Checking circular primes in Prolog - prolog

I am new to Prolog and am having a hard time figuring out what is wrong with my code.
I am trying to find circular prime numbers
So far I have this code:
isCircularPrime(N):-
prime(N),
numDigits(N, Y),
Y2 is Y-1,
rotate(N,Y,N2),
circularPrime(N2, Y2, Y2).
circularPrime(_, 0, _).
circularPrime(N, 1, _):-prime(N).
circularPrime(N, I, J):-
I > 1,
prime(N),
I2 is I-1,
rotate(N,J,N2),
circularPrime(N2,I2,J).
Where:
numDigits makes Y the number of digits in N.
rotate makes N2 a rotation of N (e.g. 12 -> 21).
prime is true if N is prime, false otherwise
Currently it recurses infinitely whenever a number is prime but not a circular prime (e.g. 19, 23, etc). If someone could explain what I'm doing wrong, I would really appreciate it.
Here is the other code in case anyone wants to test this for themselves:
prime(2).
prime(3).
prime(N):-
N>3,
N mod 2 =\= 0,
\+ divisible(N,3).
divisible(N,I):- N mod I =:= 0.
divisible(N,I):-
I*I < N,
I2 is I + 2,
divisible(N, I2).
numDigits(N, 1):-
N<10, N>0.
numDigits(N, X):-
N2 is N/10,
numDigits(N2, Y),
X is (Y+1).
rotate(N, L, R):-
LastDigit is N mod 10,
Base is div(N, 10),
Exponent is L - 1,
Num is 10**Exponent,
NewBase is LastDigit*Num,
R is Base + NewBase.

I think the problem is in your numDigits/2 predicate.
It offers all kinds of answers, so the program keeps backtracking again and again:
numDigits(1, X).
X = 1 ;
X = 2 ;
X = 3 ;
X = 4 ;
X = 5 etc...
After adding cuts to numDigits/2 the programs seems to behave correctly:
isCircularPrime(19).
false.

Related

Prolog - print the sum of the EVEN numbers from 1 to 10

I am trying to print all the even numbers from 1 to 10 using Prolog, and here is what I have tried:
printn(10,0):- write(10),!.
printn(X,Sum):-
( X mod 2 =:= 0 -> Sum is X+Sum, Next is X+1, nl, printn(Next);
Next is X+1, printn(Next) ).
but it returns false.
You don't need to create the list with the numbers from the beginning, it is better to examine numbers once:
print(X,Y):-print_even(X,Y,0).
print_even(X, X, Sum):-
( X mod 2 =:= 0 -> Sum1 is X+Sum;
Sum1 = Sum
), print(Sum1).
print_even(X, Y, Sum):-
X<Y, Next is X+1,
( X mod 2 =:= 0 -> Sum1 is X+Sum, print_even(Next, Y, Sum1);
print_even(Next, Y, Sum)
).
Keep in mind that in Prolog Sum is Sum+1 always fails you need to use a new variable e.g Sum1.
Example:
?- print(1,10).
30
true ;
false.
The most useful way of obtaining Prolog output is to capture the solution in a variable, either individually through backtracking, or in a list. The idea of "printing", which carries over from using other languages allows for formatting, etc, but is not considered the best way to express a solution.
In Prolog, you want to express your problem as a relation. For example, we might say, even_with_max(X, Max) is true (or succeeds) if X is an even number less than or equal to Max. In Prolog, when reasoning with integers, the CLP(FD) library is what you want to use.
:- use_module(library(clpfd)).
even_up_to(X, Max) :-
X in 1..Max,
X mod 2 #= 0, % EDIT: as suggested by Taku
label([X]).
This will yield:
3 ?- even_up_to(X, 10).
X = 2 ;
X = 4 ;
X = 6 ;
X = 8 ;
X = 10.
If you then want to collect into a list, you can use: findall(X, even_up_to(X), Evens).
What error do you have? Here is my solution:
Create list [1...10]
Filter it, excluding odd numbers
Sum elements of the list
Code:
sumList([], 0).
sumList([Head|Tail], Sum) :-
sumList(Tail, Rest),
Sum is Head + Rest.
isOdd(X) :-
not((X mod 2) =:= 0).
sumOfEvenNums(A, B, Out) :-
numlist(A, B, Numbers),
exclude(isOdd, Numbers, Even_numbers),
sumList(Even_numbers, Out).
Now you can call sumOfEvenNums(1, 10, N)
In ECLiPSe, you can write with iterator:
sum_even(Sum):-
( for(I,1,10),fromto(0,In,Out,Sum)
do
(I mod 2 =:= 0 -> Out is In + I;Out is In)
)
With library(aggregate):
evens_upto(Sum) :-
aggregate(sum(E), (between(1, 10, E), E mod 2 =:= 0), Sum).
Thanks to #CapelliC for the inspiration.

