Finding most effective upper bound for TSP using MST - algorithm

I'm curious as to what the most effective methods are to find the most optimal (or close to optimal) upper bound for the TSP using a MST. I'm trying to optimize my algorithms for speed, but I'm having trouble algorithmically computing "good" bounds after I find the MST. I know a base bound would be 2 x MST length, but this doesn't seem to be the best we can do. Any references or insight would be appreciated.

You should probably convert the MST into a tour, and that'll give you a bound less than 2 * MST length, in linear time. There is also an extension to MST, called Christofide's Algorithm that might be worth looking into as well.
Recommend taking a look at the Wikipedia page for TSP heuristics.

Related

max-weight k-clique in a complete k-partite graph

My Problem
Whether there's an efficient algorithm to find a max-weight (or min-weight) k-clique in a complete k-partite graph (a graph in which vertices are adjacent if and only if they belong to different partite sets according to wikipedia)?
More Details about the Terms
Max-weight Clique: Every edge in the graph has a weight. The weight of a clique is the sum of the weights of all edges in the clique. The goal is to find a clique with the maximum weight.
Note that the size of the clique is k which is the largest possible clique size in a complete k-partite graph.
What I have tried
I met this problem during a project. Since I am not a CS person, I am not sure about the complexity etc.
I have googled several related papers but none of them deals with the same problem. I have also programmed a greedy algorithm + simulated annealing to deal with it (the result seems not good). I have also tried something like Dynamic Programming (but it does not seem efficient). So I wonder whether the exact optimal can be computed efficiently. Thanks in advance.
EDIT Since my input can be really large (e.g. the number of vertices in each clique is 2^k), I hope to find a really fast algorithm (e.g. polynomial of k in time) that works out the optimal result. If it's not possible, can we prove some lower bound of the complexity?
Generalized Maximum Clique Problem (GMCP)
I understand that you are looking for the Generalized Maximum/ minimum Clique Problem (GMCP), where finding the clique with maximum score or minimum cost is the optimization problem.
This problem is a NP-Hard problem as shown in Generalized network design problems, so there is currently no polynomial time exact solution to your problem.
Since, there is no known polynomial solution to your problem, you have 2 choices. Reducing the problem size to find the exact solution or to find an estimated solution by relaxing your problem and it leads you to a an estimation to the optimal solution.
Example and solution for the small problem size
In small k-partite graphs (in our case k is 30 and each partite has 92 nodes), we were able to get the optimal solution in a reasonable time by a heavy branch and bounding algorithm. We have converted the problem into another NP-hard problem (Mixed Integer Programming), reduced number of integer variables, and used IBM Cplex optimizer to find the optimal solution to GMCP.
You can find our project page and paper useful. I can also share the code with you.
How to estimate the solution
One straight forward estimation to this NP-Hard problem is relaxing the Mixed Integer Programming problem and solve it as a linear programming problem. Of course it will give you an estimation of the solution, but still you might get a reasonable answer in practice.
More general problem (Generalized Maximum Multi Clique Problem)
In another work, we solve the Generalized Maximum Multi Clique Problem (GMMCP), where maximizing the score or minimizing the cost of selecting multiple k-cliques in a complete k-partite graph is in interest. You can find the project page by searching for GMMCP Tracking.
The maximum clique problem in a weighted graph in general is intractable. In your case, if the graph contains N nodes, you can enumerate through all possible k-cliques in N ** k time. If k is fixed (don't know if it is), your problem is trivially polynomially solvable, as this is a polynomial in N. I don't believe the problem to be tractable if k is a free parameter because I can't see how the assumption of a k-partite graph would make the problem significantly simpler from the general one.
How hard your problem is in practice depends also on how the weights are distributed. If all the weights are very near to each others, i.e. the difference between "best" and "good" is relatively small, the problem is very hard. If you have wildly different weights on the edges, the problem can be easier, because a greedy algorithm can give you a good "initial" solution, and you can use that and subsequent good solutions to limit your combinatorial search using the well-known branch-and-bound method.

