Minimum distance between 2 times on clock board - algorithm

Given 2 times (as int) on clock board, I have to calculate the minimum distance between them.
For example -
d(12,1) = 1 //not 11
d(3,5) = 2
d(10,10) = 0
What is the fastest way for that ?

If a and b are from 1 to 12:
min(abs(a - b), 12 - abs(a - b))

What have you tried?
Dim dif = Math.Abs((t2 + 6) Mod 12 - (t1 + 6) Mod 12)

Pure arithmetic (without any libraries):
int d(int first, int second){
int temp = first - second;
temp < 0? temp *=-1 :temp ;
int distance = temp > 6? 12-temp:temp;
return distance;
}

Related

n steps with 1, 2 or 3 steps taken. How many ways to get to the top?

If we have n steps and we can go up 1 or 2 steps at a time, there is a Fibonacci relation between the number of steps and the ways to climb them. IF and ONLY if we do not count 2+1 and 1+2 as different.
However, this no longer the case, as well as having to add we add a third option, taking 3 steps. How do I do this?
What I have:
1 step = 1 way
2 steps = 2 ways: 1+1, 2
3 steps = 4 ways: 1+1+1, 2+1, 1+2, 3
I have no idea where to go from here to find out the number of ways for n stairs
I get 7 for n = 4 and 14 for n= 5 i get 14+7+4+2+1 by doing the sum of all the combinations before it. so ways for n steps = n-1 ways + n-2 ways + .... 1 ways assuming i kept all the values. DYNAMIC programming.
1 2 and 3 steps would be the base-case is that correct?
I would say that the formula will look in the following way:
K(1) = 1
K(2) = 2
k(3) = 4
K(n) = K(n-3) + K(n-2) + K(n - 1)
The formula says that in order to reach the n'th step we have to firstly reach:
n-3'th step and then take 3 steps at once i.e. K(n-3)
or n-2'th step and then take 2 steps at once i.e. K(n-2)
or n-1'th step and then take 1 steps at once i.e. K(n-1)
K(4) = 7, K(5) = 13 etc.
You can either utilize the recursive formula or use dynamic programming.
Python solutions:
Recursive O(n)
This is based on the answer by Michael. This requires O(n) CPU and O(n) memory.
import functools
#functools.lru_cache(maxsize=None)
def recursive(n):
if n < 4:
initial = [1, 2, 4]
return initial[n-1]
else:
return recursive(n-1) + recursive(n-2) + recursive(n-3)
Recursive O(log(n))
This is per a comment for this answer. This tribonacci-by-doubling solution is analogous to the fibonacci-by-doubling solution in the algorithms by Nayuki. Note that multiplication has a higher complexity than constant. This doesn't require or benefit from a cache.
def recursive_doubling(n):
def recursive_tribonacci_tuple(n):
"""Return the n, n+1, and n+2 tribonacci numbers for n>=0.
Tribonacci forward doubling identities:
T(2n) = T(n+1)^2 + T(n)*(2*T(n+2) - 2*T(n+1) - T(n))
T(2n+1) = T(n)^2 + T(n+1)*(2*T(n+2) - T(n+1))
T(2n+2) = T(n+2)^2 + T(n+1)*(2*T(n) + T(n+1))
"""
assert n >= 0
if n == 0:
return 0, 0, 1 # T(0), T(1), T(2)
a, b, c = recursive_tribonacci_tuple(n // 2)
x = b*b + a*(2*(c - b) - a)
y = a*a + b*(2*c - b)
z = c*c + b*(2*a + b)
return (x, y, z) if n % 2 == 0 else (y, z, x+y+z)
return recursive_tribonacci_tuple(n)[2] # Is offset by 2 for the steps problem.
Iterative O(n)
This is motivated by the answer by 太極者無極而生. It is a modified tribonacci extension of the iterative fibonacci solution. It is modified from tribonacci in that it returns c, not a.
def iterative(n):
a, b, c = 0, 0, 1
for _ in range(n):
a, b, c = b, c, a+b+c
return c
Iterative O(log(n)) (left to right)
This is per a comment for this answer. This modified iterative tribonacci-by-doubling solution is derived from the corresponding recursive solution. For some background, see here and here. It is modified from tribonacci in that it returns c, not a. Note that multiplication has a higher complexity than constant.
The bits of n are iterated from left to right, i.e. MSB to LSB.
def iterative_doubling_l2r(n):
"""Return the n+2 tribonacci number for n>=0.
Tribonacci forward doubling identities:
T(2n) = T(n+1)^2 + T(n)*(2*T(n+2) - 2*T(n+1) - T(n))
T(2n+1) = T(n)^2 + T(n+1)*(2*T(n+2) - T(n+1))
T(2n+2) = T(n+2)^2 + T(n+1)*(2*T(n) + T(n+1))
"""
assert n >= 0
a, b, c = 0, 0, 1 # T(0), T(1), T(2)
for i in range(n.bit_length() - 1, -1, -1): # Left (MSB) to right (LSB).
x = b*b + a*(2*(c - b) - a)
y = a*a + b*(2*c - b)
z = c*c + b*(2*a + b)
bit = (n >> i) & 1
a, b, c = (y, z, x+y+z) if bit else (x, y, z)
return c
Notes:
list(range(m - 1, -1, -1)) == list(reversed(range(m)))
If the bit is odd (1), the sequence is advanced by one iteration. This intuitively makes sense after understanding the same for the efficient integer exponentiation problem.
Iterative O(log(n)) (right to left)
This is per a comment for this answer. The bits of n are iterated from right to left, i.e. LSB to MSB. This approach is probably not prescriptive.
def iterative_doubling_r2l(n):
"""Return the n+2 tribonacci number for n>=0.
Tribonacci forward doubling identities:
T(2n) = T(n+1)^2 + T(n)*(2*T(n+2) - 2*T(n+1) - T(n))
T(2n+1) = T(n)^2 + T(n+1)*(2*T(n+2) - T(n+1))
T(2n+2) = T(n+2)^2 + T(n+1)*(2*T(n) + T(n+1))
Given Tribonacci tuples (T(n), T(n+1), T(n+2)) and (T(k), T(k+1), T(k+2)),
we can "add" them together to get (T(n+k), T(n+k+1), T(n+k+2)).
Tribonacci addition formulas:
T(n+k) = T(n)*(T(k+2) - T(k+1) - T(k)) + T(n+1)*(T(k+1) - T(k)) + T(n+2)*T(k)
T(n+k+1) = T(n)*T(k) + T(n+1)*(T(k+2) - T(k+1)) + T(n+2)*T(k+1)
T(n+k+2) = T(n)*T(k+1) + T(n+1)*(T(k) + T(k+1)) + T(n+2)*T(k+2)
When n == k, these are equivalent to the doubling formulas.
"""
assert n >= 0
a, b, c = 0, 0, 1 # T(0), T(1), T(2)
d, e, f = 0, 1, 1 # T(1), T(2), T(3)
for i in range(n.bit_length()): # Right (LSB) to left (MSB).
bit = (n >> i) & 1
if bit:
# a, b, c += d, e, f
x = a*(f - e - d) + b*(e - d) + c*d
y = a*d + b*(f - e) + c*e
z = a*e + b*(d + e) + c*f
a, b, c = x, y, z
# d, e, f += d, e, f
x = e*e + d*(2*(f - e) - d)
y = d*d + e*(2*f - e)
z = f*f + e*(2*d + e)
d, e, f = x, y, z
return c
Approximations
Approximations are of course useful mainly for very large n. The exponentiation operation is used. Note that exponentiation has a higher complexity than constant.
def approx1(n):
a_pos = (19 + 3*(33**.5))**(1./3)
