Permutations with order restrictions - performance

Let L be a list of objects. Moreover, let C be a set of constraints, e.g.:
C(1) = t1 comes before t2, where t1 and t2 belong to L
C(2) = t3 comes after t2, where t3 and t2 belong to L
How can I find (in MATLAB) the set of permutations for which the constraints in C are not violated?
My first solution is naive:
orderings = perms(L);
toBeDeleted = zeros(1,size(orderings,1));
for ii = 1:size(orderings,1)
for jj = 1:size(constraints,1)
idxA = find(orderings(ii,:) == constraints(jj,1));
idxB = find(orderings(ii,:) == constraints(jj,2));
if idxA > idxB
toBeDeleted(ii) = 1;
end
end
end
where constraints is a set of constraints (each constraint is on a row of two elements, specifying that the first element comes before the second element).
I was wondering whether there exists a simpler (and more efficient) solution.
Thanks in advance.

I'd say that's a pretty good solution you have so far.
There is a few optimizations I see though. Here's my variation:
% INITIALIZE
NN = 9;
L = rand(1,NN-1);
while numel(L) ~= NN;
L = unique( randi(100,1,NN) ); end
% Some bogus constraints
constraints = [...
L(1) L(2)
L(3) L(6)
L(3) L(5)
L(8) L(4)];
% METHOD 0 (your original method)
tic
orderings = perms(L);
p = size(orderings,1);
c = size(constraints,1);
toKeep = true(p,1);
for perm = 1:p
for constr = 1:c
idxA = find(orderings(perm,:) == constraints(constr,1));
idxB = find(orderings(perm,:) == constraints(constr,2));
if idxA > idxB
toKeep(perm) = false;
end
end
end
orderings0 = orderings(toKeep,:);
toc
% METHOD 1 (your original, plus a few optimizations)
tic
orderings = perms(L);
p = size(orderings,1);
c = size(constraints,1);
toKeep = true(p,1);
for perm = 1:p
for constr = 1:c
% break on first condition breached
if toKeep(perm)
% find only *first* entry
toKeep(perm) = ...
find(orderings(perm,:) == constraints(constr,1), 1) < ...
find(orderings(perm,:) == constraints(constr,2), 1);
else
break
end
end
end
orderings1 = orderings(toKeep,:);
toc
% METHOD 2
tic
orderings = perms(L);
p = size(orderings,1);
c = size(constraints,1);
toKeep = true(p,1);
for constr = 1:c
% break on first condition breached1
if any(toKeep)
% Vectorized search for constraint values
[i1, j1] = find(orderings == constraints(constr,1));
[i2, j2] = find(orderings == constraints(constr,2));
% sort by rows
[i1, j1i] = sort(i1);
[i2, j2i] = sort(i2);
% Check if columns meet condition
toKeep = toKeep & j1(j1i) < j2(j2i);
else
break
end
end
orderings2 = orderings(toKeep,:);
toc
% Check for equality
all(orderings2(:) == orderings1(:))
Results:
Elapsed time is 17.911469 seconds. % your method
Elapsed time is 10.477549 seconds. % your method + optimizations
Elapsed time is 2.184242 seconds. % vectorized outer loop
ans =
1
ans =
1
The whole approach however has one fundamental flaw IMHO; the direct use of perms. This inherently poses a limitation due to memory constraints (NN < 10, as stated in help perms).
I have a strong suspicion you can get better performance, both time-wise and memory-wise, when you put together a customized perms. Luckily, perms is not built-in, so you can start by copy-pasting that code into your custom function.

