generic make rule assitance when placing files into different folders - makefile

I have a make rule like this. I want it to define a generic rule that describes transformation of any C file into compiled Object file. It works fine, but i want to keep my C files in one folder and output files in another.
Here is the relevant snippet from Makefile itself:
.SUFFIXES .c .o
.c.o :
$(GCC) -c $(CFLAGS) $< -o $#
I want to modify this makefile rule to tell make to find the source (C) files in one folder, let's say $(C_DIR), run GCC and then and put OBJ files into $(O_DIR) ?

You cannot do that with suffix rules. In order to do that you'll have to use non-POSIX-standard make features. GNU make (the standard make on GNU/Linux systems for example, and available for pretty much any other platform) provides pattern rules that can do this:
SRCS = foo.c bar.c baz.c
OBJS = $(addprefix $(O_DIR)/,$(SRCS))
all: $(OBJS)
$(O_DIR)/%.o : $(C_DIR)/%.c
$(CC) -c $(CPPFLAGS) $(CFLAGS) -o $# $<

Related

How to write Make rules for *.h files as dependencies

I'm trying to understand how to handle header file dependencies in Make rules. Let me give you a specific example.
I'm building application called myap using GNU Make. It consists of various *.h and *.c files.
Directory inc/ contains defs.h and util.h header files.
Directory src/ contains main.c, cmd.c and win.c files.
Directory obj/ contains all generated object files.
I have multiple applications that need different build options. So I don't want to rely on any implicit rules and would like to specify my own rules for all object files, etc.
I would like to specify the following rules:
Object files depend on specific *.h and *.c files. If any of them change, all object files must be regenerated. However, even though *.h files are part of the prerequisites list, I don't want to pass them to the compiler. I only want to compile *.c files.
Executable myapp depends on specific *.o files. If any of them change, executable file must be regenerated.
So far, the following Makefile with a static pattern rule seems to work correctly:
myapp_inc := inc/defs.h inc/util.h
myapp_src := src/main.c src/cmd.c src/win.c
myapp_obj := $(patsubst src/%.c,obj/%.o,$(myapp_src))
myapp_bin := obj/myapp
.PHONY: all
all:
# Create obj/main.o obj/cmd.o and obj/win.o from various *.c files
# If any *.h files in $(myapp_inc) list change, all objects are regenerated.
# If any *.c files in $(myapp_src) list change, all objects are regenerated.
$(myapp_obj): obj/%.o: src/%.c $(myapp_inc) $(myapp_src)
gcc -c -o $# $<
# Create obj/myapp from various *.o files
# If any *.o files in $(myapp_obj) list change, executable is regenerated.
$(myapp_bin): $(myapp_obj)
gcc -o $# $^
all: $(myapp_bin)
.PHONY: clean
clean:
rm -f obj/*
I don't quite understand how Make rules should be written correctly in order to handle such use case. Is the above static pattern rule, the only way that works correctly?
Specifically, I have tried the following combinations, as given in various simple examples on the Internet, and they all failed for various reasons.
This rule causes $< to always pass the name of the first prerequisite, which doesn't work with multiple *.c files:
$(myapp_obj): $(myapp_src) $(myapp_inc)
gcc -c -o $# $<
$ make
gcc -c -o obj/main.o src/main.c
gcc -c -o obj/cmd.o src/main.c
gcc -c -o obj/win.o src/main.c
gcc -o obj/myapp obj/main.o obj/cmd.o obj/win.o
/bin/ld: obj/cmd.o: in function `main':
main.c:(.text+0x0): multiple definition of `main'; obj/main.o:main.c:(.text+0x0): first defined here
/bin/ld: obj/win.o: in function `main':
main.c:(.text+0x0): multiple definition of `main'; obj/main.o:main.c:(.text+0x0): first defined here
collect2: error: ld returned 1 exit status
make: *** [Makefile:18: obj/myapp] Error 1
This rule causes $^ to always pass the names of all prerequisites, which fails:
$(myapp_obj): $(myapp_src) $(myapp_inc)
gcc -c -o $# $^
$ make
gcc -c -o obj/main.o src/main.c src/cmd.c src/win.c inc/defs.h inc/util.h
gcc: fatal error: cannot specify ‘-o’ with ‘-c’, ‘-S’ or ‘-E’ with multiple files
compilation terminated.
make: *** [Makefile:13: obj/main.o] Error 1