a_neg = (19 - 3*(33**.5))**(1./3)
b = (586 + 102*(33**.5))**(1./3)
return round(3*b * ((1./3) * (a_pos+a_neg+1))**(n+1) / (b**2 - 2*b + 4))
The approximation above was tested to be correct till n = 53, after which it differed. It's certainly possible that using higher precision floating point arithmetic will lead to a better approximation in practice.
def approx2(n):
return round((0.618363 * 1.8392**n + \
(0.029252 + 0.014515j) * (-0.41964 - 0.60629j)**n + \
(0.029252 - 0.014515j) * (-0.41964 - 0.60629j)**n).real)
The approximation above was tested to be correct till n = 11, after which it differed.
This is my solution in Ruby:
# recursion requirement: it returns the number of way up
# a staircase of n steps, given that the number of steps
# can be 1, 2, 3
def how_many_ways(n)
# this is a bit Zen like, if 0 steps, then there is 1 way
# and we don't even need to specify f(1), because f(1) = summing them up
# and so f(1) = f(0) = 1
# Similarly, f(2) is summing them up = f(1) + f(0) = 1 + 1 = 2
# and so we have all base cases covered
return 1 if n == 0
how_many_ways_total = 0
(1..3).each do |n_steps|
if n >= n_steps
how_many_ways_total += how_many_ways(n - n_steps)
end
end
return how_many_ways_total
end
0.upto(20) {|n| puts "how_many_ways(#{n}) => #{how_many_ways(n)}"}
and a shorter version:
def how_many_ways(n)
# this is a bit Zen like, if 0 steps, then there is 1 way
# if n is negative, there is no way and therefore returns 0
return 1 if n == 0
return 0 if n < 0
return how_many_ways(n - 1) + how_many_ways(n - 2) + how_many_ways(n - 3)
end
0.upto(20) {|n| puts "how_many_ways(#{n}) => #{how_many_ways(n)}"}
and once we know it is similar to fibonacci series, we wouldn't use recursion, but use an iterative method:
#
# from 0 to 27: recursive: 4.72 second
# iterative: 0.03 second
#
def how_many_ways(n)
arr = [0, 0, 1]
n.times do
new_sum = arr.inject(:+) # sum them up
arr.push(new_sum).shift()
end
return arr[-1]
end
0.upto(27) {|n| puts "how_many_ways(#{n}) => #{how_many_ways(n)}"}
output:
how_many_ways(0) => 1
how_many_ways(1) => 1
how_many_ways(2) => 2
how_many_ways(3) => 4
how_many_ways(4) => 7
how_many_ways(5) => 13
how_many_ways(6) => 24
how_many_ways(7) => 44
how_many_ways(8) => 81
how_many_ways(9) => 149
how_many_ways(10) => 274
how_many_ways(11) => 504
how_many_ways(12) => 927
how_many_ways(13) => 1705
.
.
how_many_ways(22) => 410744
how_many_ways(23) => 755476
how_many_ways(24) => 1389537
how_many_ways(25) => 2555757
how_many_ways(26) => 4700770
how_many_ways(27) => 8646064
I like the explanation of #MichałKomorowski and the comment of #rici. Though I think if it depends on knowing K(3) = 4, then it involves counting manually.
Easily get the intuition for the problem:
Think you are climbing stairs and the possible steps you can take are 1 & 2
The total no. of ways to reach step 4 = Total no. of ways to reach step 3 + Total no of ways to reach step 2
How?
Basically, there are only two possible steps from where you can reach step 4.
Either you are in step 3 and take one step
Or you are in step 2 and take two step leap
These two are the only possibilities by which you can ever reach step 4
Similarly, there are only two possible ways to reach step 2
Either you are in step 1 and take one step
Or you are in step 0 and take two step leap
F(n) = F(n-1) + F(n-2)
F(0) = 0 and F(1) = 1 are the base cases. From here you can start building F(2), F(3) and so on. This is similar to Fibonacci series.
If the number of possible steps is increased, say [1,2,3], now for every step you have one more option i.e., you can directly leap from three steps prior to it
Hence the formula would become
F(n) = F(n-1) + F(n-2) + F(n-3)
See this video for understanding Staircase Problem Fibonacci Series
Easy understanding of code: geeksforgeeks staircase problem
Count ways to reach the nth stair using step 1, 2, 3.
We can count using simple Recursive Methods.
// Header File
#include<stdio.h>
// Function prototype for recursive Approch
int findStep(int);
int main(){
int n;
int ways=0;
ways = findStep(4);
printf("%d\n", ways);
return 0;
}
// Function Definition
int findStep(int n){
int t1, t2, t3;
if(n==1 || n==0){
return 1;
}else if(n==2){
return 2;
}
else{
t3 = findStep(n-3);
t2 = findStep(n-2);
t1 = findStep(n-1);
return t1+t2+t3;
}
}
def count(steps):
sol = []
sol.append(1)
sol.append(1 + sol[0])
sol.append(1 + sol[1] + sol[0])
if(steps > 3):
for x in range(4, steps+1):
sol[(x-1)%3] = sum(sol)
return sol[(steps-1)%3]
My solution is in java.
I decided to solve this bottom up.
I start off with having an empty array of current paths []
Each step i will add a all possible step sizes {1,2,3}
First step [] --> [[1],[2],[3]]
Second step [[1],[2],[3]] --> [[1,1],[1,2],[1,3],[2,1],[2,2],[2,3],[3,1][3,2],[3,3]]
Iteration 0: []
Iteration 1: [ [1], [2] , [3]]
Iteration 2: [ [1,1], [1,2], [1,3], [2,1], [2,2], [2,3], [3,1], [3,2], [3,3]]
Iteration 3 [ [1,1,1], [1,1,2], [1,1,3] ....]
The sequence lengths are as follows
1
2
3
5
8
13
21
My step function is called build
public class App {
public static boolean isClimedTooHigh(List<Integer> path, int maxSteps){
int sum = 0;
for (Integer i : path){
sum+=i;
}
return sum>=maxSteps;
}
public static void modify(Integer x){
x++;
return;
}
/// 1 2 3
/// 11 12 13
/// 21 22 23
/// 31 32 33
///111 121
public static boolean build(List<List<Integer>> paths, List<Integer> steps, int maxSteps){
List<List<Integer>> next = new ArrayList<List<Integer>>();
for (List<Integer> path : paths){
if (isClimedTooHigh(path, maxSteps)){
next.add(path);
}
for (Integer step : steps){
List<Integer> p = new ArrayList<Integer>(path);
p.add(step);
next.add(p);
}
}
paths.clear();
boolean completed = true;
for (List<Integer> n : next){
if (completed && !isClimedTooHigh(n, maxSteps))
completed = false;
paths.add(n);
}
return completed;
}
public static boolean isPathEqualToMax(List<Integer> path, int maxSteps){
int sum = 0;
for (Integer i : path){
sum+=i;
}
return sum==maxSteps;
}
public static void calculate( int stepSize, int maxSteps ){
List<List<Integer>> paths = new ArrayList<List<Integer>>();
