List combination start - prolog

I copied this code from this page:
% combination(K,L,C) :- C is a list of K distinct elements
% chosen from the list L
combination(0,_,[]).
combination(K,L,[X|Xs]) :- K > 0,
el(X,L,R), K1 is K-1, combination(K1,R,Xs).
el(X,[X|L],L).
el(X,[_|L],R) :- el(X,L,R).
For example, if you enter combination(2,[1,2,3,4],L), the result is:
L = [1, 2] ;
L = [1, 3] ;
L = [1, 4] ;
L = [2, 3] ;
L = [2, 4] ;
L = [3, 4] ;
Now I would like to enter something that allows you to start at a determined point of the combination. For example, something like: combination(2,[1,2,3,4],[1,4],L), and the result:
L = [1, 4] ;
L = [2, 3] ;
L = [2, 4] ;
L = [3, 4] ;
Starting the combination at [1,4] and skipping the "steps" [1,2] and [1,3].
Thanks for you help!

try this
combination(0,_,[]).
combination(K,L,[X|Xs]) :-
K > 0,
el(X,L,R),
K1 is K-1,
combination(K1,R,Xs).
generate(K, L, X, Pivot, Resault) :-
bagof(X, L^combination(K, L, X), Bag),
iterate(Bag, Pivot, Resault).
iterate([], _, []).
iterate([P|T], P, [P|T]):-!.
iterate([H|T], P, Res) :-
iterate(T, P, Res).
el(X,[X|L],L).
el(X,[_|L],R) :- el(X,L,R).
use generate/5 like this:
| ?- generate(2, [1,2,3,4], X, [1,4], Res).
Res = [[1,4],[2,3],[2,4],[3,4]]
yes.
first I gather all the solutions in a bag, then I iterate through the bag to find a pivot member, if I find it the resault is a list with the pivot as head, and rest of solutions as tail. and if I don't the resault is an empty list.
not a very wise solution, but works.

Related

Prolog unification doesn't evaluate arithmetic expression

Suppose, I wanted to write a program in prolog, which accepts a number input X, and outputs all value pairs for which the sum is X.
some_pred(X,X1,X2) :-
X1 + X2 = X.
This does not work, because X1 + X2 is not evaluated arithmetically.
some_pred(X,X1,X2) :-
Xtemp is X1 + X2,
Xtemp = X.
The other option I have also doesn't work, because X1 and X2 are not instantiated.
How would someone solve this?
Yes, unification doesn't evaluate arithmetic expressions, and if it did that wouldn't help you because X1 and X2 are undefined so adding them together is meaningless.
You need either to write a search yourself such as a brute force nested loop:
sum_a_b(X, A, B) :-
between(1, X, A),
between(1, X, B),
X is A + B.
Or a more nuanced one where you encode something about arithmetic into it, start with 1+(X-1) and then (2+X-2), etc:
sum_a_b(X, A, B) :-
between(0, X, A),
B is X - A.
Or more generally, learn about clpfd (link1, link2) which can do arithmetic evaluating and solving for missing variables in equations, as well as searching through finite domains of possible values:
:- use_module(library(clpfd)).
sum_a_b(X, A, B) :-
[A, B] ins 1..X,
X #= A + B.
? sum_a_b(5, A, B), label([A, B]).
A = 1,
B = 4 ;
A = 2,
B = 3 ;
...
NB. I'm assuming positive integers, otherwise with negatives and decimals you'll get infinite pairs which sum to any given X.
Here's something very similar, using a list:
pos_ints_sum(Sum, L) :-
compare(C, Sum, 1),
pos_ints_sum_(C, L, Sum).
% 0 means the list has ended
pos_ints_sum_(<, [], 0).
% 1 means there is only 1 possible choice
pos_ints_sum_(=, [1], 1).
pos_ints_sum_(>, [I|T], Sum) :-
% Choose a number within the range
between(1, Sum, I),
% Loop with the remainder
Sum0 is Sum - I,
pos_ints_sum(Sum0, T).
Result in swi-prolog:
?- pos_ints_sum(5, L).
L = [1, 1, 1, 1, 1] ;
L = [1, 1, 1, 2] ;
L = [1, 1, 2, 1] ;
L = [1, 1, 3] ;
L = [1, 2, 1, 1] ;
L = [1, 2, 2] ;
L = [1, 3, 1] ;
L = [1, 4] ;
L = [2, 1, 1, 1] ;
L = [2, 1, 2] ;
L = [2, 2, 1] ;
L = [2, 3] ;
L = [3, 1, 1] ;
L = [3, 2] ;
L = [4, 1] ;
L = [5].
Note: X is a poor choice of variable name, when e.g. Sum can easily be used instead, which has far more meaning.

