array B and the HashMap is empty at that time, Success. else Failure.
HashMap will use constant space and you will traverse each array only once.
Not sure if this is what you are looking for. Let me know if I have missed any constraint about space/time.
You're given two constraints: Computational O(n), where n means the total length of both A and B and memory O(1).
If two series A, B are permutations of each other, then theres also a series C resulting from permutation of either A or B. So the problem is permuting both A and B into series C_A and C_B and compare them.
One such permutation would be sorting. There are several sorting algorithms which work in place, so you can sort A and B in place. Now in a best case scenario Smooth Sort sorts with O(n) computational and O(1) memory complexity, in the worst case with O(n log n) / O(1).
The per element comparision then happens at O(n), but since in O notation O(2*n) = O(n), using a Smooth Sort and comparison will give you a O(n) / O(1) check if two series are permutations of each other. However in the worst case it will be O(n log n)/O(1)
The solution needs to be O(n) time and with space O(1).
This leaves out sorting and the space O(1) requirement is a hint that you probably should make a hash of the strings and compare them.
If you have access to a prime number list do as cheeken's solution.
Note: If the interviewer says you don't have access to a prime number list. Then generate the prime numbers and store them. This is O(1) because the Alphabet length is a constant.
Else here's my alternative idea. I will define the Alphabet as = {a,b,c,d,e} for simplicity.
The values for the letters are defined as:
a, b, c, d, e
1, 2, 4, 8, 16
note: if the interviewer says this is not allowed, then make a lookup table for the Alphabet, this takes O(1) space because the size of the Alphabet is a constant
Define a function which can find the distinct letters in a string.
// set bit value of char c in variable i and return result
distinct(char c, int i) : int
E.g. distinct('a', 0) returns 1
E.g. distinct('a', 1) returns 1
E.g. distinct('b', 1) returns 3
Thus if you iterate the string "aab" the distinct function should give 3 as the result
Define a function which can calculate the sum of the letters in a string.
// return sum of c and i
sum(char c, int i) : int
E.g. sum('a', 0) returns 1
E.g. sum('a', 1) returns 2
E.g. sum('b', 2) returns 4
Thus if you iterate the string "aab" the sum function should give 4 as the result
Define a function which can calculate the length of the letters in a string.
// return length of string s
length(string s) : int
E.g. length("aab") returns 3
Running the methods on two strings and comparing the results takes O(n) running time. Storing the hash values takes O(1) in space.
e.g.
distinct of "aab" => 3
distinct of "aba" => 3
sum of "aab => 4
sum of "aba => 4
length of "aab => 3
length of "aba => 3
Since all the values are equal for both strings, they must be a permutation of each other.
EDIT: The solutions is not correct with the given alphabet values as pointed out in the comments.
You can convert one of the two arrays into an in-place hashtable. This will not be exactly O(N), but it will come close, in non-pathological cases.
Just use [number % N] as it's desired index or in the chain that starts there. If any element has to be replaced, it can be placed at the index where the offending element started. Rinse , wash, repeat.
UPDATE:
This is a similar (N=M) hash table It did use chaining, but it could be downgraded to open addressing.
I'd use a randomized algorithm that has a low chance of error.
The key is to use a universal hash function.
def hash(array, hash_fn):
cur = 0
for item in array:
cur ^= hash_item(item)
return cur
def are_perm(a1, a2):
hash_fn = pick_random_universal_hash_func()
return hash_fn(a1, hash_fn) == hash_fn(a2, hash_fn)
If the arrays are permutations, it will always be right. If they are different, the algorithm might incorrectly say that they are the same, but it will do so with very low probability. Further, you can get an exponential decrease in chance for error with a linear amount of work by asking many are_perm() questions on the same input, if it ever says no, then they are definitely not permutations of each other.
I just find a counterexample. So, the assumption below is incorrect.
I can not prove it, but I think this may be possible true.
Since all elements of the arrays are integers, suppose each array has 2 elements,
and we have
a1 + a2 = s
a1 * a2 = m
b1 + b2 = s
b1 * b2 = m
then {a1, a2} == {b1, b2}
if this is true, it's true for arrays have n-elements.
So we compare the sum and product of each array, if they equal, one is the permutation
of the other.
Given two arrays
a[] = {1,3,2,4}
b[] = {4,2,3,1}
both will have the same numbers but in different order.