Prolog Break Money into Smaller Amounts

I have this predicate which returns true if S is equal to some equation say K + 2N + 3L = S. The money we have are 1, 5, and 10 respectively for K, N, L.
I don't want to use :- use_module(library(clpfd)), I want to solve this without it.
My intuition was to break this into subproblems like write a function breakMoney1(S,K) :- K is S. and create more helpers with one more parameter added however I am struggling with the problem of getting uninstantiated variables, when I compare.
breakMoney(S,K,N,L) :-
This is easier than you think, probably. A very naive solution following #Will Ness' suggestion would be:
break(Sum, K, N, L) :- integer(Sum), Sum >= 0,
% upper bounds for K, N, and L
K_Max is Sum div 1,
N_Max is Sum div 5,
L_Max is Sum div 10,
% enumerate possible values for K, N, and L
between(0, L_Max, L),
between(0, N_Max, N),
between(0, K_Max, K),
Sum =:= K + 5*N + 10*L.
This will "magically" turn into a clp(fd) solution with very little effort: for example, replace between with X in 0..Max, and the =:= with #=. Although, it should be enough to simply say that X #>= 0 for each of the denominations. It is a good exercise to see how much of the constraints you can remove and still get an answer:
break(Sum, K, N, L) :-
K #>= 0, N #>= 0, L #>= 0,
Sum #= K + 5*N + 10*L.
Depending on how you instantiate the arguments, you might immediately get a unique answer, or you might need to use label/1:
?- break(100, P, 8, 5).
P = 10.
?- break(10, K, N, L).
K in 0..10,
-1*K+ -5*N+ -10*L#= -10,
N in 0..2,
L in 0..1.
?- break(10, K, N, L), label([K, N, L]).
K = N, N = 0,
L = 1 ;
K = L, L = 0,
N = 2 ;
K = 5,
N = 1,
L = 0 ;
K = 10,
N = L, L = 0.
But as #lurker has pointed out, there is very little reason not to use constraint programming for this problem. Unless, of course, you have a very clever algorithm for solving this particular problem and you know for a fact that it will outsmart the generic clp(fd) solution. Even then, it might be possible to achieve the same effect by using the options to labelling/2.

