hive hbase integration timestamp - hadoop
I would like to store table into HBase using Hive (hive hbase integration )
My table contains a field typed TIMESTAMP (like DATE)
I've done some research and i discovered that TIMESTAMP is not supported by HBASE, some what should I do?
Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: Error evaluating dat at org.apache.hadoop.hive.ql.exec.SelectOperator.processOp(SelectOperator.java:80)
at org.apache.hadoop.hive.ql.exec.Operator.process(Operator.java:471)
at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:762)
at org.apache.hadoop.hive.ql.exec.TableScanOperator.processOp(TableScanOperator.java:83)
at org.apache.hadoop.hive.ql.exec.Operator.process(Operator.java:471)
at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:762)
at org.apache.hadoop.hive.ql.exec.MapOperator.process(MapOperator.java:529) ... 9 more Caused by: java.lang.IllegalArgumentException: Timestamp format must be yyyy-mm-dd hh:mm:ss[.fffffffff]
at java.sql.Timestamp.valueOf(Timestamp.java:185)
at org.apache.hadoop.hive.serde2.lazy.LazyTimestamp.init(LazyTimestamp.java:74)
at org.apache.hadoop.hive.serde2.lazy.LazyStruct.uncheckedGetField(LazyStruct.java:219)
at org.apache.hadoop.hive.serde2.lazy.LazyStruct.getField(LazyStruct.java:192)
at org.apache.hadoop.hive.serde2.lazy.objectinspector.LazySimpleStructObjectInspector.getStructFieldData(LazySimpleStructObjectInspector.java:188)
at org.apache.hadoop.hive.ql.exec.ExprNodeColumnEvaluator.evaluate(ExprNodeColumnEvaluator.java:98)
at org.apache.hadoop.hive.ql.exec.SelectOperator.processOp(SelectOperator.java:76)
The easiest thing to do would be to convert the TIMESTAMP into a STRING, INT, or FLOAT. This will have the unfortunate side effect of giving up Hive's built in TIMESTAMP support. Due to this you will lose
Read time checks to make sure your column contains a valid TIMESTAMP
The ability to transparently use TIMESTAMPSs of different formats
The use of Hive UDFs which operate on TIMESTAMPs.
The first two losses are mitigated if you choose a single format for your own timestamps and stick to it. The last is not a huge loss because only two Hive date functions actually operate on TIMESTAMPs. Most of them operate on STRINGs. If you aboslutely needed from_utc_timestamp and from_utc_timestamp, you can write your own UDF.
If you go with STRING and only need the date, I would go with a yyyy-mm-dd format. If you need the time as well go with yyyy-mm-dd hh:mm:ss, or yyyy-mm-dd hh:mm:ss[.fffffffff] if you need partial second timestamps. This format also is also consistent with how Hive expects TIMESTAMPs and is the form required for most Hive date functions.
If you with INT you again have a couple of options. If only the date is important, YYYYMMDD fits in with the "basic" format of ISO 8601 (This is a form I've personally used and found convenient when I didn't need to perform any date operations on the column). If the time is also important, go with YYYYMMDDhhmmss. This an acceptable variant for the basic form of ISO 8601 for date time. If you need fractional second timing, then use a FLOAT and the form YYYYMMDDhhmmss.fffffffff. Note that neither of these forms is consitent with how Hive expects integer or floating point TIMESTAMPs.
If the concept of calendar dates and time of day isn't important at all, then using an INT as a Unix timestamp is probably the easiest, or a FLOAT if you also need fractional seconds. This form is consistent with how Hive expects TIMESTAMPs.
Related
Pyarrow schema with Timestamp unit 's' when written to Parquet changed to 'ms' upon reloaded
As seen below, the "dob" field was of type timestamp([s]) when written to Parquet format with pq.write_metadata. But upon rereading the metadata, the type changed to timestamp[ms] Python 3.11.1 (main, Jan 26 2023, 10:38:20) [GCC 8.5.0 20210514 (Red Hat 8.5.0-18)] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import pyarrow as pa, pyarrow.parquet as pq >>> schema = pa.schema([ pa.field("dob", pa.timestamp('s')) ]) >>> schema dob: timestamp[s] >>> pq.write_metadata(schema, '_common_schema') >>> reloaded_schema = pq.read_schema('_common_schema') >>> reloaded_schema dob: timestamp[ms] >>> Is this because Parquet format does not support Timestamp of unit second? How can I make the schema exactly the same in this case?