Related

Vectorized code slower than loops? MATLAB

In the problem Im working on there is such a part of code, as shown below. The definition part is just to show you the sizes of arrays. Below I pasted vectorized version - and it is >2x slower. Why it happens so? I know that i happens if vectorization requiers large temporary variables, but (it seems) it is not true here.
And generally, what (other than parfor, with I already use) can I do to speed up this code?
maxN = 100;
levels = maxN+1;
xElements = 101;
umn = complex(zeros(levels, levels));
umn2 = umn;
bessels = ones(xElements, xElements, levels); % 1.09 GB
posMcontainer = ones(xElements, xElements, maxN);
tic
for j = 1 : xElements
for i = 1 : xElements
for n = 1 : 2 : maxN
nn = n + 1;
mm = 1;
for m = 1 : 2 : n
umn(nn, mm) = bessels(i, j, nn) * posMcontainer(i, j, m);
mm = mm + 1;
end
end
end
end
toc % 0.520594 seconds
tic
for j = 1 : xElements
for i = 1 : xElements
for n = 1 : 2 : maxN
nn = n + 1;
m = 1:2:n;
numOfEl = ceil(n/2);
umn2(nn, 1:numOfEl) = bessels(i, j, nn) * posMcontainer(i, j, m);
end
end
end
toc % 1.275926 seconds
sum(sum(umn-umn2)) % veryfying, if all done right
Best regards,
Alex
From the profiler:
Edit:
In reply to #Jason answer, this alternative takes the same time:
for n = 1:2:maxN
nn(n) = n + 1;
numOfEl(n) = ceil(n/2);
end
for j = 1 : xElements
for i = 1 : xElements
for n = 1 : 2 : maxN
umn2(nn(n), 1:numOfEl(n)) = bessels(i, j, nn(n)) * posMcontainer(i, j, 1:2:n);
end
end
end
Edit2:
In reply to #EBH :
The point is to do the following:
parfor i = 1 : xElements
for j = 1 : xElements
umn = complex(zeros(levels, levels)); % cleaning
for n = 0:maxN
mm = 1;
for m = -n:2:n
nn = n + 1; % for indexing
if m < 0
umn(nn, mm) = bessels(i, j, nn) * negMcontainer(i, j, abs(m));
end
if m > 0
umn(nn, mm) = bessels(i, j, nn) * posMcontainer(i, j, m);
end
if m == 0
umn(nn, mm) = bessels(i, j, nn);
end
mm = mm + 1; % for indexing
end % m
end % n
beta1 = sum(sum(Aj1.*umn));
betaSumSq1(i, j) = abs(beta1).^2;
beta2 = sum(sum(Aj2.*umn));
betaSumSq2(i, j) = abs(beta2).^2;
end % j
end % i
I speeded it up as much, as I was able to. What you have written is taking only the last bessels and posMcontainer values, so it does not produce the same result. In the real code, those two containers are filled not with 1, but with some precalculated values.
After your edit, I can see that umn is just a temporary variable for another calculation. It still can be mostly vectorizable:
betaSumSq1 = zeros(xElements); % preallocating
betaSumSq2 = zeros(xElements); % preallocating
% an index matrix to fetch the right values from negMcontainer and
% posMcontainer:
indmat = tril(repmat([0 1;1 0],ceil((maxN+1)/2),floor(levels/2)));
indmat(end,:) = [];
% an index matrix to fetch the values in correct order for umn:
b_ind = repmat([1;0],ceil((maxN+1)/2),1);
b_ind(end) = [];
tempind = logical([fliplr(indmat) b_ind indmat+triu(ones(size(indmat)))]);
% permute the arrays to prevent squeeze:
PM = permute(posMcontainer,[3 1 2]);
NM = permute(negMcontainer,[3 1 2]);
B = permute(bessels,[3 1 2]);
for k = 1 : maxN+1 % third dim
for jj = 1 : xElements % columns
b = B(:,jj,k); % get one vector of B
% perform b*NM for every row of NM*indmat, than flip the result:
neg = fliplr(bsxfun(#times,bsxfun(#times,indmat,NM(:,jj,k).'),b));
% perform b*PM for every row of PM*indmat:
pos = bsxfun(#times,bsxfun(#times,indmat,PM(:,jj,k).'),b);
temp = [neg mod(1:levels,2).'.*b pos].'; % concat neg and pos
% assign them to the right place in umn:
umn = reshape(temp(tempind.'),[levels levels]).';
beta1 = Aj1.*umn;
betaSumSq1(jj,k) = abs(sum(beta1(:))).^2;
beta2 = Aj2.*umn;
betaSumSq2(jj,k) = abs(sum(beta2(:))).^2;
end
end
This reduce running time from ~95 seconds to less 3 seconds (both without parfor), so it improves in almost 97%.
I would suspect it is memory allocation. You are re-allocating the m array in a 3 deep loop.
try rearranging the code:
tic
for n = 1 : 2 : maxN
nn = n + 1;
m = 1:2:n;
numOfEl = ceil(n/2);
for j = 1 : xElements
for i = 1 : xElements
umn2(nn, 1:numOfEl) = bessels(i, j, nn) * posMcontainer(i, j, m);
end
end
end
toc % 1.275926 seconds
I was trying this in Igor pro, which a similar language, but with different optimizations. So the direct translations don't time the same way as Matlab (vectorized was slightly faster in Igor). But reordering the loops did speed up the vectorized form.
In your second part of the code, that is setting umn2, inside the loops, you have:
nn = n + 1;
m = 1:2:n;
numOfEl = ceil(n/2);
Those 3 lines don't require any input from the i and j loops, they only use the n loop. So reordering the loops such that i and j are inside the n loop will mean that those 3 lines are done xElements^2 (100^2) times less often. I suspect it is that m = 1:2:n line that takes time, since that is allocating an array.