Prolog Find N prime numbers

I have a problem with the recursive function of Prolog. I believe I am not implementing it right and need help.
I need to generate the first N prime numbers and return it in a list. Generating the prime number is not an issue, but rather, generating it in a list is the issue I have.
This is the part of the relevant code:
genList(_, 0, _).
genList(X, N, PrimeList, PrimeList):-
N > 0,
isprime(X),
X1 is X +1,
N1 is N -1,
genList(X1,N1,[X|PrimeList], [X|PrimeList]),!.
genList(X, N, PrimeList, PrimeList):-
N>0,
\+isprime(X),
X1 is X + 1,
genList(X1,N,PrimeList, PrimeList).
This is what I type into the Prolog interpreter:
genList(1,N, [],L).
For the 1st line, how do I make the base case such that when N=0, I stop recursing? Is this correct?
As for the next 2 clauses, I am having difficulty in thinking in terms of logic programming. I definitely feel that this is not logic programming style.
I want to say that when isPrime(X) fails, we continue to the next number without saving anything, but when isPrime(X) is true, then we recurse and continue to the next number, saving X.
How do I do that in Prolog?
First of all, you shouldn't need 4 arguments to your main predicate if you only want two. Here you want the list of the first primes up to N. So an argument for N and an argument for the list should be enough:
primeList(N, L) :-
% eventually in the body a call to a worker predicate with more arguments
Now here, your logic is explained in those terms:
primeList(N, [N|L]) :-
% If we're not at the base case yet
N > 0,
% If N is a prime
isPrime(N),
NewN is N - 1,
% Let's recurse and unifie N as the head of our result list in the head
% of the predicate
primeList(NewN, L).
primeList(N, L) :-
% Same as above but no further unification in the head this time.
N > 0,
% Because N isn't a prime
\+ isPrime(N),
NewN is N - 1,
primeList(NewN, L).
To that you'd have to add the base case
primeList(0, []).
You could rewrite that with cuts as follows:
primeList(0, []) :- !.
primeList(N, [N|L]) :-
isPrime(N),
!,
NewN is N - 1,
primeList(NewN, L).
primeList(N, L) :-
NewN is N - 1,
primeList(NewN, L).
Here's what you meant to write:
genList(N, L) :- genList(2, N, L, []).
genList(X, N, L, Z):- % L-Z is the result: primes list of length N
N > 0 ->
( isprime(X) -> L=[X|T], N1 is N-1 ; L=T, N1 is N ),
X1 is X + 1,
genList(X1,N1,T,Z)
;
L = Z.
The if-then-else construct embodies the cuts. And you're right, it's essentially a functional programming style.
We can introduce a little twist to it, disallowing requests for 0 primes (there's no point to it anyway), so that we also get back the last generated prime:
genList(1, [2], 2) :- !.
genList(N, [2|L], PN) :- N>1, L=[3|_], N2 is N-2, gen_list(N2, L, [PN]).
gen_list(N, L, Z) :- L=[P|_], X is P+2, gen_list(X, N, L, Z).
gen_list(X, N, L, Z) :- % get N more odd primes into L's tail
N > 0 ->
( isprime(X) -> L=[_|T], T=[X|_], N1 is N-1 ; L=T, N1 is N ),
X1 is X + 2,
gen_list(X1,N1,T,Z)
;
L = Z. % primes list's last node
Run it:
?- genList(8,L,P).
L = [2, 3, 5, 7, 11, 13, 17, 19]
P = 19
This also enables us to stop and continue the primes generation from the point where we stopped, instead of starting over from the beginning:
?- L = [3|_], gen_list(8, L, Z), Z=[P10|_], writeln([2|L]),
gen_list(10, Z, Z2), Z2=[P20], writeln(Z).
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29|_G1037]
[29,31,37,41,43,47,53,59,61,67,71]
P10 = 29
P20 = 71