Now I understand the difference between $< and $^ variables, but a lot of documentation is not clear on how they should be used when dealing with a list of multiple *.c and *.h files as prerequisites.
What are the recommended usage pattern for this?
Why is it that when using $< only *.c files get passed to the recipe, but not *.h files? Is Make doing some internal filtering? Is this documented anywhere? Is it possible to modify this behavior for custom suffixes?
Is the above static pattern rule, the only way to make objects depend on *.h and *.c files, but exclude *.h files during compilation?
I don't understand the goal of trying to avoid implicit rules. But in any event, it doesn't matter to the recipe you write whether the rule was implicit or explicit: the same automatic variables are set either way. The $< automatic variable is always the first prerequisite, so if you write your rules such that the first prerequisite is the appropriate .c file then you can always use $< in your recipe to mean the .c file and no other files. All the following will work:
%.o : %.c $(headers)
gcc -c -o $# $<
foo.o: foo.c $(headers)
gcc -c -o $# $<
foo.o : %.o : %.c $(headers)
gcc -c -o $# $<
%.o : %.c
gcc -c -o $# $<
$(srcs) : $(headers)
and others.
Does this mean that all of the prerequisites apply, but only those that match the pattern get passed to the recipe?
I don't understand the question, really. The value of variables and the expansion of the recipe happens only AFTER make has decided to run the rule and is not really related (except for some special automatic variables like $?). Once make has decided that the target is out of date and the recipe needs to be run, it will assign the appropriate automatic variables, expand the recipe, then pass the recipe to the shell to be run.
The automatic variables are assigned as described in the manual: $# is the target, $< is the first prerequisite, $^ is all the prerequisites, etc.
ETA
You still haven't really explained why you don't want to use static pattern rules. They are a perfectly fine and reasonable way to do things.
If you explain what you don't like about static pattern rules, or what you wish you could do differently, then we can probably suggest alternatives that meet those requirements.
Specifically, I have tried the following combinations, as given in various simple examples on the Internet,
$(myapp_obj): $(myapp_src) $(myapp_inc)
Wherever you found this as a recommended example on the Internet, you should immediately delete from any bookmarks as that site doesn't know anything about make.
We see this paradigm at least once a week on SO. I've never really understand why people think it will work: I guess they think make is much more "magical" than it is. Consider, what does the above expand to? Suppose myapp_obj contained foo.o bar.o biz.o and myapp_src contained foo.c bar.c biz.c and myapp_inc contained foo.h bar.h, then make sees:
foo.o bar.o biz.o: foo.c bar.c biz.c foo.h bar.h
I suppose some people think make will intuit that the ".o" files should somehow match up with the ".c" files and will generate a bunch of rules that make that true. That's not what make does. The above line is exactly identical to writing this:
foo.o: foo.c bar.c biz.c foo.h bar.h
bar.o: foo.c bar.c biz.c foo.h bar.h
biz.o: foo.c bar.c biz.c foo.h bar.h
That is, if you have multiple targets make creates one copy of the rule for each target, with the same prerequisites and recipe.
This is obviously not what you want, and that's why none of the examples that try to do things this way can ever work properly.
Why is it that when using $< only *.c files get passed to the recipe, but not *.h files? Is Make doing some internal filtering? Is this documented anywhere? Is it possible to modify this behavior for custom suffixes?
None of that is the case. As I described above, the $< expands to the first prerequisite. That's all. It doesn't matter whether the first prerequisite is a .c file, a .h file, or some other file; whatever it is, $< will be that value. If you write your rule as:
foo.o : foo.c foo.h ; $(CC) -c -o $# $<
then your compiler will be invoked with foo.c. If you write your rule as:
foo.o : foo.h foo.c ; $(CC) -c -o $# $<
then your compiler will be invoked with foo.h. There's no magic here.