K-means for color quantization - Code not vectorized

I'm doing this exercise by Andrew NG about using k-means to reduce the number of colors in an image. It worked correctly but I'm afraid it's a little slow because of all the for loops in the code, so I'd like to vectorize them. But there are those loops that I just can't seem to vectorize effectively. Please help me, thank you very much!
Also if possible please give some feedback on my coding style :)
Here is the link of the exercise, and here is the dataset.
The correct result is given in the link of the exercise.
And here is my code:
function [] = KMeans()
Image = double(imread('bird_small.tiff'));
[rows,cols, RGB] = size(Image);
Points = reshape(Image,rows * cols, RGB);
K = 16;
Centroids = zeros(K,RGB);
s = RandStream('mt19937ar','Seed',0);
% Initialization :
% Pick out K random colours and make sure they are all different
% from each other! This prevents the situation where two of the means
% are assigned to the exact same colour, therefore we don't have to
% worry about division by zero in the E-step
% However, if K = 16 for example, and there are only 15 colours in the
% image, then this while loop will never exit!!! This needs to be
% addressed in the future :(
% TODO : Vectorize this part!
done = false;
while done == false
RowIndex = randperm(s,rows);
ColIndex = randperm(s,cols);
RowIndex = RowIndex(1:K);
ColIndex = ColIndex(1:K);
for i = 1 : K
for j = 1 : RGB
Centroids(i,j) = Image(RowIndex(i),ColIndex(i),j);
end
end
Centroids = sort(Centroids,2);
Centroids = unique(Centroids,'rows');
if size(Centroids,1) == K
done = true;
end
end;
% imshow(imread('bird_small.tiff'))
%
% for i = 1 : K
% hold on;
% plot(RowIndex(i),ColIndex(i),'r+','MarkerSize',50)
% end
eps = 0.01; % Epsilon
IterNum = 0;
while 1
% E-step: Estimate membership given parameters
% Membership: The centroid that each colour is assigned to
% Parameters: Location of centroids
Dist = pdist2(Points,Centroids,'euclidean');
[~, WhichCentroid] = min(Dist,[],2);
% M-step: Estimate parameters given membership
% Membership: The centroid that each colour is assigned to
% Parameters: Location of centroids
% TODO: Vectorize this part!
OldCentroids = Centroids;
for i = 1 : K
PointsInCentroid = Points((find(WhichCentroid == i))',:);
NumOfPoints = size(PointsInCentroid,1);
% Note that NumOfPoints is never equal to 0, as a result of
% the initialization. Or .... ???????
if NumOfPoints ~= 0
Centroids(i,:) = sum(PointsInCentroid , 1) / NumOfPoints ;
end
end
% Check for convergence: Here we use the L2 distance
IterNum = IterNum + 1;
Margins = sqrt(sum((Centroids - OldCentroids).^2, 2));
if sum(Margins > eps) == 0
break;
end
end
IterNum;
Centroids ;
% Load the larger image
[LargerImage,ColorMap] = imread('bird_large.tiff');
LargerImage = double(LargerImage);
[largeRows,largeCols,NewRGB] = size(LargerImage); % RGB is always 3
% TODO: Vectorize this part!
largeRows
largeCols
NewRGB
% Replace each of the pixel with the nearest centroid