Prolog: pythagorean triple

I have this code that uses an upper bound variable N that is supposed to terminate for X and Y of the pythagorean triple. However it only freezes when it reaches the upper bound. Wasn't sure how to use the cut to stop the backtracking. Code is:
is_int(0).
is_int(X) :- is_int(Y), X is Y+1.
minus(S,S,0).
minus(S,D1,D2) :- S>0, S1 is S-1, minus(S1,D1,D3), D2 is D3+1.
pythag(X,Y,Z,N) :- int_triple(X,Y,Z,N), Z*Z =:= X*X + Y*Y.
int_triple(X,Y,Z,N) :- is_int(S), minus(S,X,S1), X>0, X<N,
minus(S1,Y,Z), Y>0, Y<N.
Will be called, for example with,
?- pythag(X,Y,Z,20).
First, let us test your solution:
?- pythag(X,Y,Z,20).
X = 4, Y = 3, Z = 5
; X = 3, Y = 4, Z = 5
; X = 8, Y = 6, Z = 10
; X = 6, Y = 8, Z = 10
; X = 12, Y = 5, Z = 13
; X = 5, Y = 12, Z = 13
; X = 12, Y = 9, Z = 15
; X = 9, Y = 12, Z = 15
; X = 15, Y = 8, Z = 17
; X = 8, Y = 15, Z = 17
; X = 16, Y = 12, Z = 20
; X = 12, Y = 16, Z = 20
; loops.
Looks perfect to me! All answers are correct solutions! ... up to and including this last solution. After that, your program loops.
Before we try to identify the problem, just hold on for a moment: You must be pretty patient to go through 12 (that is: twelve) answers only to find that loop. Do you think that this method will also work for bigger cases? How many answers are you willing to look at before you give up? Isn't there a simpler way to find out about the problem?
There is one interesting observation here: The answers found have (almost) nothing to do with the looping of the program! That is: By looking at the answers, you get (frequently – as in this case) no clue about the actual cause of the loop! So why not turn off all the answers and concentrate on the relevant part! In fact, we can do this as follows:
?- pythag(X,Y,Z,20), false.
loops.
Now, all answers have been removed due to the goal false. What remains is just the final outcome: either termination, or non-termination, or some error. Nothing else. This should facilitate our observations about termination a bit - no more blinding answers scrolling over the screen. Note that this does not solve the problem in general. After all, how long are we willing to wait? 1s ? 1m?
The actual reason of non-termination can be best understood by looking at a relevant failure slice. That is a fragment of the program whose non-termination implies the non-termination of the whole program. See this answer for more details. Here is the relevant failure slice of your program for query pythag(X,Y,Z,20), false:
pythag(X,Y,Z,N) :-
int_triple(X,Y,Z,N), false,
Z*Z =:= X*X + Y*Y.
int_triple(X,Y,Z,N) :-
is_int(S), false,
minus(S,X,S1), X>0, X<N,
minus(S1,Y,Z), Y>0, Y<N.
is_int(0) :- false.
is_int(X) :-
is_int(Y), false,
X is Y+1.
Note that there are not many things left of your program. E.g., the actual equation is gone (that's more or less the logic part...). Still, this fragment is relevant. And as long as you do not change something within that fragment, the problem will persist! That is guaranteed for a pure monotonic program as this one...
Here is my preferred solution: It uses length/2 and between/3, two frequently supported predicates of the Prolog prologue.
pythag2(X,Y,Z,N) :-
length(_, N),
between(1,N,X),
between(1,N,Y),
between(1,N,Z),
Z*Z =:= X*X + Y*Y.
I was recently as well thinking about a Prolog solution to
find Pythagorean triples. I came up with a slightly different
code. Assume we have a function:
isqrt(a) = floor(sqrt(a))
It is then enough to enumerate x and y, and to check whether
x*x+y*y is the square of some z. Namely to check for:
h = x*x+y*y, z = isqrt(h), z*z = h ?
The function isqrt can be implemented via bisection. For
symmetry breaking we can enumerate y after x. Assuming
N = 99 the resulting code is:
% between(+Integer, +Integer, -Integer)
between(Lo, Hi, _) :-
Lo > Hi, !, fail.
between(Lo, _, Lo).
between(Lo, Hi, X) :-
Lo2 is Lo+1, between(Lo2, Hi, X).
% bisect(+Integer, +Integer, +Integer, -Integer)
bisect(Lo, Hi, X, Y) :-
Lo+1 < Hi, !,
M is (Lo+Hi) // 2,
S is M*M,
(S > X -> bisect(Lo, M, X, Y);
S < X -> bisect(M, Hi, X, Y);
M = Y).
bisect(Lo, _, _, Lo).
% pythago(-List)
pythago(X) :-
X = [A,B,C],
between(1, 99, A),
between(A, 99, B),
H is A*A+B*B,
bisect(0, H, H, C),
C =< 99, H =:= C*C.
There should be 50 such Pythagorean tripples, see also Sloan's A046083:
?- findall(-, pythago(_), L), length(L, N).
N = 52.
One might like to cross check with the following
CLP(FD) solution.
:- use_module(library(clpfd)).
% pythago3(-List)
pythago3(X) :-
X = [A,B,C],
X ins 1..99,
A*A+B*B #= C*C,
A #=< B,
label(X).
It gives the same number of solutions:
?- findall(-, pythago3(_), L), length(L, N).
N = 50.