Why A* is faster if i use 4xManhattan Distances as Heuristic for 15-Puzzle

I have implemented an A* algorithm for solving the 15-puzzle. I made a research for finding some viable or admissible heuristics, looking for a fast solution, and i find that using 4*Manhattan Distance as heuristic always solve any 15-puzzle in less than a second. I tried this and effectively works. I tried to find a answer for that but i cant find it.
Any one can explain this?
4* manhattan distance is not admissible heuristic, this makes the algorithm behave "closer" to greedy best first (where the algorithm chooses which node to develop solely based on the heuristic function). This makes the algorithm sometimes prefer depth of solutions and exploration over breadth and optimality.
The idea is similar to what happens in A*-Epsilon, where you allow A* to develop none optimal nodes up to a certain bound in order to speed up your algorithm, Actually - I suspect you will get the same (or similar results) if you run A*-Epsilon with Manhattan distance and epsilon = 3. (If I am correct, this makes the solution you find in the modified heuristic bounded by 4*OPTIMAL, where OPTIMAL is the length of the optimal path)

Heuristic function for finding the path using A star

I am trying to find a optimal solution for the following problem
The numbers denoted inside each node are represented as (x,y).
The adjacent nodes to a node always have a y value that is (current nodes y value +1).
There is a cost of 1 for a change in the x value when we go from one node to its adjacent
There is no cost for going from node to its adjacent, if there is no change in the value of x.
No 2 nodes with the same y value are considered adjacent.
The optimal solution is the one with the lowest cost, I'm thinking of using A* path finding algorithm for finding an optimal solution.
My question, Is A* a good choice for the this kind of problems, or should i look at any other algorithm, and also i was thinking of using recursive method to calculate the Heuristic cost, but i get the feeling that it is not a good idea.
This is the example of how I'm thinking the heuristic function will be like this
The heuristic weight of a node = Min(heuristic weight of it's child nodes)
The same goes for the child nodes too.
But as far as my knowledge goes, heuristic is meant to be an approximate, so I think I'm going in the wrong direction as far as the heuristic function is concerned
A* guarantees to find the lowest cost path in a graph with nonnegative edge path costs, provided that you use an appropriate heuristic. What makes a heuristic function appropriate?
First, it must be admissible, i. e. it should, for any node, produce either an underestimate or a correct estimate for the cost of the cheapest path from that node to any of goal nodes. This means the heuristic should never overestimate the cost to get from the node to the goal.
Note that if your heuristic computes the estimate cost of 0 for every node, then A* just turns into breadth-first exhaustive search. So h(n)=0 is still an admissible heuristic, only the worst possible one. So, of all admissible heuristics, the tighter one estimates the cost to the goal, the better it is.
Second, it must be cheap to compute. It should be certainly O(1), and should preferably look at the current node alone. Recursively evaluating the cost as you propose will make your search significantly slower, not faster!
The question of A* applicability is thus whether you can come up with a reasonably good heuristic. From your problem description, it is not clear whether you can easily come up with one.
Depending on the problem domain, A* may be very useful if requirements are relaxed. If heuristic becomes inadmissible, then you lose the guarantee of finding the best path. Depending on the degree of overestimation of the distance, hovewer, the solution might still be good enough (for problem specific definition of "good enough"). The advantage is that sometimes you can compute that "good enough" path much faster. In some cases, probabilistic estimate of heuristics works good (it can have additional constraints on it to stay in the admissible range).
So, in general, you have breadth-first search for tractable problems, next faster you have A* for tractable problems with admissible heuristic. If your problem is intractable for breadth-first exhaustive search and does not admit a heuristic, then your only option is to settle for a "good enough" suboptimal solution. Again, A* may still work with inadmissible heuristic here, or you should look at beam search varieties. The difference is that beam searches have a limit on the number of ways the graph is currently being explored, while A* limits them indirectly by choosing some subset of less costly ones. There are practical cases not solvable by A* even with relaxed admissbility, when difference in cost among different search path is slight. Beam search with its hard limit on the number of paths works more efficiently in such problems.
Seems like an overkill to use A* when something like Dijkstra's would work. Dijkstra's will only work on non-negative cost transitions which seems true in this example. If you can have negative cost transitions then Bellman-Ford should also work.