NewPoints = reshape(LargerImage,largeRows * largeCols, NewRGB);
Dist = pdist2(NewPoints,Centroids,'euclidean');
[~,WhichCentroid] = min(Dist,[],2);
NewPoints = Centroids(WhichCentroid,:);
LargerImage = reshape(NewPoints,largeRows,largeCols,NewRGB);
% for i = 1 : largeRows
% for j = 1 : largeCols
% Dist = pdist2(Centroids,reshape(LargerImage(i,j,:),1,RGB),'euclidean');
% [~,WhichCentroid] = min(Dist);
% LargerImage(i,j,:) = Centroids(WhichCentroid,:);
% end
% end
% Display new image
imshow(uint8(round(LargerImage)),ColorMap)
UPDATE: Replaced
for i = 1 : K
for j = 1 : RGB
Centroids(i,j) = Image(RowIndex(i),ColIndex(i),j);
end
end
with
for i = 1 : K
Centroids(i,:) = Image(RowIndex(i),ColIndex(i),:);
end
I think this may be vectorized further by using linear indexing, but for now I should just focus on the while loop since it takes most of the time.
Also when I tried #Dev-iL's suggestion and replaced
for i = 1 : K
PointsInCentroid = Points((find(WhichCentroid == i))',:);
NumOfPoints = size(PointsInCentroid,1);
% Note that NumOfPoints is never equal to 0, as a result of
% the initialization. Or .... ???????
if NumOfPoints ~= 0
Centroids(i,:) = sum(PointsInCentroid , 1) / NumOfPoints ;
end
end
with
E = sparse(1:size(WhichCentroid), WhichCentroid' , 1, Num, K, Num);
Centroids = (E * spdiags(1./sum(E,1)',0,K,K))' * Points ;
the results were always worse: With K = 16, the first takes 2,414s , the second takes 2,455s ; K = 32, the first takes 4,529s , the second takes 5,022s. Seems like vectorization does not help, but maybe there's something wrong with my code :( .
Replaced
for i = 1 : K
for j = 1 : RGB
Centroids(i,j) = Image(RowIndex(i),ColIndex(i),j);
end
end
with
for i = 1 : K
Centroids(i,:) = Image(RowIndex(i),ColIndex(i),:);
end
I think this may be vectorized further by using linear indexing, but for now I should just focus on the while loop since it takes most of the time.
Also when I tried #Dev-iL's suggestion and replaced
for i = 1 : K
PointsInCentroid = Points((find(WhichCentroid == i))',:);
NumOfPoints = size(PointsInCentroid,1);
% Note that NumOfPoints is never equal to 0, as a result of
% the initialization. Or .... ???????
if NumOfPoints ~= 0
Centroids(i,:) = sum(PointsInCentroid , 1) / NumOfPoints ;
end
end
with
E = sparse(1:size(WhichCentroid), WhichCentroid' , 1, Num, K, Num);
Centroids = (E * spdiags(1./sum(E,1)',0,K,K))' * Points ;
the results were always worse: With K = 16, the first takes 2,414s , the second takes 2,455s ; K = 32, the first took 4,529s , the second took 5,022s. Seems like vectorization did not help in this case.
However, when I replaced
Dist = pdist2(Points,Centroids,'euclidean');
[~, WhichCentroid] = min(Dist,[],2);
(in the while loop) with
Dist = bsxfun(#minus,dot(Centroids',Centroids',1)' / 2 , Centroids * Points' );
[~, WhichCentroid] = min(Dist,[],1);
WhichCentroid = WhichCentroid';
the code ran much faster, especially when K is large (K=32)
Thank you everyone!