List<Integer> steps = new ArrayList<Integer>();
for (int i =1; i < stepSize; i++){
List<Integer> s = new ArrayList<Integer>(1);
s.add(i);
steps.add(i);
paths.add(s);
}
while (!build(paths,steps,maxSteps));
List<List<Integer>> finalPaths = new ArrayList<List<Integer>>();
for (List<Integer> p : paths){
if (isPathEqualToMax(p, maxSteps)){
finalPaths.add(p);
}
}
System.out.println(finalPaths.size());
}
public static void main(String[] args){
calculate(3,1);
calculate(3,2);
calculate(3,3);
calculate(3,4);
calculate(3,5);
calculate(3,6);
calculate(3,7);
return;
}
}
Count total number of ways to cover the distance with 1, 2 and 3 steps.
Recursion solution time complexity is exponential i.e. O(3n).
Since same sub problems are solved again, this problem has overlapping sub problems property. So min square sum problem has both properties of a dynamic programming problem.
public class MaxStepsCount {
/** Dynamic Programming. */
private static int getMaxWaysDP(int distance) {
int[] count = new int[distance+1];
count[0] = 1;
count[1] = 1;
count[2] = 2;
/** Memorize the Sub-problem in bottom up manner*/
for (int i=3; i<=distance; i++) {
count[i] = count[i-1] + count[i-2] + count[i-3];
}
return count[distance];
}
/** Recursion Approach. */
private static int getMaxWaysRecur(int distance) {
if(distance<0) {
return 0;
} else if(distance==0) {
return 1;
}
return getMaxWaysRecur(distance-1)+getMaxWaysRecur(distance-2)
+getMaxWaysRecur(distance-3);
}
public static void main(String[] args) {
// Steps pf 1, 2 and 3.
int distance = 10;
/** Recursion Approach. */
int ways = getMaxWaysRecur(distance);
System.out.println(ways);
/** Dynamic Programming. */
ways = getMaxWaysDP(distance);
System.out.println(ways);
}
}
My blog post on this:
http://javaexplorer03.blogspot.in/2016/10/count-number-of-ways-to-cover-distance.html
Recursive memoization based C++ solution:
You ask a stair how many ways we can go to top? If its not the topmost stair, its going to ask all its neighbors and sum it up and return you the result. If its the topmost stair its going to say 1.
vector<int> getAllStairsFromHere(vector<int>& numSteps, int& numStairs, int currentStair)
{
vector<int> res;
for(auto it : numSteps)
if(it + currentStair <= numStairs)
res.push_back(it + currentStair);
return res;
}
int numWaysToClimbUtil(vector<int>& numSteps, int& numStairs, int currentStair, map<int,int>& memT)
{
auto it = memT.find(currentStair);
if(it != memT.end())
return it->second;
if(currentStair >= numStairs)
return 1;
int numWaysToClimb = 0;
auto choices = getAllStairsFromHere(numSteps, numStairs, currentStair);
for(auto it : choices)
numWaysToClimb += numWaysToClimbUtil(numSteps, numStairs, it, memT);
memT.insert(make_pair(currentStair, numWaysToClimb));
return memT[currentStair];
}
int numWaysToClimb(vector<int>numSteps, int numStairs)
{
map<int,int> memT;
int currentStair = 0;
return numWaysToClimbUtil(numSteps, numStairs, currentStair, memT);
}
Here is an O(Nk) Java implementation using dynamic programming:
public class Sample {
public static void main(String[] args) {
System.out.println(combos(new int[]{4,3,2,1}, 100));
}
public static int combos(int[] steps, int stairs) {
int[][] table = new int[stairs+1][steps.length];
for (int i = 0; i < steps.length; i++) {
for (int n = 1; n <= stairs; n++ ) {
int count = 0;
if (n % steps[i] == 0){
if (i == 0)
count++;
else {
if (n <= steps[i])
count++;
}
}
if (i > 0 && n > steps[i]) {
count += table[n - steps[i]][i];
}
if (i > 0)
count += table[n][i-1];
table[n][i] = count;
}
}
for (int n = 1; n < stairs; n++) {
System.out.print(n + "\t");
for (int i = 0; i < steps.length; i++) {
System.out.print(table[n][i] + "\t");
}
System.out.println();
}
return table[stairs][steps.length-1];
}
}
The idea is to fill the following table 1 column at a time from left to right:
N (4) (4,3) (4,3,2) (4,3,2,1)
1 0 0 0 1
2 0 0 1 2
3 0 1 1 3
4 1 1 2 5
5 0 0 1 6
6 0 1 3 9
7 0 1 2 11
8 1 1 4 15
9 0 1 3 18
10 0 1 5 23
11 0 1 4 27
12 1 2 7 34
13 0 1 5 39
..
..
99 0 9 217 7803
100 8037
Below is the several ways to use 1 , 2 and 3 steps
1: 1
2: 11 2
3: 111 12 21 3
4: 1111 121 211 112 22 13 31
5: 11111 1112 1121 1211 2111 122 212 221 113 131 311 23 32
6: 111111 11112 11121 11211 12111 21111 1113 1131 1311 3111 123 132 312 321 213 231 33 222 1122 1221 2211 1212 2121 2112
So according to above combination the soln should be:
K(n) = K(n-3) + K(n-2) + K(n - 1)
k(6) = 24 which is k(5)+k(4)+k(3) = 13+7+4
Java recursive implementation based on Michał's answer:
public class Tribonacci {
// k(0) = 1
// k(1) = 1
// k(2) = 2
// k(3) = 4
// ...
// k(n) = k(n-3) + k(n-2) + k(n - 1)
static int get(int n) {
if (n == 0) {
return 1;
} if (n == 1) {
return 1;
} else if (n == 2) {
return 2;
//} else if (n == 3) {
// return 4;
} else {
return get(n - 3) + get(n - 2) + get(n - 1);
}
}
public static void main(String[] args) {
System.out.println("Tribonacci sequence");
System.out.println(Tribonacci.get(1));
System.out.println(Tribonacci.get(2));
System.out.println(Tribonacci.get(3));
System.out.println(Tribonacci.get(4));
System.out.println(Tribonacci.get(5));
System.out.println(Tribonacci.get(6));
}
}
As the question has got only one input which is stair numbers and simple constraints, I thought result could be equal to a simple mathematical equation which can be calculated with O(1) time complexity. Apparently, it is not as simple as i thought. But, i still could do something!
By underlining this, I found an equation for solution of same question with 1 and 2 steps taken(excluding 3). It took my 1 day to find this out. Harder work can find for 3 step version too.
So, if we were allowed to take 1 or 2 steps, results would be equal to:
First notation is not mathematically perfect, but i think it is easier to understand.
On the other hand, there must be a much simpler equation as there is one for Fibonacci series. But discovering it is out of my skills.
Maybe its just 2^(n-1) with n being the number of steps?
It makes sence for me because with 4 steps you have 8 possibilities:
4,
3+1,
1+3,
2+2,
2+1+1,
1+2+1,
1+1+2,
1+1+1+1,
I guess this is the pattern

