Is this generalization of Big-Theta notation correct? - performance

Say you have an algorithm that completes in a polynomial number of steps for the input of size n, like, for example, P(n)=2n^2+4n+3. The asymptotic tight bound for this algorithm Θ(n^2).
Is it true to say that the Big-Theta notation for any algorithm is n to the power of the degree of the polynomial P(n), or are there any cases where that is not true?

The complexity of polynomial time algorithms are bounded by O(nk), where 0 < k ≤ ∞. It doesn't mean that all the algorithms are having a polynomial time complexity. There are many algorithms with sub polynomial complexity. Examples include O(k) (constant complexity), O(k√n) (kth root of n, where 1 ≤ k ≤ ∞), O(log n), O(log log n), etc. There are also algorithms which are having super polynomial time complexity. Examples for such complexities are O(kn), where 1 < k ≤ ∞, O(n!), etc.

Related

What is the complexity of code that does O(n*log n) work, and then O(n^2) work?

I have an algorithm that first does something in O(n*log(n)) time and then does something else in O(n^2) time. Am I correct that the total complexity would be
O(n*log(n) + n^2)
= O(n*(log(n) + n))
= O(n^2)
since log(n) + n is dominated by the + n?
The statement is correct, as O(n log n) is a subset of O(n^2); however, a formal proof would consist out of choosing and constructing suitable constants.
If the call probability of both is equal then you are right. But if the probability of both is not equal you have to do an amortized analysis where you split rare expensive calls (n²) to many fast calls (n log(n)).
For quick sort for example (which generally takes n log(n), but rarly takes n²) you can proof that average running time is n log(n) because of amortized anlysis.
one of the rules of complexity analysis is that you must remove the terms with lower exponent or lower factors.
nlogn vs n^2 (divide both by n)
logn vs n
logn is smaller than n, than you can remove it from the complexity equation
so if the complexity is O(nlogn + n^2), when n is really big, the value of nlogn is not significant if compared to n^2, this is why you remove it and rewrite as O(n^2)

How can an algorithm have two worst case complexities?

Steven Skiena's The Algorithm design manual's chapter 1 exercise has this question:
Let P be a problem. The worst-case time complexity of P is O(n^2) .
The worst-case time complexity of P is also Ω(n log n) . Let A be an
algorithm that solves P. Which subset of the following statements are
consistent with this information about the complexity of P?
A has worst-case time complexity O(n^2) .
A has worst-case time complexity O(n^3/2).
A has worst-case time complexity O(n).
A has worst-case time complexity ⍬(n^2).
A has worst-case time complexity ⍬(n^3) .
How can an algorithm have two worst-case time complexities?
Is the author trying to say that for some value of n (say e.g. 300) upper bound for algorithm written for solving P is of the order of O(n^2) while for another value of n (say e.g. 3000) the same algorithm worst case was Ω(n log n)?
The answer to your specific question
is the author trying to say that for some value of n (say e.g. 300) upper bound for algorithm written for solving P is of the order of O(n^2) while for another value of n (say e.g. 3000) the same algorithm worst case was Ω(n log n)?
is no. That is not how complexity functions work. :) We don't talk about different complexity classes for different values of n. The complexity refers to the entire algorithm, not to the algorithm at specific sizes. An algorithm has a single time complexity function T(n), which computes how many steps are required to carry out the computation for an input size of n.
In the problem, you are given two pieces of information:
The worst case complexity is O(n^2)
The worst case complexity is Ω(n log n)
All this means is that we can pick constants c1, c2, N1, and N2, such that, for our algorithm's function T(n), we have
T(n) ≤ c1*n^2 for all n ≥ N1
T(n) ≥ c2*n log n for all n ≥ N2
In other words, our T(n) is "asymptotically bounded below" by some constant time n log n and "asymptotically bounded above" by some constant times n^2. It can itself be anything "between" an n log n style function and an n^2 style function. It can even be n log n (since that is bounded above by n^2) or it can be n^2 (since that's bounded below by n log n. It can be something in between, like n(log n)(log n).
It's not so much that an algorithm has "multiple worst case complexities" in the sense it has different behaviors. What are you seeing is an upper bound and a lower bound! And these can, of course, be different.
Now it is possible that you have some "weird" function like this:
def p(n):
if n is even:
print n log n stars
else:
print n*2 stars
This crazy algorithm does have the bounds specified in the problem from the Skiena book. And it has no Θ complexity. That might have been what you were thinking about, but do note that it is not necessary for a complexity function to be this weird in order for us to say the upper and lower bounds differ. The thing to remember is that upper and lower bounds are not tight unless explicitly stated to be so.