Calculate whether the sum of exactly three values in a list is equal to N

Examples: ([1,2,3,7,6,9], 6). should print True, as 1+2+3=6.
([1,2,3,7,6,9], 5). should print False as there are no three numbers whose sum is 5.
([],N) where N is equal to anything should be false.
Need to use only these constructs:
A single clause must be defined (no more than one clause is allowed).
Only the following is permitted:
+, ,, ;, ., !, :-, is, Lists -- Head and Tail syntax for list types, Variables.
I have done a basic coding as per my understanding.
findVal([Q|X],A) :-
[W|X1]=X,
[Y|X2]=X,
% Trying to append the values.
append([Q],X1,X2),
% finding sum.
RES is Q+W+Y,
% verify here.
(not(RES=A)->
% finding the values.
(findVal(X2,A=)->
true
;
(findVal(X,A)->
% return result.
true
;
% return value.
false))
;
% return result.
true
).
It does not seem to run throwing the following error.
ERROR:
Undefined procedure: findVal/2 (DWIM could not correct goal)
Can someone help with this?
You can make use of append/3 [swi-doc] here to pick an element from a list, and get access to the rest of the elements (the elements after that element). By applying this technique three times, we thus obtain three items from the list. We can then match the sum of these elements:
sublist(L1, S) :-
append(_, [S1|L2], L1),
append(_, [S2|L3], L2),
append(_, [S3|_], L3),
S is S1 + S2 + S3.
Well, you can iterate (via backtracking) over all the sublists of 3 elements from the input list and see which ones sum 3:
sublist([], []).
sublist([H|T], [H|S]) :- sublist(T, S).
sublist([_|T], S) :- sublist(T, S).
:- length(L, 3), sublist([1,2,3,7,6,9], L), sum_list(L, 6).
I'm giving a partial solution here because it is an interesting problem even though the constraints are ridiculous.
First, I want something like select/3, except that will give me the tail of the list rather than the list without the item:
select_from(X, [X|R], R).
select_from(X, [_|T], R) :- select_from(X, T, R).
I want the tail, rather than just member/2, so I can recursively ask for items from the list without getting duplicates.
?- select_from(X, [1,2,3,4,5], R).
X = 1,
R = [2, 3, 4, 5] ;
X = 2,
R = [3, 4, 5] ;
X = 3,
R = [4, 5] ;
X = 4,
R = [5] ;
X = 5,
R = [] ;
false.
Yeah, this is good. Now I want to build a thing to give me N elements from a list. Again, I want combinations, because I don't want unnecessary duplicates if I can avoid it:
select_n_from(1, L, [X]) :- select_from(X, L, _).
select_n_from(N, L, [X|R]) :-
N > 1,
succ(N0, N),
select_from(X, L, Next),
select_n_from(N0, Next, R).
So the idea here is simple. If N = 1, then just do select_from/3 and give me a singleton list. If N > 1, then get one item using select_from/3 and then recur with N-1. This should give me all the possible combinations of items from this list, without giving me a bunch of repetitions I don't care about because addition is commutative and associative:
?- select_n_from(3, [1,2,3,4,5], R).
R = [1, 2, 3] ;
R = [1, 2, 4] ;
R = [1, 2, 5] ;
R = [1, 3, 4] ;
R = [1, 3, 5] ;
R = [1, 4, 5] ;
R = [2, 3, 4] ;
R = [2, 3, 5] ;
R = [2, 4, 5] ;
R = [3, 4, 5] ;
false.
We're basically one step away now from the result, which is this:
sublist(List, N) :-
select_n_from(3, List, R),
sumlist(R, N).
I'm hardcoding 3 here because of your problem, but I wanted a general solution. Using it:
?- sublist([1,2,3,4,5], N).
N = 6 ;
N = 7 ;
N = 8 ;
N = 8 ;
N = 9 ;
N = 10 ;
N = 9 ;
N = 10 ;
N = 11 ;
N = 12 ;
false.
You can also check:
?- sublist([1,2,3,4,5], 6).
true ;
false.
?- sublist([1,2,3,4,5], 5).
false.
?- sublist([1,2,3,4,5], 8).
true ;
true ;
false.
New users of Prolog will be annoyed that you get multiple answers here, but knowing that there are multiple ways to get 8 is probably interesting.

