Algorithm 1. QUEUESTUFF(n)
Input: Integer n
1) Let Q = an empty Queue
2) For i = 1 to n
3) Q.Enqueue(i)
4) End For
5) For i = 1 to n-1
6) Let X = Q.Dequeue()
7) End For
8) Let X = Q.Dequeue()
Output: The contents of X
What is the computational complexity O(n) for algorithm QUEUESTUFF?
The first For loop is just of n and the second nested one is of n-1. So would this make O(n):
O(2n-1) by just doing (n + n) - 1
or would it be O(n^2 - 1) by doing (n * n) - 1
Thanks for any help, I just wanted to clarify this. My guess is that because we have a nested For loop, we would have to times n by n-1, however I just thought that I could assure myself better by getting someone else opinion.
Got the answer thanks to Smoore. Since the loop is not nested, the Big-O would be O(2n-1).
There are two independent (not nested) for loops. n items are enqueued and then n items are dequeued, giving a complexity of O(n) times the complexity of enqueueing or dequeueing. If queue-operation complexity is O(1), then the procedure's complexity is O(n), but if queue-operation complexity is O(ln n), then the procedure's complexity is O(n ln n).
Related
BinaryConversion:
We are inputting a positive integer n with the output being a binary representation of n on a stack.
What would the time complexity here be? I'm thinking it's O(n) as the while loop halves every time, meaning the iterations for a set of inputs size 'n' decrease to n/2, n/4, n/8 etc.
Applying sum of geometric series whereby n = a and r = 1/2, we get 2n.
Any help appreciated ! I'm still a noob.
create empty stack S
while n > 0 do
push (n mod 2) onto S
n = floor(n / 2)
end while
return S
If the loop was
while n>0:
for i in range n:
# some action
n = n/2
Then the complexity would have been O(n + n/2 + n/4 ... 1) ~ O(n), and your answer would have been correct.
while n > 0 do
# some action
n = n / 2
Here however, the complexity will should be the number of times the outer loop runs, since the amount of work done in each iteration is O(1). So the answer will be O(log(n)) (since n is getting halved each time).
The number of iterations is the number of times you have to divide n by 2 to get 0, which is O(log n).
Hydrosort is a sorting algorithm. Below is the pseudocode.
*/A is arrary to sort, i = start index, j = end index */
Hydrosort(A, i, j): // Let T(n) be the time to find where n = j-1+1
n = j – i + 1 O(1)
if (n < 10) { O(1)
sort A[i…j] by insertion-sort O(n^2) //insertion sort = O(n^2) worst-case
return O(1)
}
m1 = i + 3 * n / 4 O(1)
m2 = i + n / 4 O(1)
Hydrosort(A, i, m1) T(n/2)
Hydrosort(A, m2, j) T(n/2)
Hydrosort(A, i, m1) T(n/2)
T(n) = O(n^2) + 3T(n/2), so T(n) is O(n^2). I used the 3rd case of the Master Theorem to solve this recurrence.
I have 2 questions:
Have I calculated the worst-case running time here correctly?
how would I prove that Hydrosort(A, 1, n) correctly sorts an array A of n elements?
Have I calculated the worst-case running time here correctly?
I am afraid not.
The complexity function is:
T(n) = 3T(3n/4) + CONST
This is because:
You have three recursive calls for a problem of size 3n/4
The constant modifier here is O(1), since all non recursive calls operations are bounded to a constant size (Specifically, insertion sort for n<=10 is O(1)).
If you go on and calculate it, you'll get worse than O(n^2) complexity
how would I prove that Hydrosort(A, 1, n) correctly sorts an array A
of n elements?
By induction. Assume your algorithm works for problems of size n, and let's examine a problem of size n+1. For n+1<10 it is trivial, so we ignore this case.
After first recursive call, you are guaranteed that first 3/4 of the
array is sorted, and in particular you are guaranteed that the first n/4 of the elements are the smallest ones in this part. This means, they cannot be in the last n/4 of the array, because there are at least n/2 elements bigger than them. This means, the n/4 biggest elements are somewhere between m2 and j.
After second recursive call, since it is guaranteed to be invoked on the n/4 biggest elements, it will place these elements at the end of the array. This means the part between m1 and j is now sorted properly. This also means, 3n/4 smallest elements are somewhere in between i and m1.
Third recursive call sorts the 3n/4 elements properly, and the n/4 biggest elements are already in place, so the array is now sorted.
The algorithm below has runtime O(n) according to our professor, however I am confused as to why it is not
O(n log(n)), because the outer loop can run up to log(n) times and the inner loop can run up to n times.
Algoritme Loop5(n)
i = 1
while i ≤ n
j = 1
while j ≤ i
j = j + 1
i = i∗2
Your professor was right, the running time is O(n).
In the i-th iteration of the outer while-loop, when we have i=2^k for k=0,1,...,log n, the inner while-loop makes O(i) iterations. (When I say log n I mean the base-2 logarithm log_2 n.)
The running time is O(1+2+2^2+2^3+...+2^k) for k=floor(log n). This sums to O(2^{k+1}) which is O(2^{log n}). (This follows from the formula for the partial sum of geometric series.)
Because 2^{log n} = n, the total running time is O(n).
For the interested, here's a proof that the powers of two really sum to what I claim they sum to. (This is a very special case of a more general result.)
Claim. For any natural k, we have 1+2+2^2+...+2^k = 2^{k+1}-1.
Proof. Note that (2-1)*(1+2+2^2+...+2^k) = (2 - 1) + (2^2 - 2) + ... + (2^{k+1} - 2^k) where all 2^i for 0<i<k+1 cancel out, except for i=0 and i=k+1, and we are left with 2^{k+1}-1. QED.
I'm learning Big-O notation right now and stumbled across this small algorithm in another thread:
i = n
while (i >= 1)
{
for j = 1 to i // NOTE: i instead of n here!
{
x = x + 1
}
i = i/2
}
According to the author of the post, the complexity is Θ(n), but I can't figure out how. I think the while loop's complexity is Θ(log(n)). The for loop's complexity from what I was thinking would also be Θ(log(n)) because the number of iterations would be halved each time.
So, wouldn't the complexity of the whole thing be Θ(log(n) * log(n)), or am I doing something wrong?
Edit: the segment is in the best answer of this question: https://stackoverflow.com/questions/9556782/find-theta-notation-of-the-following-while-loop#=
Imagine for simplicity that n = 2^k. How many times x gets incremented? It easily follows this is Geometric series
2^k + 2^(k - 1) + 2^(k - 2) + ... + 1 = 2^(k + 1) - 1 = 2 * n - 1
So this part is Θ(n). Also i get's halved k = log n times and it has no asymptotic effect to Θ(n).
The value of i for each iteration of the while loop, which is also how many iterations the for loop has, are n, n/2, n/4, ..., and the overall complexity is the sum of those. That puts it at roughly 2n, which gets you your Theta(n).
What is the (a) worst case, (b) best case, and (c) average case complexity of the following function which does matrix multiplication
for i=1 to n do
for j=1 to n do
C[i,j]=0
for k=1 to n do
C[i,j]=C[i,j]+A[i,k]*B[k,j]
end {for}
end {for}
end {for}
How would you justify the complexity?
i, j and k all go from 1 to n.
Therefore the best, average, and worst cases are O(n * n * n) = O(n^3)
For each of the n possible is, there are n js and for each of the n js, there are n ks.
Which gives n * n * n executions of the inner loop.
O(n^3), because on each of the nested loop, N is multiplied by N, since you have a nested loop 3 times which completely process the entire N, that will be N X N X N = N^3