Which algorithm is faster O(N) or O(2N)?

Talking about Big O notations, if one algorithm time complexity is O(N) and other's is O(2N), which one is faster?
The definition of big O is:
O(f(n)) = { g | there exist N and c > 0 such that g(n) < c * f(n) for all n > N }
In English, O(f(n)) is the set of all functions that have an eventual growth rate less than or equal to that of f.
So O(n) = O(2n). Neither is "faster" than the other in terms of asymptotic complexity. They represent the same growth rates - namely, the "linear" growth rate.
Proof:
O(n) is a subset of O(2n): Let g be a function in O(n). Then there are N and c > 0 such that g(n) < c * n for all n > N. So g(n) < (c / 2) * 2n for all n > N. Thus g is in O(2n).
O(2n) is a subset of O(n): Let g be a function in O(2n). Then there are N and c > 0 such that g(n) < c * 2n for all n > N. So g(n) < 2c * n for all n > N. Thus g is in O(n).
Typically, when people refer to an asymptotic complexity ("big O"), they refer to the canonical forms. For example:
logarithmic: O(log n)
linear: O(n)
linearithmic: O(n log n)
quadratic: O(n2)
exponential: O(cn) for some fixed c > 1
(Here's a fuller list: Table of common time complexities)
So usually you would write O(n), not O(2n); O(n log n), not O(3 n log n + 15 n + 5 log n).
Timothy Shield's answer is absolutely correct, that O(n) and O(2n) refer to the same set of functions, and so one is not "faster" than the other. It's important to note, though, that faster isn't a great term to apply here.
Wikipedia's article on "Big O notation" uses the term "slower-growing" where you might have used "faster", which is better practice. These algorithms are defined by how they grow as n increases.
One could easily imagine a O(n^2) function that is faster than O(n) in practice, particularly when n is small or if the O(n) function requires a complex transformation. The notation indicates that for twice as much input, one can expect the O(n^2) function to take roughly 4 times as long as it had before, where the O(n) function would take roughly twice as long as it had before.
It depends on the constants hidden by the asymptotic notation. For example, an algorithm that takes 3n + 5 steps is in the class O(n). So is an algorithm that takes 2 + n/1000 steps. But 2n is less than 3n + 5 and more than 2 + n/1000...
It's a bit like asking if 5 is less than some unspecified number between 1 and 10. It depends on the unspecified number. Just knowing that an algorithm runs in O(n) steps is not enough information to decide if an algorithm that takes 2n steps will complete faster or not.
Actually, it's even worse than that: you're asking if some unspecified number between 1 and 10 is larger than some other unspecified number between 1 and 10. The sets you pick from being the same doesn't mean the numbers you happen to pick will be equal! O(n) and O(2n) are sets of algorithms, and because the definition of Big-O cancels out multiplicative factors they are the same set. Individual members of the sets may be faster or slower than other members, but the sets are the same.
Theoretically O(N) and O(2N) are the same.
But practically, O(N) will definitely have a shorter running time, but not significant. When N is large enough, the running time of both will be identical.
O(N) and O(2N) will show significant difference in growth for small numbers of N, But as N value increases O(N) will dominate the growth and coefficient 2 becomes insignificant. So we can say algorithm complexity as O(N).
Example:
Let's take this function
T(n) = 3n^2 + 8n + 2089
For n= 1 or 2, the constant 2089 seems to be the dominant part of function but for larger values of n, we can ignore the constants and 8n and can just concentrate on 3n^2 as it will contribute more to the growth, If the n value still increases the coefficient 3 also seems insignificant and we can say complexity is O(n^2).
For detailed explanation refer here
O(n) is faster however you need to understand that when we talk about Big O, we are measuring the complexity of a function/algorithm, not its speed. And we measure this complexity asymptotically. In lay man terms, when we talk about asymptotic analysis, we take immensely huge values for n. So if you plot the graph for O(n) and O(2n), the values will stay in some particular range from each other for any value of n. They are much closer compared to the other canonical forms like O(nlogn) or O(1), so by convention we approximate the complexity to the canonical form O(n).

Is O(n Log n) in polynomial time?