How to find the number of values in a given range divisible by a given value?

I have three numbers x, y , z.
For a range between numbers x and y.
How can i find the total numbers whose % with z is 0 i.e. how many numbers between x and y are divisible by z ?
It can be done in O(1): find the first one, find the last one, find the count of all other.
I'm assuming the range is inclusive. If your ranges are exclusive, adjust the bounds by one:
find the first value after x that is divisible by z. You can discard x:
x_mod = x % z;
if(x_mod != 0)
x += (z - x_mod);
find the last value before y that is divisible by y. You can discard y:
y -= y % z;
find the size of this range:
if(x > y)
return 0;
else
return (y - x) / z + 1;
If mathematical floor and ceil functions are available, the first two parts can be written more readably. Also the last part can be compressed using math functions:
x = ceil (x, z);
y = floor (y, z);
return max((y - x) / z + 1, 0);
if the input is guaranteed to be a valid range (x >= y), the last test or max is unneccessary:
x = ceil (x, z);
y = floor (y, z);
return (y - x) / z + 1;
(2017, answer rewritten thanks to comments)
The number of multiples of z in a number n is simply n / z
/ being the integer division, meaning decimals that could result from the division are simply ignored (for instance 17/5 => 3 and not 3.4).
Now, in a range from x to y, how many multiples of z are there?
Let see how many multiples m we have up to y
0----------------------------------x------------------------y
-m---m---m---m---m---m---m---m---m---m---m---m---m---m---m---
You see where I'm going... to get the number of multiples in the range [ x, y ], get the number of multiples of y then subtract the number of multiples before x, (x-1) / z
Solution: ( y / z ) - (( x - 1 ) / z )
Programmatically, you could make a function numberOfMultiples
function numberOfMultiples(n, z) {
return n / z;
}
to get the number of multiples in a range [x, y]
numberOfMultiples(y) - numberOfMultiples(x-1)
The function is O(1), there is no need of a loop to get the number of multiples.
Examples of results you should find
[30, 90] ÷ 13 => 4
[1, 1000] ÷ 6 => 166
[100, 1000000] ÷ 7 => 142843
[777, 777777777] ÷ 7 => 111111001
For the first example, 90 / 13 = 6, (30-1) / 13 = 2, and 6-2 = 4
---26---39---52---65---78---91--
^ ^
30<---(4 multiples)-->90
I also encountered this on Codility. It took me much longer than I'd like to admit to come up with a good solution, so I figured I would share what I think is an elegant solution!
Straightforward Approach 1/2:
O(N) time solution with a loop and counter, unrealistic when N = 2 billion.
Awesome Approach 3:
We want the number of digits in some range that are divisible by K.
Simple case: assume range [0 .. n*K], N = n*K
N/K represents the number of digits in [0,N) that are divisible by K, given N%K = 0 (aka. N is divisible by K)
ex. N = 9, K = 3, Num digits = |{0 3 6}| = 3 = 9/3
Similarly,
N/K + 1 represents the number of digits in [0,N] divisible by K
ex. N = 9, K = 3, Num digits = |{0 3 6 9}| = 4 = 9/3 + 1
I think really understanding the above fact is the trickiest part of this question, I cannot explain exactly why it works.
The rest boils down to prefix sums and handling special cases.
Now we don't always have a range that begins with 0, and we cannot assume the two bounds will be divisible by K.
But wait! We can fix this by calculating our own nice upper and lower bounds and using some subtraction magic :)
First find the closest upper and lower in the range [A,B] that are divisible by K.
Upper bound (easier): ex. B = 10, K = 3, new_B = 9... the pattern is B - B%K
Lower bound: ex. A = 10, K = 3, new_A = 12... try a few more and you will see the pattern is A - A%K + K
Then calculate the following using the above technique:
Determine the total number of digits X between [0,B] that are divisible by K
Determine the total number of digits Y between [0,A) that are divisible by K
Calculate the number of digits between [A,B] that are divisible by K in constant time by the expression X - Y
Website: https://codility.com/demo/take-sample-test/count_div/
class CountDiv {
public int solution(int A, int B, int K) {
int firstDivisible = A%K == 0 ? A : A + (K - A%K);
int lastDivisible = B%K == 0 ? B : B - B%K; //B/K behaves this way by default.
return (lastDivisible - firstDivisible)/K + 1;
}
}
This is my first time explaining an approach like this. Feedback is very much appreciated :)
This is one of the Codility Lesson 3 questions. For this question, the input is guaranteed to be in a valid range. I answered it using Javascript:
function solution(x, y, z) {
var totalDivisibles = Math.floor(y / z),
excludeDivisibles = Math.floor((x - 1) / z),
divisiblesInArray = totalDivisibles - excludeDivisibles;
return divisiblesInArray;
}
https://codility.com/demo/results/demoQX3MJC-8AP/
(I actually wanted to ask about some of the other comments on this page but I don't have enough rep points yet).
Divide y-x by z, rounding down. Add one if y%z < x%z or if x%z == 0.
No mathematical proof, unless someone cares to provide one, but test cases, in Perl:
#!perl
use strict;
use warnings;
use Test::More;
sub multiples_in_range {
my ($x, $y, $z) = #_;
return 0 if $x > $y;
my $ret = int( ($y - $x) / $z);
$ret++ if $y%$z < $x%$z or $x%$z == 0;
return $ret;
}
for my $z (2 .. 10) {
for my $x (0 .. 2*$z) {
for my $y (0 .. 4*$z) {
is multiples_in_range($x, $y, $z),
scalar(grep { $_ % $z == 0 } $x..$y),
"[$x..$y] mod $z";
}
}
}
done_testing;
Output:
$ prove divrange.pl
divrange.pl .. ok
All tests successful.
Files=1, Tests=3405, 0 wallclock secs ( 0.20 usr 0.02 sys + 0.26 cusr 0.01 csys = 0.49 CPU)
Result: PASS
Let [A;B] be an interval of positive integers including A and B such that 0 <= A <= B, K be the divisor.
It is easy to see that there are N(A) = ⌊A / K⌋ = floor(A / K) factors of K in interval [0;A]:
1K 2K 3K 4K 5K
●········x········x··●·····x········x········x···>
0 A
Similarly, there are N(B) = ⌊B / K⌋ = floor(B / K) factors of K in interval [0;B]:
1K 2K 3K 4K 5K
●········x········x········x········x···●····x···>
0 B
Then N = N(B) - N(A) equals to the number of K's (the number of integers divisible by K) in range (A;B]. The point A is not included, because the subtracted N(A) includes this point. Therefore, the result should be incremented by one, if A mod K is zero:
N := N(B) - N(A)
if (A mod K = 0)
N := N + 1
Implementation in PHP
function solution($A, $B, $K) {
if ($K < 1)
return 0;
$c = floor($B / $K) - floor($A / $K);
if ($A % $K == 0)
$c++;
return (int)$c;
}
In PHP, the effect of the floor function can be achieved by casting to the integer type:
$c = (int)($B / $K) - (int)($A / $K);
which, I think, is faster.
Here is my short and simple solution in C++ which got 100/100 on codility. :)
Runs in O(1) time. I hope its not difficult to understand.
int solution(int A, int B, int K) {
// write your code in C++11
int cnt=0;
if( A%K==0 or B%K==0)
cnt++;
if(A>=K)
cnt+= (B - A)/K;
else
cnt+=B/K;
return cnt;
}
(floor)(high/d) - (floor)(low/d) - (high%d==0)
Explanation:
There are a/d numbers divisible by d from 0.0 to a. (d!=0)
Therefore (floor)(high/d) - (floor)(low/d) will give numbers divisible in the range (low,high] (Note that low is excluded and high is included in this range)
Now to remove high from the range just subtract (high%d==0)
Works for integers, floats or whatever (Use fmodf function for floats)
Won't strive for an o(1) solution, this leave for more clever person:) Just feel this is a perfect usage scenario for function programming. Simple and straightforward.
> x,y,z=1,1000,6
=> [1, 1000, 6]
> (x..y).select {|n| n%z==0}.size
=> 166
EDIT: after reading other's O(1) solution. I feel shamed. Programming made people lazy to think...
Division (a/b=c) by definition - taking a set of size a and forming groups of size b. The number of groups of this size that can be formed, c, is the quotient of a and b. - is nothing more than the number of integers within range/interval ]0..a] (not including zero, but including a) that are divisible by b.
so by definition:
Y/Z - number of integers within ]0..Y] that are divisible by Z
and
X/Z - number of integers within ]0..X] that are divisible by Z
thus:
result = [Y/Z] - [X/Z] + x (where x = 1 if and only if X is divisible by Y otherwise 0 - assuming the given range [X..Y] includes X)
example :
for (6, 12, 2) we have 12/2 - 6/2 + 1 (as 6%2 == 0) = 6 - 3 + 1 = 4 // {6, 8, 10, 12}
for (5, 12, 2) we have 12/2 - 5/2 + 0 (as 5%2 != 0) = 6 - 2 + 0 = 4 // {6, 8, 10, 12}
The time complexity of the solution will be linear.
Code Snippet :
int countDiv(int a, int b, int m)
{
int mod = (min(a, b)%m==0);
int cnt = abs(floor(b/m) - floor(a/m)) + mod;
return cnt;
}
here n will give you count of number and will print sum of all numbers that are divisible by k
int a = sc.nextInt();
int b = sc.nextInt();
int k = sc.nextInt();
int first = 0;
if (a > k) {
first = a + a/k;
} else {
first = k;
}
int last = b - b%k;
if (first > last) {
System.out.println(0);
} else {
int n = (last - first)/k+1;
System.out.println(n * (first + last)/2);
}
Here is the solution to the problem written in Swift Programming Language.
Step 1: Find the first number in the range divisible by z.
Step 2: Find the last number in the range divisible by z.
Step 3: Use a mathematical formula to find the number of divisible numbers by z in the range.
func solution(_ x : Int, _ y : Int, _ z : Int) -> Int {
var numberOfDivisible = 0
var firstNumber: Int
var lastNumber: Int
if y == x {
return x % z == 0 ? 1 : 0
}
//Find first number divisible by z
let moduloX = x % z
if moduloX == 0 {
firstNumber = x
} else {
firstNumber = x + (z - moduloX)
}
//Fist last number divisible by z
let moduloY = y % z
if moduloY == 0 {
lastNumber = y
} else {
lastNumber = y - moduloY
}
//Math formula
numberOfDivisible = Int(floor(Double((lastNumber - firstNumber) / z))) + 1
return numberOfDivisible
}
public static int Solution(int A, int B, int K)
{
int count = 0;
//If A is divisible by K
if(A % K == 0)
{
count = (B / K) - (A / K) + 1;
}
//If A is not divisible by K
else if(A % K != 0)
{
count = (B / K) - (A / K);
}
return count;
}
This can be done in O(1).
Here you are a solution in C++.
auto first{ x % z == 0 ? x : x + z - x % z };
auto last{ y % z == 0 ? y : y - y % z };
auto ans{ (last - first) / z + 1 };
Where first is the first number that ∈ [x; y] and is divisible by z, last is the last number that ∈ [x; y] and is divisible by z and ans is the answer that you are looking for.