Create object files in one folder from different source folders

I am creating a Makefile of a Keil based project. I have a working Makefile now, but I have manually written rules for all the source files, something like this:
out/abc.o: ../../../src/modules/abc.c
ARMCC -o $# $(FLAGS) $^
out/def.o: ../../../src/utilities/def.c
ARMCC -o $# $(FLAGS) $^
out/xyz.o: src/xyz.c
ARMCC -o $# $(FLAGS) $^
which has become kinda long. The object files need to be in one directory(/out), but the source files are in different levels and in various folders like utilities, modules etc. Is there a way to shorten my Makefile so that it scans these different levels of source files and creates the object files?
EDIT:
A follow-up question to the answer. My linker rule is something like this, along with the VPATH addition. I added one directory to VPATH and others are still explicitly compiled.
OBJECT_FILES=out/abc.o out/def.o out/xyz.o
out/binary.axf: $(OBJECT_FILES)
ARMLINK $(MANY_FLAGS) $^ -o $#
VPATH=../a/b/c/module
out/%.o : %.c
$(CC) $(C_FLAGS) $(INCLUDE_PATH) -o $# --depend out/%.d $<
I now get an error that there is no rule for abc.o. abc.c which is present in the directory specified in VPATH under module
*** No rule to make target `out/abc.o', needed by `out/binary.axf'. Stop.
You can use VPATH for this. It can search a list of directories for source files. Assuming you can come up with the list of directories:
VPATH = ../../../src src
CC = ARMCC
out/%.o : %.c
$(CC) -o $# $(CFLAGS) -c $<

Generic `make` rule for generating object files from source files

I have all my source files in a directory called src and I would like all object files to be placed in a directory obj. It is possible to write a generic make rule (that preferably also works with nmake) that will generate the object file corresponding to the source file and place it in the correct directory?
With nmake, you can use an inference rule with paths:
{src\}.c{obj\}.obj:
$(CC) $(CFLAGS) -c -o $# $<
For GNU make you can use pattern rules, like so:
SRCDIR = src
OBJDIR = obj
$(OBJDIR)/%.o : $(SRCDIR)/%.c
$(CC) $(CPPFLAGS) $(CFLAGS) -c -o $# $<

Forcing the order of implicit rule/pattern rule evaluation in GNU Make

I have a domain specific language compiler (homemade) which takes a file x.inflow and generates two files: x.c and x.h. The C file is compiled in the conventional manner and the generated header file has to be included into any file that calls the functions defined within it.
The header files therefore have to be generated before any C files that use them are compiled. My current Makefile, below, works fine except for the first build from clean where it can try and compile main.c before the header file that it includes has been created.
NAME = simplest
OBJ = $(patsubst %.c,%.o,$(wildcard *.c)) \
$(patsubst %.inflow,%.o,$(wildcard *.inflow))
CC = gcc
CFLAGS = -g -Wall
$(NAME): $(OBJ)
$(CC) $(CFLAGS) -o $# $^ $(CLIBS)
# Dependencies for existing .o files.
-include $(OBJ:.o=.d)
# Compile an inflow file into both a .c and .h file.
# Note that this rule has two targets.
%.c %.h: %.inflow
inflow $<
# Compile object files and generate dependency information.
%.o: %.c
$(CC) -MD -MP -c $(CFLAGS) -o $# $<
Obviously, I can fix this for specific cases by adding, for example (where simplest.h is a generated header):
main.o: simplest.h
But is there a general way to force one type of pattern rule (%.c %.h: %.inflow) to be run before any invokations of another (%.o: %.c)?
Well, you can force any target to be run before any other target with order-only prerequisites. So for example, you can write:
%.o : %.c | simplest.h
$(CC) -MD -MP -c $(CFLAGS) -o $# $<
which will ensure that no target that uses this pattern rule to build will be invoked before the target simplest.h is created. However, I don't think you can put patterns in an order-only prerequisite. To be honest, I've never tried it so it's possible that it works, I'm not sure.
If not, you could just list all the order-only prerequisites in the %.o pattern rule; this would ensure that all the inflow files are generated before any of the object files are built. That's probably OK.
It seems the problem is twofold:
Make doesn't know that it needs to generate simplest.h before compiling main.c.
You don't want to have to explicitly tell Make about the dependency (and remember to update it when it changes).
Rather than force Make to evaluate rules in a set order, you can solve your problem by letting Make create the dependencies for you. Check out this section of the Gnu Make manual: http://www.gnu.org/software/make/manual/make.html#Automatic-Prerequisites
When you run Make, it will scan your source files and gather their dependencies for you (and you won't have to explicitly list that main.o depends on simplest.h).