Beginner - add multiples of 3 and 5

I'm trying to find the sum of all positive multiples of 3 and 5 below 1000. After adding the portion that's supposed to remove the multiples of 3 from the sum of the multiples of 5, gprolog will keep spitting out "No" for the query ?- sigma(1000,N).
The problem apparently lies in sigma5, but I can't quite spot it:
sigma(Num, Result) :- sigma3(Num, 3, Result3),
sigma5(Num, 5, Result5),
Result is Result3 + Result5.
sigma3(Num, A, Result) :- A < Num,
Ax is A+3,
sigma3(Num, Ax, ResultX),
Result is ResultX + A.
sigma3(Num, A, Result) :- A >= Num,
Result is 0.
sigma5(Num, A, Result) :- A < Num,
mod3 is A mod 3,
0 \= mod3,
Ax is A+5,
sigma5(Num, Ax, ResultX),
Result is ResultX + A.
sigma5(Num, A, Result) :- A < Num,
mod3 is A mod 3,
0 == mod3,
Ax is A+5,
sigma5(Num, Ax, ResultX),
Result is ResultX.
sigma5(Num, A, Result) :- A >= Num,
Result is 0.
What's the problem with my code?
As integers are involved, consider using finite domain constraints. For example, with SWI-Prolog:
?- use_module(library(clpfd)).
true.
?- findall(N, (N mod 3 #= 0 #\/ N mod 5 #= 0, N in 0..999, indomain(N)), Ns),
sum(Ns, #=, Sum).
Ns = [0, 3, 5, 6, 9, 10, 12, 15, 18|...],
Sum = 233168.
Prolog has never been popular for it's arithmetic capabilities.
This is due to the need to represent 'term constructors' for symbolic processing, without undue evaluation, so when actual arithmetic is required we must explicitly allocate the 'space' (a variable) for the result, instead that 'passing down' an expression. This lead to rather verbose and unpleasant code.
But using some popular extension, like CLP(FD), available in GProlog as well as SWI-Prolog, we get much better results, not readily available in other languages: namely, a closure of the integer domain over the usual arithmetic operations. For instance, from the SWI-Prolog CLP(FD) library, a 'bidirectional' factorial
n_factorial(0, 1).
n_factorial(N, F) :- N #> 0, N1 #= N - 1, F #= N * F1, n_factorial(N1, F1).
?- n_factorial(X, 3628800).
X = 10 .
Anyway, here is a simple minded solution to the original problem, similar to what you attempted, but using an accumulator to compute result. This simple trick allows writing a tail recursive procedure, that turns out in better efficiency.
sigma(Num, Result) :-
sigma(1, Num, 0, Result).
sigma(N, M, Acc, Tot) :-
( N < M, !,
( (0 is N mod 3 ; 0 is N mod 5)
-> Sum is Acc + N
; Sum is Acc
),
N1 is N + 1,
sigma(N1, M, Sum, Tot)
; Tot is Acc
).
Test:
?- sigma(1000, X).
X = 233168 .
mod3 is A mod 3,
(as well all the other occurrences of mod3) should be Mod3 since it is a variable.
with that fix, the program runs correctly (at least for N=1000)
btw here is my solution (using higher-order predicates):
sum(S):-
findall(X,between(1,999,X),L), % create a list with all numbers between 1 and 999
include(div(3),L,L3), % get the numbers of list L which are divisible by 3
include(div(5),L,L5), % get the numbers of list L which are divisible by 5
append(L3,L5,LF), % merge the two lists
list_to_set(LF,SF), % eliminate double elements
sumlist(SF,S). % find the sum of the members of the list
div(N,M):-
0 is M mod N.
it's less efficient of course but the input is too small to make a noticeable difference
This all seems very complicated to me.
sum_of( L , S ) :-
L > 0 ,
sum_of( 0 , L , 0 , S )
.
sum_of( X , X , S , S ) . % if we hit the upper bound, we're done.
sum_of( X , L , T , S ) :- % if not, look at it.
X < L , % - backtracking once we succeeded.
add_mult35( X , T , T1 ) , % - add any multiple of 3 or 5 to the accumulator
X1 is X + 1 , % - next X
sum_of( X1 , L , T1 , S ) % - recurse
.
add_mult35( X , T , T ) :- % no-op if X is
X mod 3 =\= 0 , % - not a multiple of 3, and
X mod 5 =\= 0 , % - not a multiple of 5
!. %
add_mult35( X , T , T1 ) :- % otherwise,
T1 is T + X % increment the accumulator by X
.
This could be even more concise than it is.
Aside from my code probably being extraordinarily horrible (it's actually longer than my C solution, which is quite a feat on it's own),
ANSI C:
int sum_multiples_of_three_and_five( int lower_bound , int upper_bound )
{
int sum = 0 ;
for ( int i = lower_bound ; i <= upper_bound ; ++i )
{
if ( 0 == i % 3 || 0 == i % 5 )
{
sum += i ;
}
}
return sum ;
}

Resources