Number of 1s in the two's complement binary representations of integers in a range

This problem is from the 2011 Codesprint (http://csfall11.interviewstreet.com/):
One of the basics of Computer Science is knowing how numbers are represented in 2's complement. Imagine that you write down all numbers between A and B inclusive in 2's complement representation using 32 bits. How many 1's will you write down in all ?
Input:
The first line contains the number of test cases T (<1000). Each of the next T lines contains two integers A and B.
Output:
Output T lines, one corresponding to each test case.
Constraints:
-2^31 <= A <= B <= 2^31 - 1
Sample Input:
3
-2 0
-3 4
-1 4
Sample Output:
63
99
37
Explanation:
For the first case, -2 contains 31 1's followed by a 0, -1 contains 32 1's and 0 contains 0 1's. Thus the total is 63.
For the second case, the answer is 31 + 31 + 32 + 0 + 1 + 1 + 2 + 1 = 99
I realize that you can use the fact that the number of 1s in -X is equal to the number of 0s in the complement of (-X) = X-1 to speed up the search. The solution claims that there is a O(log X) recurrence relation for generating the answer but I do not understand it. The solution code can be viewed here: https://gist.github.com/1285119
I would appreciate it if someone could explain how this relation is derived!
Well, it's not that complicated...
The single-argument solve(int a) function is the key. It is short, so I will cut&paste it here:
long long solve(int a)
{
if(a == 0) return 0 ;
if(a % 2 == 0) return solve(a - 1) + __builtin_popcount(a) ;
return ((long long)a + 1) / 2 + 2 * solve(a / 2) ;
}
It only works for non-negative a, and it counts the number of 1 bits in all integers from 0 to a inclusive.
The function has three cases:
a == 0 -> returns 0. Obviously.
a even -> returns the number of 1 bits in a plus solve(a-1). Also pretty obvious.
The final case is the interesting one. So, how do we count the number of 1 bits from 0 to an odd number a?
Consider all of the integers between 0 and a, and split them into two groups: The evens, and the odds. For example, if a is 5, you have two groups (in binary):
000 (aka. 0)
010 (aka. 2)
100 (aka. 4)
and
001 (aka 1)
011 (aka 3)
101 (aka 5)
Observe that these two groups must have the same size (because a is odd and the range is inclusive). To count how many 1 bits there are in each group, first count all but the last bits, then count the last bits.
All but the last bits looks like this:
00
01
10
...and it looks like this for both groups. The number of 1 bits here is just solve(a/2). (In this example, it is the number of 1 bits from 0 to 2. Also, recall that integer division in C/C++ rounds down.)
The last bit is zero for every number in the first group and one for every number in the second group, so those last bits contribute (a+1)/2 one bits to the total.
So the third case of the recursion is (a+1)/2 + 2*solve(a/2), with appropriate casts to long long to handle the case where a is INT_MAX (and thus a+1 overflows).
This is an O(log N) solution. To generalize it to solve(a,b), you just compute solve(b) - solve(a), plus the appropriate logic for worrying about negative numbers. That is what the two-argument solve(int a, int b) is doing.
Cast the array into a series of integers. Then for each integer do:
int NumberOfSetBits(int i)
{
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}
Also this is portable, unlike __builtin_popcount
See here: How to count the number of set bits in a 32-bit integer?
when a is positive, the better explanation was already been posted.
If a is negative, then on a 32-bit system each negative number between a and zero will have 32 1's bits less the number of bits in the range from 0 to the binary representation of positive a.
So, in a better way,
long long solve(int a) {
if (a >= 0){
if (a == 0) return 0;
else if ((a %2) == 0) return solve(a - 1) + noOfSetBits(a);
else return (2 * solve( a / 2)) + ((long long)a + 1) / 2;
}else {
a++;
return ((long long)(-a) + 1) * 32 - solve(-a);
}
}
In the following code, the bitsum of x is defined as the count of 1 bits in the two's complement representation of the numbers between 0 and x (inclusive), where Integer.MIN_VALUE <= x <= Integer.MAX_VALUE.
For example:
bitsum(0) is 0
bitsum(1) is 1
bitsum(2) is 1
bitsum(3) is 4
..etc
10987654321098765432109876543210 i % 10 for 0 <= i <= 31
00000000000000000000000000000000 0
00000000000000000000000000000001 1
00000000000000000000000000000010 2
00000000000000000000000000000011 3
00000000000000000000000000000100 4
00000000000000000000000000000101 ...
00000000000000000000000000000110
00000000000000000000000000000111 (2^i)-1
00000000000000000000000000001000 2^i
00000000000000000000000000001001 (2^i)+1
00000000000000000000000000001010 ...
00000000000000000000000000001011 x, 011 = x & (2^i)-1 = 3
00000000000000000000000000001100
00000000000000000000000000001101
00000000000000000000000000001110
00000000000000000000000000001111
00000000000000000000000000010000
00000000000000000000000000010001
00000000000000000000000000010010 18
...
01111111111111111111111111111111 Integer.MAX_VALUE
The formula of the bitsum is:
bitsum(x) = bitsum((2^i)-1) + 1 + x - 2^i + bitsum(x & (2^i)-1 )
Note that x - 2^i = x & (2^i)-1
Negative numbers are handled slightly differently than positive numbers. In this case the number of zeros is subtracted from the total number of bits:
Integer.MIN_VALUE <= x < -1
Total number of bits: 32 * -x.
The number of zeros in a negative number x is equal to the number of ones in -x - 1.
public class TwosComplement {
//t[i] is the bitsum of (2^i)-1 for i in 0 to 31.
private static long[] t = new long[32];
static {
t[0] = 0;
t[1] = 1;
int p = 2;
for (int i = 2; i < 32; i++) {
t[i] = 2*t[i-1] + p;
p = p << 1;
}
}
//count the bits between x and y inclusive
public static long bitsum(int x, int y) {
if (y > x && x > 0) {
return bitsum(y) - bitsum(x-1);
}
else if (y >= 0 && x == 0) {
return bitsum(y);
}
else if (y == x) {
return Integer.bitCount(y);
}
else if (x < 0 && y == 0) {
return bitsum(x);
} else if (x < 0 && x < y && y < 0 ) {
return bitsum(x) - bitsum(y+1);
} else if (x < 0 && x < y && 0 < y) {
return bitsum(x) + bitsum(y);
}
throw new RuntimeException(x + " " + y);
}
//count the bits between 0 and x
public static long bitsum(int x) {
if (x == 0) return 0;
if (x < 0) {
if (x == -1) {
return 32;
} else {
long y = -(long)x;
return 32 * y - bitsum((int)(y - 1));
}
} else {
int n = x;
int sum = 0; //x & (2^i)-1
int j = 0;
int i = 1; //i = 2^j
int lsb = n & 1; //least significant bit
n = n >>> 1;
while (n != 0) {
sum += lsb * i;
lsb = n & 1;
n = n >>> 1;
i = i << 1;
j++;
}
long tot = t[j] + 1 + sum + bitsum(sum);
return tot;
}
}
}