How to write a simpler makefile for a lot of single-c-file programmes?

I want to write a lot of tiny example programmes for one same library, each needs gcc $(OtherOpt) -o xxx -lthelibname xxx.c.
How to write a Makefile without dozens of tagret lines ?
Pattern rules are your friend for these situations. As long as your targets all match a predictable pattern -- and they do in this case, as they are all of the form "create foo from foo.c" -- you can write a single pattern rule that will be used for all of the targets:
OtherOpt=-Wall -g
all: $(patsubst %.c,%,$(wildcard *.c))
%: %.c
gcc $(OtherOpt) -o $# -lthelibname $<
Now you can either run simply make to build all your apps, or make appname to build a specific app. Here I've created a single pattern rule that will be used anytime you want to create something from something.c. I used the $# automatic variable, which will expand to the name of the output, and the $< variable, which will expand to the name of the first prerequisite, so that the command-line is correct regardless of the specific app being built. Technically you don't need the all line, but I figured you probably didn't want to always have to type in the name(s) of the apps you want to build.
Also, technically you can probably get away without having any of this makefile, because GNU make already has a built-in pattern rule for the %: %.c relationship! I mention this option only for completeness; personally, I prefer doing things the way I've shown here because it's a little bit more explicit what's going on.
%.o: %.c
gcc $(OtherOpt) -c -o $# -lthelibname $<
That compiles all .c files to their .o files (object code) of the same base name. Then in your actual target(s), you would include all necessary .o files as dependencies and use gcc $(OtherOpt) -o $# $^ -lthelibname, assuming I'm not misunderstanding how your build is set up.
Some versions of make also support the suffix rule .c.o to be ALMOST the same thing as %.o: %.c, but the suffix rules can't have any dependencies. Writing .c.o: foo.h tells make to compile "foo.h" to "foo.c.o" rather than requiring "foo.h" as a dependency of any file with a .c suffix as %.o: %.c foo.h would correctly do.
I learnd from http://sourceforge.net/projects/gcmakefile/
LDLIB = -lpthread
LDFLAGS = -Wl,-O1 -Wl,--sort-common -Wl,--enable-new-dtags -Wl,--hash-style=both $(LDLIB)
SRCDIRS =
SRCEXTS = .c .C .cc .cpp .CPP .c++ .cxx .cp
CFLAGS = -pipe -march=core2 -mtune=generic -Wfloat-equal \
#-Wall -pedantic
ifeq ($(SRCDIRS),)
SRCDIRS = .
endif
SOURCES = $(foreach d,$(SRCDIRS),$(wildcard $(addprefix $(d)/*,$(SRCEXTS))))
TARGET = $(addprefix bin/,$(basename $(SOURCES)))
all: $(TARGET)
ls -l $(TARGET)
bin/%: %.c dir
gcc $(CFLAGS) $(LDFLAGS) -o $# $<
dir:
#-mkdir bin
.PHONY : clean
clean:
-rm $(TARGET)
-rmdir bin

Resources