Heuristic and A* algorithm

I was reading about dijkstra algorithm and A* star algorithm. I know that the difference is the heuristic used. But what is a heuristic and how this influence the algorithms? Heuristic is just an way to measure the distance? But dijkstra considers the distance too? Sorry, but my question is about heuristic and what it means and why to use them... (I had read about it, but don't understant)
Other question: When should be used each one?
Thank you
In this context, a heuristic is a way of providing the algorithm with some form of extra evaluative information, so that the algorithm can find a 'good enough' solution, without exhaustively searching every possible solution.
Dijkstra's Algorithm does not use a heuristic. It expands outwards from the start node, and examines every node in the graph in order to find the shortest path. While this is accurate, it can be computationally expensive.
By comparison, the A* algorithm uses a distance + cost heuristic, to guide the algorithm in its choice of the next node to explore. This means that the algorithm finds a possible search solution without examining every node on the graph. It is therefore much cheaper to run, but at a loss of complete accuracy. It works because the result is usually close enough to the optimal solution, and is found cheaper than an exhaustive search of the entire graph.
As to when you should use each, it really depends on the application. However, using the A* algorithm requires an admissible heuristic, so this may not be applicable in situations where such information is unavailable to the algorithm.
A heuristic basically means an idea or an intuition! Any strategy that you use to solve a hard problem is a heuristic! In some fields (like combinatorial problems) it refers to the strategy that can help you solve a NP hard problem suboptimally within a polynomial time.
Dijkstra solves the single-source routing problem, i.e. it gives you the cost of going froma single point to any other point in the space.
A* solves a single-source single-target problem. It gives you a minimum distance path from a given point to another given point.
A* is usually faster than Dijkstra provided you give it an admissible heuristic, this is, an estimate of the distance to the goal, that never overestimates said distance. Contrary to a previous answer given here, if the heuristic used is admissible, A* is complete and will give you the optimal answer.

Algorithm: shortest path between all points

Suppose I have 10 points. I know the distance between each point.
I need to find the shortest possible route passing through all points.
I have tried a couple of algorithms (Dijkstra, Floyd Warshall,...) and they all give me the shortest path between start and end, but they don't make a route with all points on it.
Permutations work fine, but they are too resource-expensive.
What algorithms can you advise me to look into for this problem? Or is there a documented way to do this with the above-mentioned algorithms?
Have a look at travelling salesman problem.
You may want to look into some of the heuristic solutions. They may not be able to give you 100% exact results, but often they can come up with good enough solutions (2 to 3 % away from optimal solutions) in a reasonable amount of time.
This is obviously Travelling Salesman problem. Specifically for N=10, you can either try the O(N!) naive algorithm, or using Dynamic Programming, you can reduce this to O(n^2 2^n), by trading space.
Beyond that, since this is an NP-hard problem, you can only hope for an approximation or heuristic, given the usual caveats.
As others have mentioned, this is an instance of the TSP. I think Concord, developed at Georgia Tech is the current state-of-the-art solver. It can handle upwards of 10,000 points within a few seconds. It also has an API that's easy to work with.
I think this is what you're looking for, actually:
Floyd Warshall
In computer science, the Floyd–Warshall algorithm (sometimes known as
the WFI Algorithm[clarification needed], Roy–Floyd algorithm or just
Floyd's algorithm) is a graph analysis algorithm for finding shortest
paths in a weighted graph (with positive or negative edge weights). A
single execution of the algorithm will find the lengths (summed
weights) of the shortest paths between all pairs of vertices though it
does not return details of the paths themselves
In the "Path reconstruction" subsection it explains the data structure you'll need to store the "paths" (actually you just store the next node to go to and then trivially reconstruct whichever path is required as needed).

Resources