How to calculate the index (lexicographical order) when the combination is given

I know that there is an algorithm that permits, given a combination of number (no repetitions, no order), calculates the index of the lexicographic order.
It would be very useful for my application to speedup things...
For example:
combination(10, 5)
1 - 1 2 3 4 5
2 - 1 2 3 4 6
3 - 1 2 3 4 7
....
251 - 5 7 8 9 10
252 - 6 7 8 9 10
I need that the algorithm returns the index of the given combination.
es: index( 2, 5, 7, 8, 10 ) --> index
EDIT: actually I'm using a java application that generates all combinations C(53, 5) and inserts them into a TreeMap.
My idea is to create an array that contains all combinations (and related data) that I can index with this algorithm.
Everything is to speedup combination searching.
However I tried some (not all) of your solutions and the algorithms that you proposed are slower that a get() from TreeMap.
If it helps: my needs are for a combination of 5 from 53 starting from 0 to 52.
Thank you again to all :-)
Here is a snippet that will do the work.
#include <iostream>
int main()
{
const int n = 10;
const int k = 5;
int combination[k] = {2, 5, 7, 8, 10};
int index = 0;
int j = 0;
for (int i = 0; i != k; ++i)
{
for (++j; j != combination[i]; ++j)
{
index += c(n - j, k - i - 1);
}
}
std::cout << index + 1 << std::endl;
return 0;
}
It assumes you have a function
int c(int n, int k);
that will return the number of combinations of choosing k elements out of n elements.
The loop calculates the number of combinations preceding the given combination.
By adding one at the end we get the actual index.
For the given combination there are
c(9, 4) = 126 combinations containing 1 and hence preceding it in lexicographic order.
Of the combinations containing 2 as the smallest number there are
c(7, 3) = 35 combinations having 3 as the second smallest number
c(6, 3) = 20 combinations having 4 as the second smallest number
All of these are preceding the given combination.
Of the combinations containing 2 and 5 as the two smallest numbers there are
c(4, 2) = 6 combinations having 6 as the third smallest number.
All of these are preceding the given combination.
Etc.
If you put a print statement in the inner loop you will get the numbers
126, 35, 20, 6, 1.
Hope that explains the code.
Convert your number selections to a factorial base number. This number will be the index you want. Technically this calculates the lexicographical index of all permutations, but if you only give it combinations, the indexes will still be well ordered, just with some large gaps for all the permutations that come in between each combination.
Edit: pseudocode removed, it was incorrect, but the method above should work. Too tired to come up with correct pseudocode at the moment.
Edit 2: Here's an example. Say we were choosing a combination of 5 elements from a set of 10 elements, like in your example above. If the combination was 2 3 4 6 8, you would get the related factorial base number like so:
Take the unselected elements and count how many you have to pass by to get to the one you are selecting.
1 2 3 4 5 6 7 8 9 10
2 -> 1
1 3 4 5 6 7 8 9 10
3 -> 1
1 4 5 6 7 8 9 10
4 -> 1
1 5 6 7 8 9 10
6 -> 2
1 5 7 8 9 10
8 -> 3
So the index in factorial base is 1112300000
In decimal base, it's
1*9! + 1*8! + 1*7! + 2*6! + 3*5! = 410040
This is Algorithm 2.7 kSubsetLexRank on page 44 of Combinatorial Algorithms by Kreher and Stinson.
r = 0
t[0] = 0
for i from 1 to k
if t[i - 1] + 1 <= t[i] - 1
for j from t[i - 1] to t[i] - 1
r = r + choose(n - j, k - i)
return r
The array t holds your values, for example [5 7 8 9 10]. The function choose(n, k) calculates the number "n choose k". The result value r will be the index, 251 for the example. Other inputs are n and k, for the example they would be 10 and 5.
zero-base,
# v: array of length k consisting of numbers between 0 and n-1 (ascending)
def index_of_combination(n,k,v):
idx = 0
for p in range(k-1):
if p == 0: arrg = range(1,v[p]+1)
else: arrg = range(v[p-1]+2, v[p]+1)
for a in arrg:
idx += combi[n-a, k-1-p]
idx += v[k-1] - v[k-2] - 1
return idx
Null Set has the right approach. The index corresponds to the factorial-base number of the sequence. You build a factorial-base number just like any other base number, except that the base decreases for each digit.
Now, the value of each digit in the factorial-base number is the number of elements less than it that have not yet been used. So, for combination(10, 5):
(1 2 3 4 5) == 0*9!/5! + 0*8!/5! + 0*7!/5! + 0*6!/5! + 0*5!/5!
== 0*3024 + 0*336 + 0*42 + 0*6 + 0*1
== 0
(10 9 8 7 6) == 9*3024 + 8*336 + 7*42 + 6*6 + 5*1
== 30239
It should be pretty easy to calculate the index incrementally.
If you have a set of positive integers 0<=x_1 < x_2< ... < x_k , then you could use something called the squashed order:
I = sum(j=1..k) Choose(x_j,j)
The beauty of the squashed order is that it works independent of the largest value in the parent set.
The squashed order is not the order you are looking for, but it is related.
To use the squashed order to get the lexicographic order in the set of k-subsets of {1,...,n) is by taking
1 <= x1 < ... < x_k <=n
compute
0 <= n-x_k < n-x_(k-1) ... < n-x_1
Then compute the squashed order index of (n-x_k,...,n-k_1)
Then subtract the squashed order index from Choose(n,k) to get your result, which is the lexicographic index.
If you have relatively small values of n and k, you can cache all the values Choose(a,b) with a
See Anderson, Combinatorics on Finite Sets, pp 112-119
I needed also the same for a project of mine and the fastest solution I found was (Python):
import math
def nCr(n,r):
f = math.factorial
return f(n) / f(r) / f(n-r)
def index(comb,n,k):
r=nCr(n,k)
for i in range(k):
if n-comb[i]<k-i:continue
r=r-nCr(n-comb[i],k-i)
return r
My input "comb" contained elements in increasing order You can test the code with for example:
import itertools
k=3
t=[1,2,3,4,5]
for x in itertools.combinations(t, k):
print x,index(x,len(t),k)
It is not hard to prove that if comb=(a1,a2,a3...,ak) (in increasing order) then:
index=[nCk-(n-a1+1)Ck] + [(n-a1)C(k-1)-(n-a2+1)C(k-1)] + ... =
nCk -(n-a1)Ck -(n-a2)C(k-1) - .... -(n-ak)C1