The behavior you're observing is likely due to the fact that the default Timestamp unit in Pyarrow is microseconds (us), whereas the default Timestamp unit in Parquet is milliseconds (ms). When you write a Pyarrow schema with a Timestamp unit of s to a Parquet file, it gets converted to ms upon storage. When you reload the file, the stored ms unit is used, so the schema gets reloaded as ms. To avoid this behavior, you can specify the Timestamp unit in Pyarrow as ms when writing to Parquet and then ensure that the same unit is used when reading the file back. The Parquet format does not support Timestamp of unit second (s). Instead, the default unit for Timestamp in Parquet is milliseconds (ms). This means that when a Pyarrow schema with a Timestamp field of unit second is written to a Parquet file, it is automatically converted to a Timestamp field of unit milliseconds upon storage. When the file is reloaded, the stored Timestamp unit of milliseconds is used, so the reloaded schema will show the Timestamp field as having a unit of milliseconds. You can use: import pyarrow as pa import pyarrow.parquet as pq # Specify the Timestamp unit as milliseconds schema = pa.schema([ pa.field("dob", pa.timestamp('ms')) ]) # Write the schema to a Parquet metadata file pq.write_metadata(schema, '_common_schema') # Read the schema back from the metadata file reloaded_schema = pq.read_schema('_common_schema') # The reloaded schema should now show the Timestamp field as having a unit of milliseconds print(reloaded_schema) This should result in the expected behavior, where the Timestamp field is correctly represented as having a unit of milliseconds, both when written to the Parquet file and when reloaded from the file. there are a few other data types that can be represented differently in Arrow and Parquet. Here are some to be aware of: Decimal: The precision and scale of Decimal fields in Arrow and Parquet can be different. When converting from Arrow to Parquet, the decimal type is rounded to the nearest representable decimal with the same scale. When converting from Parquet to Arrow, the decimal type is rounded up to the nearest representable decimal with the same precision. Timestamp: As we have seen, the default unit for Timestamps in Arrow is microseconds (us), whereas the default unit for Timestamps in Parquet is milliseconds (ms). You should ensure that the correct unit is specified when converting between the two formats. Time: The default unit for Time in Arrow is microseconds (us), whereas the default unit for Time in Parquet is milliseconds (ms). You should ensure that the correct unit is specified when converting between the two formats. Nested structures: Arrow supports nested structures, such as arrays and structs, whereas Parquet only supports flat structures. When converting from Arrow to Parquet, any nested structures must be flattened. When converting from Parquet to Arrow, the flat structure must be reconstructed into nested structures. These are some of the main differences to be aware of when converting between Arrow and Parquet data formats. It's important to ensure that the data is correctly represented in both formats to avoid unexpected behavior and data loss
Azure Data Factory Converting Source Data Type to a Different Format
I am using Azure Data Factory to copy data from an Oracle Database to ADLS Gen 2 Container In the COPY Activity, I added Source as Oracle DB and Sink as ADLS I want to create Parquet file in Sink When I click on Mapping, I can see the datatype which is NUMBER in Source is getting converted as Double in ADF Also, Date type in source is converted to DateTime in ADF Due to which I am not able to load correct data I even tried Typecasting in Source Query to convert it into same format as source but still ADF is converting it into Double Pls find below screenshot as a reference: Here ID column is NUMBER in Oracle DB, but ADF is considering it as Double and adding .0 to the data which is not what I need Even after typecasting it to Number it is not showing correct type What can be the possible root cause of this issue and why the Source data type is not shown in correct format Due to this, the Parquet file which I am creating is not correct and my Synapse Table (end destination) is not able to add the data as in Synapse I have kept ID column as Int Ideally, ADF should show the same data type as in Source Pls let me know if you have any solution or suggestions for me to try Thanks!
I am not an Oracle user, but as I understand it the NUMBER data type is generic and can be either integer or decimal based. Parquet does not have this concept, so when it converts it basically has to be to a decimal type (such as Double) to prevent loss of data. If you really want the data to be an Integer, then you'll need to use Data Flow (instead of COPY) to cast the incoming values to an integer column.
Issue with timestamp field while using SQOOP
An extra space is added before the milliseconds while timestamp field is being ingested for eg. 05-OCT-17 03.39.02.689000000 AM is ingested as 2017-10-5 3:39:2. 689000000. Using Oracle as the source,parquet format as the format for storing the data in HDFS. Any suggestions on how it can be avoided.
logstash-elasticsearch: sort data by timestamp
I centralize logfiles into one logfile by using logstash and for each event I have timestamp(the original one). Now, my last challenge it to get this data sorted by timestamp(if possible on real-time thats better). my timestamp format is: yyyy-MM-dd HH:mm:ss Now, I can make any change in the format/ file format in order to make it work, as long as it stays on our servers. What's the best way to sort my data? any ideas? Thanks in advance!
Hadoop Pig ISO Date to Unix Timestamp
I have a list of items in Pig consisting of ISO 8601 (YYYY-MM-DD) formatted date strings: (2011-12-01) (2011-12-01) (2011-12-02) Is there any way to transform these items into UNIX timestamps apart from implementing my own functions in Java?
You need a UDF to do that = The good news it has already been done. Pig also comes with "piggybank" UDFs contributed by the community including date convert