We have to sort both of them. The condition is that you cannot compare elements within the same array.
I can give you an algorithm of O(N*log(N)) time complexity based on quick sort.
Randomly select an element a1 in array A
Use a1 to partition array B, note that you only have to compare every element in array B with a1
Partitioning returns the position b1. Use b1 to partition array A (the same as step 2)
Go to step 1 for the partitioned sub-arrays if their length are greater than 1.
Time complexity: T(N) = 2*T(N/2) + O(N). So the overall complexity is O(N*log(N)) according to master theorem.
Not sure I understood the question properly, but from my understanding the task is a follows:
Sort a given array a without comparing any two elements from a directly. However we are given a second array b which is guaranteed to contain the same elements as a but in arbitrary order. You are not allowed to modify b (otherwise just sort b and return it...).
In case the elements in a are distinct this is easy: for every element in a count how many elements in b are smaller. This number gives us the (zero based) index in a sorted order.
The case where elements are not necessarily distinct is left to the reader :)
Since the problem is long i can not describe it at title.
Imagine that we have 2 unsorted integer arrays. Both array lenght is n and they are containing interegers between 0 - n^765 (n power 765 maximum) .
I want to compare both arrays and find out whether they contain any same integer value or not with in O(n) time complexity.
no duplicates are possible in the same array
Any help and idea is appreciated.
What you want is impossible. Each element will be stored in up to log(n^765) bits, which is O(log n). So simply reading the contents of both arrays will take O(n*logn).
If you have a constant upper bound on the value of each element, You can solve this in O(n) average time by storing the elements of one array in a hash table, and then checking if the elements of the other array are contained in it.
Edit:
The solution you may be looking for is to use radix sort to sort your data, after which you can easily check for duplicate elements. You would look at your numbers in base n, and do 765 passes over your data. Each pass would use a bucket sort or counting sort to sort by a single digit (in base n). This process would take O(n) time in the worst case (assuming a constant upper bound on element size). Note that I doubt anyone would ever choose this over a hash table in practice.
By assuming multiplication and division is O(1):
Think about numbers, you can write them as:
Number(i) = A0 * n^765 + A1 * n^764 + .... + A764 * n + A765.
for coding number to this format, you should just do Number / n^i, Number % n^i, if you precompute, n^1, n^2, n^3, ... it can be done in O(n * 765)=> O(n) for all numbers. precomputation of n^i, can be done in O(i) since i at most is 765 it's O(1) for all items.
Now you can write Numbers(i) as array: Nembers(i) = (A0, A1, ..., A765) and know you can radix sort items :
first compare all A765, then ...., All of Ai's are in the range 0..n so for comparing Ai's you can use Counting sort (Counting sort is O(n)), so your radix sort is O(n * 765) which is O(n).
After radix sort you have two sorted array and you can simply find one similar item in O(n) or use merge algorithm (like merge sort) to find most possible similarity (not just one).
for generalization if the size of input items is O(n^C) it can be sorted in O(n) (C is fix number). but because the overhead of this way of sortings are big, prefer to using quicksort and similar algorithms. Simple sample of this question can be found in Introduction to Algorithm book, which asks if the numbers are in range (0..n^2) how to sort them in O(n).
Edit: for clarifying how you can find similar items in 2-sorted lists:
You have 2 sorted list, for example in merge sort how do you can merge two sorted list to one list? you will move from start of list 1, and list 2, and move your head pointer of list1 while head(list(1)) > head(list(2)), and after that do this for list2 and ..., so if there is a similar item your algorithm will stop (before reach the end of lists), or in the end of two lists your algorithm will stop.
it's as easy as bellow:
public int FindSimilarityInSortedLists(List<int> list1, List<int> list2)
{
int i = 0;
int j = 0;
while (i < list1.Count && j < list2.Count)
{
if (list1[i] == list2[j])
return list1[i];
if (list1[i] < list2[j])
i++;
else
j++;
}
return -1; // not found
}
If memory was unlimited you could simply create a hashtable with the integers as keys and the values the number of times they are found. Then to do your "fast" look up you simple query for an integer, discover if its contained within the hash table, and if found check that the value is 1 or 2. That would take O(n) to load and O(1) to query.
I do not think you can do it O(n).
You should check n values whether they are in the other array. This means you have n comparing operations at least if the other array has just 1 element. But as you have n element it the other array as well, you can do it just O(n*n)