Finding consecutive sublists of a list

I want to write a predicate split/2 that generates all consecutive lists found inside another list.
Example: split([1,2,3,4],X) should return
X = [4], X = [2,3],X = [1,2], X = [1,2,3] etc.
So far I only have a predicate that returns all possible sublists of a list:
sublist([],[]).
sublist([H|T], [H|R]) :-
sublist(T,R).
sublist([_|T], R) :-
sublist(T,R).
However, with the query from the example this predicate includes unwanted answers like X = [2,4] and X = [1,3] that aren't found consecutively in [1,2,3,4].
Usually a problem is easier if you split it in subproblems. We can first construct a predicate that will construct all suffixes for a given list.
We can construct such predicate as follows:
suffix(_, []).
suffix([H|T], [H|T2]) :-
suffix(T, T2).
So for each point in the list, we can decide to stop (with the empty list), or emit the next item. For the given sample list, we thus get:
?- suffix([1,2,3,4],X).
X = [] ;
X = [1] ;
X = [1, 2] ;
X = [1, 2, 3] ;
X = [1, 2, 3, 4].
Now we only need to decide when we start the suffix. For each item in the list, we can decide to start at that point, and enumerate over all suffixes that we then append to that item:
split([H|T], [H|S]) :-
suffix(T, S).
split([_|T], S) :-
split(T, S).
For example:
?- split([1,2,3,4],X).
X = [1] ;
X = [1, 2] ;
X = [1, 2, 3] ;
X = [1, 2, 3, 4] ;
X = [2] ;
X = [2, 3] ;
X = [2, 3, 4] ;
X = [3] ;
X = [3, 4] ;
X = [4] ;
false.
The nice thing is that we got a second predicate "for free": we can also obtain all suffixes for a list.
We might want to include the empty list as well. I leave this as an exercise.