There's another way to do all this. You could generate all possible combinations and write them into a binary file where each comb is represented by it's index starting from zero. Then, when you need to find an index, and the combination is given, you apply a binary search on the file. Here's the function. It's written in VB.NET 2010 for my lotto program, it works with Israel lottery system so there's a bonus (7th) number; just ignore it.
Public Function Comb2Index( _
ByVal gAr() As Byte) As UInt32
Dim mxPntr As UInt32 = WHL.AMT.WHL_SYS_00 '(16.273.488)
Dim mdPntr As UInt32 = mxPntr \ 2
Dim eqCntr As Byte
Dim rdAr() As Byte
modBinary.OpenFile(WHL.WHL_SYS_00, _
FileMode.Open, FileAccess.Read)
Do
modBinary.ReadBlock(mdPntr, rdAr)
RP: If eqCntr = 7 Then GoTo EX
If gAr(eqCntr) = rdAr(eqCntr) Then
eqCntr += 1
GoTo RP
ElseIf gAr(eqCntr) < rdAr(eqCntr) Then
If eqCntr > 0 Then eqCntr = 0
mxPntr = mdPntr
mdPntr \= 2
ElseIf gAr(eqCntr) > rdAr(eqCntr) Then
If eqCntr > 0 Then eqCntr = 0
mdPntr += (mxPntr - mdPntr) \ 2
End If
Loop Until eqCntr = 7
EX: modBinary.CloseFile()
Return mdPntr
End Function
P.S. It takes 5 to 10 mins to generate 16 million combs on a Core 2 Duo. To find the index using binary search on file takes 397 milliseconds on a SATA drive.
Assuming the maximum setSize is not too large, you can simply generate a lookup table, where the inputs are encoded this way:
int index(a,b,c,...)
{
int key = 0;
key |= 1<<a;
key |= 1<<b;
key |= 1<<c;
//repeat for all arguments
return Lookup[key];
}
To generate the lookup table, look at this "banker's order" algorithm. Generate all the combinations, and also store the base index for each nItems. (For the example on p6, this would be [0,1,5,11,15]). Note that by you storing the answers in the opposite order from the example (LSBs set first) you will only need one table, sized for the largest possible set.
Populate the lookup table by walking through the combinations doing Lookup[combination[i]]=i-baseIdx[nItems]
EDIT: Never mind. This is completely wrong.
Let your combination be (a1, a2, ..., ak-1, ak) where a1 < a2 < ... < ak. Let choose(a,b) = a!/(b!*(a-b)!) if a >= b and 0 otherwise. Then, the index you are looking for is
choose(ak-1, k) + choose(ak-1-1, k-1) + choose(ak-2-1, k-2) + ... + choose (a2-1, 2) + choose (a1-1, 1) + 1
The first term counts the number of k-element combinations such that the largest element is less than ak. The second term counts the number of (k-1)-element combinations such that the largest element is less than ak-1. And, so on.
Notice that the size of the universe of elements to be chosen from (10 in your example) does not play a role in the computation of the index. Can you see why?
Sample solution:
class Program
{
static void Main(string[] args)
{
// The input
var n = 5;
var t = new[] { 2, 4, 5 };
// Helping transformations
ComputeDistances(t);
CorrectDistances(t);
// The algorithm
var r = CalculateRank(t, n);
Console.WriteLine("n = 5");
Console.WriteLine("t = {2, 4, 5}");
Console.WriteLine("r = {0}", r);
Console.ReadKey();
}
static void ComputeDistances(int[] t)
{
var k = t.Length;
while (--k >= 0)
t[k] -= (k + 1);
}
static void CorrectDistances(int[] t)
{
var k = t.Length;
while (--k > 0)
t[k] -= t[k - 1];
}
static int CalculateRank(int[] t, int n)
{
int k = t.Length - 1, r = 0;
for (var i = 0; i < t.Length; i++)
{
if (t[i] == 0)
{
n--;
k--;
continue;
}
for (var j = 0; j < t[i]; j++)
{
n--;
r += CalculateBinomialCoefficient(n, k);
}
n--;
k--;
}
return r;
}
static int CalculateBinomialCoefficient(int n, int k)
{
int i, l = 1, m, x, y;
if (n - k < k)
{
x = k;
y = n - k;
}
else
{
x = n - k;
y = k;
}
for (i = x + 1; i <= n; i++)
l *= i;
m = CalculateFactorial(y);
return l/m;
}
static int CalculateFactorial(int n)
{
int i, w = 1;
for (i = 1; i <= n; i++)
w *= i;
return w;
}
}
The idea behind the scenes is to associate a k-subset with an operation of drawing k-elements from the n-size set. It is a combination, so the overall count of possible items will be (n k). It is a clue that we could seek the solution in Pascal Triangle. After a while of comparing manually written examples with the appropriate numbers from the Pascal Triangle, we will find the pattern and hence the algorithm.
I used user515430's answer and converted to python3. Also this supports non-continuous values so you could pass in [1,3,5,7,9] as your pool instead of range(1,11)
from itertools import combinations
from scipy.special import comb
from pandas import Index
debugcombinations = False
class IndexedCombination:
def __init__(self, _setsize, _poolvalues):
self.setsize = _setsize
self.poolvals = Index(_poolvalues)
self.poolsize = len(self.poolvals)
self.totalcombinations = 1
fast_k = min(self.setsize, self.poolsize - self.setsize)
for i in range(1, fast_k + 1):
self.totalcombinations = self.totalcombinations * (self.poolsize - fast_k + i) // i
#fill the nCr cache
self.choose_cache = {}
n = self.poolsize
k = self.setsize
for i in range(k + 1):
for j in range(n + 1):
if n - j >= k - i:
self.choose_cache[n - j,k - i] = comb(n - j,k - i, exact=True)
if debugcombinations:
print('testnth = ' + str(self.testnth()))
def get_nth_combination(self,index):
n = self.poolsize
r = self.setsize
c = self.totalcombinations
#if index < 0 or index >= c:
# raise IndexError
result = []
while r:
c, n, r = c*r//n, n-1, r-1
while index >= c:
index -= c
c, n = c*(n-r)//n, n-1
result.append(self.poolvals[-1 - n])
return tuple(result)
def get_n_from_combination(self,someset):
n = self.poolsize
k = self.setsize
index = 0
j = 0
for i in range(k):
setidx = self.poolvals.get_loc(someset[i])
for j in range(j + 1, setidx + 1):
index += self.choose_cache[n - j, k - i - 1]
j += 1
return index
#just used to test whether nth_combination from the internet actually works
def testnth(self):
n = 0
_setsize = self.setsize
mainset = self.poolvals
for someset in combinations(mainset, _setsize):
nthset = self.get_nth_combination(n)
n2 = self.get_n_from_combination(nthset)
if debugcombinations:
print(str(n) + ': ' + str(someset) + ' vs ' + str(n2) + ': ' + str(nthset))
if n != n2:
return False
for x in range(_setsize):
if someset[x] != nthset[x]:
return False
n += 1
return True
setcombination = IndexedCombination(5, list(range(1,10+1)))
print( str(setcombination.get_n_from_combination([2,5,7,8,10])))
returns 188