Is O(n Log n) in polynomial time? If so, could you explain why?
I am interested in a mathematical proof, but I would be grateful for any strong intuition as well.
Thanks!
Yes, O(nlogn) is polynomial time.
From http://mathworld.wolfram.com/PolynomialTime.html,
An algorithm is said to be solvable in polynomial time if the number
of steps required to complete the algorithm for a given input is
O(n^m) for some nonnegative integer m, where n is the complexity of
the input.
From http://en.wikipedia.org/wiki/Big_O_notation,
f is O(g) iff
I will now prove that n log n is O(n^m) for some m which means that n log n is polynomial time.
Indeed, take m=2. (this means I will prove that n log n is O(n^2))
For the proof, take k=2. (This could be smaller, but it doesn't have to.)
There exists an n_0 such that for all larger n the following holds.
n_0 * f(n) <= g(n) * k
Take n_0 = 1 (this is sufficient)
It is now easy to see that
n log n <= 2n*n
log n <= 2n
n > 0 (assumption)
Click here if you're not sure about this.
This proof could be a lot nicer in latex math mode, but I don't think stackoverflow supports that.
It is, because it is upper-bounded by a polynomial (n).
You could take a look at the graphs and go from there, but I can't formulate a mathematical proof other than that :P
EDIT: From the wikipedia page, "An algorithm is said to be of polynomial time if its running time is upper bounded by a polynomial expression in the size of the input for the algorithm".
It is at least not worse than polynomial time. And still not better: n < n log n < n*n.
Yes. What's the limit of nlogn as n goes to infinity? Intuitively, for large n, n >> logn and you can consider the product dominated by n and so nlogn ~ n, which is clearly polynomial time. A more rigorous proof is by using the the Sandwich theorem which Inspired did:
n^1 < nlogn < n^2.
Hence nlogn is bounded above (and below) by a sequence which is polynomial time.

I'm really confused about time compexity

I understand that an algorithm's time T(n) can be bounded by O(g(n)) by the definition:
T(n) is O(g(n)) iff there is a c > 0, n0 > 0, such that for all n >= n0:
for every input of size n, A takes at most c * g(n) steps.
T(n) is the time that is the longest out of all the inputs of size n.
However what I don't understand is the definition for Ω(g(n)). The definition is that for some input of size n, A takes at least c * g(n) steps.
But if that's the definition for Ω then couldn't I find a lower bound for any algorthm that is the same as the upper bound? For instance if sorting in the worst case takes O(nlogn) then wouldn't I be able to show easily Ω(nlogn) as well seeing as how there has to be at least one bad input for any size n that would take nlogn steps? Lets assume that we're talking about heapsort.
I am really not sure what I'm missing here because whenever I'm being taught a new algorithm the time for a certain method is either Ɵ(g(n)) or O(g(n)), but no explanation is provided as to why it's either Ɵ or O.
I hope what I said was clear enough if not then ask away at what you misunderstood. I really need this confusion cleared up. Thank you.
O is an upper bound, meaning that we know an algorithm that's O(n lg n) takes, asymptotically, at most a constant times n lg n steps in the worst case.
Ω is a lower bound, meaning that we know it's not possible for an Ω(n lg n) algorithm to take asymptotically less than a n lg n steps in the worst case.
Ɵ is a tight bound: for example, if an algorithm is Ɵ(n lg n) then we know both it's both O(n lg n) (so is at least as fast as n lg n) and Ω(n lg n) (so we know it's no faster than n lg n).
The reason your argument is flawed is that you're actually assuming you know Ɵ(n lg n), not just O(n lg n).
For example, we know there's a Ω(n lg n) general bound on comparison sorts. Once we proved O(n lg n) for mergesort, that therefore means that mergesort is Ɵ(n lg n). Note that mergesort is also O(n^2), because it's no slower than n^2. (That's not how people would typically describe it, but that is what the formal notation means.)
For some algorithms, we don't know tight bounds; the general 3SUM problem in simple models of computation is known to be Ω(n lg n) because it can be used to perform sorting, but we only have Ɵ(n^2) algorithms. The best algorithm for the problem is between n lg n and n^2; we can say that it's O(n^2) and Ω(n lg n), but we don't know the Ɵ.
There's also o(f), which means strictly less than f, and ω(f), which means strictly greater than f.
The definition that I am familiar with is that T(n) is Ω(g(n)) if for some n0, for all n>n0, T(n) >= g(n)*k for some k.
Then something is Θ(n) iff it is both O(g(n)) and Ω(g(n)).

Resources