printing pairs of a list in SWI-prolog

basically, I want to print pairs from one list like this
?- [1 2 3 4 5,R]
the output is
R = [1, 2]
R = [1, 3]
R = [1, 4]
R = [1, 5]
R = [2, 3]
R = [2, 4]
R = [2, 5]
R = [3, 4]
R = [3, 5]
R = [4, 5]
I used the code that creates subsets and modified it
sub(0,_,[]).
sub(N,[X|T],[X|R]):-N>0,N1 is N-1,sub(N1,T,R).
sub(N,[_|T],R):-N>0,sub(N,T,R).
and I would call
sub(2,[1,2,3,4,5],R)
but is there a way to do it without using a counter?
Prolog is about defining relations (in the form of rules) and to try to avoid thinking procedurally (steps of execution to achieve a result). You can solve this by breaking it down into simple rules for the pairs:
For a list with head H and tail T, a valid pair is [H,E] where E is a member of T.
For a list with head H and tail T, a valid pair is a pair taken from T.
If you think about these rules, they are (1) mutually exclusive (there isn't a solution that matches both rules), and (2) they are complete (they cover all of the valid solutions).
Writing these in Prolog, you get:
pair([H|T], [H,E]) :- member(E, T).
pair([_|T], P) :- pair(T, P).
This provides a relational solution which yields:
| ?- sub([a,b,c,d], S).
S = [a,b] ? ;
S = [a,c] ? ;
S = [a,d] ? ;
S = [b,c] ? ;
S = [b,d] ? ;
S = [c,d] ? ;
(1 ms) no
| ?-
And works in a more general case:
| ?- pair(L, P).
L = [A,B]
P = [A,B] ? ;
L = [A,B|_]
P = [A,B] ? ;
L = [A,_,B|_]
P = [A,B] ? ;
L = [A,_,_,B|_]
P = [A,B] ? ;
...
an easy way:
?- L = [1,2,3,4,5], forall((nth1(I,L,X), nth1(J,L,Y), I<J), writeln(I/J)).
1/2
1/3
1/4
1/5
2/3
2/4
2/5
3/4
3/5
4/5
L = [1, 2, 3, 4, 5].
Yes, there is, since you don't have to account for subsets of arbitrary length.
There are two steps you need to account for, and both have two variants.
Select the first element of the pair:
Use the head of the list
Discard the head and pick it out of the tail of the list
Select the second element of the pair:
Use the head of the list
Discard the head and pick it out of the tail of the list
% Use the head as the first element
pairs((H, P2), [H | T]) :- pairs((H, P2), T).
% If we have the first element, use the head as the second element
pairs((P1, H), [H | _]) :- nonvar(P1).
% Ignore the head and pick what we need out of the tail
pairs(P, [_ | T]) :- pairs(P, T).

Create a newlist with elements of the sublists by my List

I have this list :
C = [[1,0],[2,3],[1,2],[1,3]]
I'll like find if the number 1 included in a sublist inside my list in position [1,_ ] and i like to save to a list Newlist the number of X ..... [1,X].
I will give an example... i have the list C and i am searching for sublist which first element it's 1 and give me the Newlist.
The Newlist must be : Newlist=[0,2,3]
It had the second element of the sublists who has the number 1 at the first element.
If you use SWI-Prolog with module lambda.pl, (you can find it at http://www.complang.tuwien.ac.at/ulrich/Prolog-inedit/lambda.pl) you can write
:- use_module(library(lambda)).
my_filter(V, L, R) :-
foldl(V+\X^Y^Z^(X = [V,W]
-> append(Y, [W], Z)
; Z = Y),
L, [], R).
nth0/3 allows to access list' elements by index:
?- C = [[1,0],[2,3],[1,2],[1,3]], findall(P, nth0(P, C, [1,_]), NewList).
C = [[1, 0], [2, 3], [1, 2], [1, 3]],
NewList = [0, 2, 3].
edit I'm sorry I didn't read the question right. nth0 is misleading. Could be instead
findall(E, member([1,E], C), NewList)
You need a "filter". This is what it could look like:
filter_1_at_pos_1([], []). % The new list is empty when the input list is empty
filter_1_at_pos_1([[1,X]|Sublist], [X|Xs]) :- % The first element is 1 so the
% second element belongs to the
% new list
!, filter_1_at_pos_1(Sublist, Xs). % filter the remainder of the list
filter_1_at_pos_1([[N,_]|Sublist], Xs) :-
N \== 1, % The first element is not 1, ignore the second element
!, filter_1_at_pos_1(Sublist, Xs).
As #mbratch suggested, just define the solution for one element of the input list for each possible condition, in this case 1) empty list 2) first element is 1 and 3) first element is not 1.
?- C = [[1,0],[2,3],[1,2],[1,3]], filter_1_at_pos_1(C, NewList).
C = [[1, 0], [2, 3], [1, 2], [1, 3]],
NewList = [0, 2, 3].
The cuts make the predicate deterministic. The cut in the last clause is not necessary.

Resources