Round to the nearest power of two

Is there a one line expression (possibly boolean) to get the nearest 2^n number for a given integer?
Example: 5,6,7 must be 8.
Round up to the next higher power of two: see bit-twiddling hacks.
In C:
unsigned int v; // compute the next highest power of 2 of 32-bit v
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
I think you mean next nearest 2^n number. You can do a log on the mode 2 and then determine next integer value out of it.
For java, it can be done like:
Math.ceil(Math.log(x)/Math.log(2))
Since the title of the question is "Round to the nearest power of two", I thought it would be useful to include a solution to that problem as well.
int nearestPowerOfTwo(int n)
{
int v = n;
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++; // next power of 2
int x = v >> 1; // previous power of 2
return (v - n) > (n - x) ? x : v;
}
It basically finds both the previous and the next power of two and then returns the nearest one.
Your requirements are a little confused, the nearest power of 2 to 5 is 4. If what you want is the next power of 2 up from the number, then the following Mathematica expression does what you want:
2^Ceiling[Log[2, 5]] => 8
From that it should be straightforward to figure out a one-liner in most programming languages.
For next power of two up from a given integer x
2^(int(log(x-1,2))+1)
or alternatively (if you do not have a log function accepting a base argument
2^(int(log(x-1)/log(2))+1)
Note that this does not work for x < 2
This can be done by right shifting on the input number until it becomes 0 and keeping the count of shifts. This will give the position of the most significant 1 bit. Getting 2 to the power of this number will give us the next nearest power of 2.
public int NextPowerOf2(int number) {
int pos = 0;
while (number > 0) {
pos++;
number = number >> 1;
}
return (int) Math.pow(2, pos);
}
For rounding up to the nearest power of 2 in Java, you can use this. Probably faster for longs than the bit-twiddling stuff mentioned in other answers.
static long roundUpToPowerOfTwo(long v) {
long i = Long.highestOneBit(v);
return v > i ? i << 1 : i;
}
Round n to the next power of 2 in one line in Python:
next_power_2 = 2 ** (n - 1).bit_length()
Modified for VBA. NextPowerOf2_1 doesn't seem to work. So I used loop method. Needed a shift right bitwise operator though.
Sub test()
NextPowerOf2_1(31)
NextPowerOf2_2(31)
NextPowerOf2_1(32)
NextPowerOf2_2(32)
End Sub
Sub NextPowerOf2_1(ByVal number As Long) ' Does not work
Debug.Print 2 ^ (Int(Math.Log(number - 1) / Math.Log(2)) + 1)
End Sub
Sub NextPowerOf2_2(ByVal number As Long)
Dim pos As Integer
pos = 0
While (number > 0)
pos = pos + 1
number = shr(number, 1)
Wend
Debug.Print 2 ^ pos
End Sub
Function shr(ByVal Value As Long, ByVal Shift As Byte) As Long
Dim i As Byte
shr = Value
If Shift > 0 Then
shr = Int(shr / (2 ^ Shift))
End If
End Function
Here is a basic version for Go
// Calculates the next highest power of 2.
// For example: n = 15, the next highest power of 2 would be 16
func NearestPowerOf2(n int) int {
v := n
v--
v |= v >> 1
v |= v >> 2
v |= v >> 4
v |= v >> 8
v |= v >> 16
v++
return v
}

Resources