NP-Complete Graph optimization: minimal node selection? - algorithm

Suppose you have a graph G = (V, E) that represents the floor plan of a one-story shopping mall. The individual stores are represented by vertices, and the edges between vertices represent some arbitrary definition of stores being close to each other.
Recently, there has been an increase in the amount of shoplifting that occurs in this mall, so management decides to make it so that every store either:
Has a security guard stationed in it
Or is close to a store that has a security guard stationed in it
While hiring as few security guards as possible.
How would you prove this optimization problem is NP-complete? I feel like it's a simple reduction from the independent set problem, but I want to make sure.

This is exactly the minimum vertex cover problem which is known to be NP-complete. The key insight in seeing that computing the size of a minimum vertex cover is equivalent to computing the size of a maximum independent set is the following:
A set of vertices is a vertex cover, if and only if its complement is an independent set.
In particular, this means that the total number of vertices is equal to the size of a minimum vertex cover plus the size of a maximum independent set. This illustrates nicely how computing one number reduces to computing the other.

Related

Max flow: how to force f units to flow, with minimal changes to capacity?

Let's say I have a graph and run a max-flow on it. I get some flow, f. However, I want to to flow f1 units where f1>f. Of course, I need to go about increasing some of the edge capacities. I want to make as small a total increase as possible to the capacities. Is there a clever algorithm to achieve this?
If it helps, I care for my application about bi-partite graphs with source (s) to left vertices (L) having some finite, integer capacities (c_l), left vertices L to right vertices R having some connectivity with infinite capacities and all right vertices, R connected to a sink vertex with finite integer capacities (c_r). Here, c_l and c_r sum to the same number. Also, there are no connections among the left vertices or among the right ones.
An example is provided in the image below. The blue numbers are the flow capacities and the pink numbers are the actual flows in the max-flow. Currently, 5 units are flowing but I want 9 units to flow.
In general, turn the flow instance into a min-cost flow instance by setting the cost of existing arcs to zero and adding new, infinite-capacity arcs doubling them of cost one.
For these particular instances, the best you're going to do is to repeatedly find an unsaturated arc of finite capacity and push flow along any path that includes it. Once everything's saturated just use any path.
This seems a little too easy to be what you want, so I'll mention that it's possible to formulate more sophisticated objectives and solve them using linear programming techniques.
The graph is undirected, and all the "middle" vertices have infinite capacity. That means we can unify all vertices connected by infinite capacity in L and R, making a very simple graph indeed.
For example, in the above graph, an equivalent graph would be:
s -8-> Vertex 1+2+4 -4-> t
s -1-> Vertex 3+5 -5-> t
So we end up with just a bunch of unique paths with no branching. We can unify the nodes with a simple "floodfill" or DFS type search on infinite-capacity edges. When we unify nodes, we add up their "left" and "right" capacities.
To maximize flow in this graph we:
First, if the left and right paths are not equal, increase the lower one until they are equal. This lets us convert an increase of cost X, into an increase in flow of X.
Once the left and right paths are equal for all nodes, we pick any path. Then, we increase both halves of the path with cost 2X, increasing the flow by X.

Edge clique cover algorithm

I am trying to write an algorithm that computes the edge clique cover number (the smallest number of cliques that cover all edges) of an input graph (undirected and no self-loops). My idea would be to
Calculate all maximal cliques with the Bron-Kerbosch algorithm, and
Try if any 1,2,3,... of them would cover all edges until I find the
minimum number
Would that work and does anyone know a better method; is there a standard algorithm? To my surprise, I couldn't find any such algorithm. I know that the problem is NP-hard, so I don't expect a fast solution.
I would gather maximal cliques as you do now (or perhaps using a different algorithm, as suggested by CaptainTrunky), but then use branch and bound. This won't guarantee a speedup, but will often produce a large speedup on "easy" instances.
In particular:
Instead of trying all subsets of maximal cliques in increasing subset size order, pick an edge uv and branch on it. This means:
For each maximal clique C containing uv:
Make a tentative new partial solution that contains all cliques in the current solution
Add C to this partial solution
Make a new subproblem containing the current subproblem's graph, but with all vertices in C collapsed into a single vertex
Recurse to solve this smaller subproblem.
Keep track of the best complete solution so far. This is your upper bound (UB). You do not need to continue processing any subproblem that has already reached this upper bound but still has edges present; a better solution already exists!
It's best to pick an edge to branch on that is covered by as few cliques as possible. When choosing in what order to try those cliques, try whichever you think is likely to be the best (probably the largest one) first.
And here is an idea for a lower bound to improve the pruning level:
If a subgraph G' contains an independent set of size s, then you will need at least s cliques to cover G' (since no clique can cover two or more vertices in an independent set). Computing the largest possible IS is NP-hard and thus impractical here, but you could get a cheap bound by using the 2-approximation for Vertex Cover: Just keep choosing an edge and throwing out both vertices until no edges are left; if you threw out k edges, then what remains is an IS that is within k of optimal.
You can add the size of this IS to the total number of cliques in your solution so far; if that is larger than the current UB, you can abort this subproblem, since we know that fleshing it out further cannot produce a better solution than one we have already seen.
I was working on the similar problem 2 years ago and I've never seen any standard existing approaches to it. I did the following:
Compute all maximal cliques.
MACE was way better than
Bron-Kerbosch in my case.
Build a constraint-satisfaction problem for determining a minimum number of cliques required to cover the graph. You could use SAT, Minizinc, MIP tools to do so. Which one to pick? It depends on your skills, time resources, environment and dozens of other parameters. If we are talking about proof-of-concept, I would stick with Minizinc.
A bit details for the second part. Define a set of Boolean variables with respect to each edge, if it's value == True, then it's covered, otherwise, it's not. Add constraints that allow you covering sets of edges only with respect to each clique. Finally, add variables corresponding to each clique, if it's == True, then it's used already, otherwise, it's not. Finally, require all edges to be covered AND a number of used cliques is minimal.

Divide points into sets of maximum distance

I have a list of GPS points...but what am I asking for could also work for any X,Y coordinates.
In my use-case, I want to assign points in sets. Each point can belong in only one set and each set has a condition that distance between any of two points in the set is not greater than some constant...that means, all points of the set fit a circle of a specific diameter.
For a list of points, I want to find best (or at least some) arrangement in which there is minimal number of sets.
There will be sets with just a single point because other points around are already in different sets or simply because there are no points around (distance between them is greater than in the condition of the set)...what I want to avoid is inefficient set assignment where e.g. instead of finding ideal 2 sets, each having 30 points, I find 5 sets, one with 1 point, second with 40 points, etc...
All I'am capable of is a brute-force solution, compute all distances, build all posible set arrangements, sort them by number of sets and pick one with the least number of sets.
Is there a better approach?
The Problem here is NP-complete. What you try to solve is the max-clique problem combined with a set cover problem.
Your problem can be represented as a Graph G=(V,E), where the vertices are your coordinates and the edges the connections in distances. This graph can be made in O(n^2) time. Then you filter out all edges with a distance greater then your constant giving the graph G'.
With the the remaining graph G' you want to find all cliques (effectively solving max-clique). A clique is a fully connected set of vertices. Name this list of cliques S.
Now finding a minimal set of elements of S that cover all vertices V is the set cover problem.
Both the set cover problem and the max clique are NP complete. And therefore finding an optimal solution would take exponential time. You could look at approximation algorithms for these two problems.

Correctness of algorithm to calculate maximal independent set

I am trying to find the maximal set for an undirected graph and here is the algorithm that i am using to do so:
1) Select the node with minimum number of edges
2) Eliminate all it's neighbors
3) From the rest of the nodes, select the node with minimum number of edges
4) Repeat the steps until the whole graph is covered
Can someone tell me if this is right? If not, then why is this method wrong to calculate the maximal independent set in a graph?
What you have described will pick a maximal independent set. We can see this as follows:
This produces an independent set. By contradiction, suppose that it didn't. Then there would have to be two nodes connected by edges that were added into the set you produced. Take whichever one of them was picked first (call it u, let the other be v) Then when it was added to the set, you would have removed all of its neighboring nodes from the set, including node v. Then v wouldn't have been added to the set, giving a contradiction.
This produces a maximal independent set. By contradiction, suppose that it didn't. This means that there is some node v that can be added to the independent set produced by your algorithm, but was not added. Since this node wasn't added, it must have been removed from the graph by the algorithm. This means that it must have been adjacent to some node added to the set already. But this is impossible, because it would mean that the node v cannot be added to the produced independent set without making the result not an independent set. We have a contradiction.
Hope this helps!
There is not one definite maximal independent set in any graph; take for example the cycle over 3 nodes, each of the nodes forms a maximal independent set. Your algorithm will give you one of the maximal independent sets of the graph, without guaranteeing that it has maximum cardinality.On the other hand, finding the maximum independent set in a graph is NP-complete (since that problem is complementary to that of finding a maximum clique), so there probably isn't an efficient algorithm.
After your clarify situation in comments, your solutions is right.
Even better, according to Corollary 3 from this paper http://courses.engr.illinois.edu/cs598csc/sp2011/Lectures/lecture_7.pdf
your get good aproximation for subset order.
Greedy gives a 1 / (d + 1) -approximation for (unweighted) MIS in graphs of degree at most d

Algorithm to find 'maximal' independent set in a simple graph

in words, can someone post directions towards finding the 'maximal' independent set in a simple graph?
I read up something from ETH site which said one can find such in O(n) by simply picking a random vertex v and than scanning the rest and attempting to find if there's an edge from v to the rest.
Thanks
Yes, by definition, a maximal indpendent set is an independent set to which no more vertices can be added without violating the 'independence' condition.
So just picking vertices till you can pick no more would give you a maximal independent set, can be done in linear time (i.e. linear in |V| + |E|).
Note, this is different from maximum independent set, which is an independent set of the largest possible size and finding that is NP-Hard.
Found this on the web, probably from a class" To accompany the text ``Introduction to Parallel Computing'', Addison Wesley, 2003
Finding a Maximal Independent Set (MIS)
parallel MIS algorithms use randimization to gain
concurrency (Luby's algorithm for graph coloring).
Initially, each node is in the candidate set C. Each
node generates a (unique) random number and
communicates it to its neighbors.
If a nodes number exceeds that of all its neighbors, it
joins set I. All of its neighbors are removed from C.
This process continues until C is empty.
On average, this algorithm converges after O(log|V|)
such steps.

Resources