Fastest solution for all possible combinations, taking k elements out of n possible with k>2 and n large

I am using MATLAB to find all of the possible combinations of k elements out of n possible elements. I stumbled across this question, but unfortunately it does not solve my problem. Of course, neither does nchoosek as my n is around 100.
Truth is, I don't need all of the possible combinations at the same time. I will explain what I need, as there might be an easier way to achieve the desired result. I have a matrix M of 100 rows and 25 columns.
Think of a submatrix of M as a matrix formed by ALL columns of M and only a subset of the rows. I have a function f that can be applied to any matrix which gives a result of either -1 or 1. For example, you can think of the function as sign(det(A)) where A is any matrix (the exact function is irrelevant for this part of the question).
I want to know what is the biggest number of rows of M for which the submatrix A formed by these rows is such that f(A) = 1. Notice that if f(M) = 1, I am done. However, if this is not the case then I need to start combining rows, starting of all combinations with 99 rows, then taking the ones with 98 rows, and so on.
Up to this point, my implementation had to do with nchoosek which worked when M had only a few rows. However, now that I am working with a relatively bigger dataset, things get stuck. Do any of you guys think of a way to implement this without having to use the above function? Any help would be gladly appreciated.
Here is my minimal working example, it works for small obs_tot but fails when I try to use bigger numbers:
value = -1; obs_tot = 100; n_rows = 25;
mat = randi(obs_tot,n_rows);
while value == -1
posibles = nchoosek(1:obs_tot,i);
[num_tries,num_obs] = size(possibles);
num_try = 1;
while value == 0 && num_try <= num_tries
check = mat(possibles(num_try,:),:);
value = sign(det(check));
num_try = num_try + 1;
end
i = i - 1;
end
obs_used = possibles(num_try-1,:)';
Preamble
As yourself noticed in your question, it would be nice not to have nchoosek to return all possible combinations at the same time but rather to enumerate them one by one in order not to explode memory when n becomes large. So something like:
enumerator = CombinationEnumerator(k, n);
while(enumerator.MoveNext())
currentCombination = enumerator.Current;
...
end
Here is an implementation of such enumerator as a Matlab class. It is based on classic IEnumerator<T> interface in C# / .NET and mimics the subfunction combs in nchoosek (the unrolled way):
%
% PURPOSE:
%
% Enumerates all combinations of length 'k' in a set of length 'n'.
%
% USAGE:
%
% enumerator = CombinaisonEnumerator(k, n);
% while(enumerator.MoveNext())
% currentCombination = enumerator.Current;
% ...
% end
%
%% ---
classdef CombinaisonEnumerator < handle
properties (Dependent) % NB: Matlab R2013b bug => Dependent must be declared before their get/set !
Current; % Gets the current element.
end
methods
function [enumerator] = CombinaisonEnumerator(k, n)
% Creates a new combinations enumerator.
if (~isscalar(n) || (n < 1) || (~isreal(n)) || (n ~= round(n))), error('`n` must be a scalar positive integer.'); end
if (~isscalar(k) || (k < 0) || (~isreal(k)) || (k ~= round(k))), error('`k` must be a scalar positive or null integer.'); end
if (k > n), error('`k` must be less or equal than `n`'); end
enumerator.k = k;
enumerator.n = n;
enumerator.v = 1:n;
enumerator.Reset();
end
function [b] = MoveNext(enumerator)
% Advances the enumerator to the next element of the collection.
if (~enumerator.isOkNext),
b = false; return;
end
if (enumerator.isInVoid)
if (enumerator.k == enumerator.n),
enumerator.isInVoid = false;
enumerator.current = enumerator.v;
elseif (enumerator.k == 1)
enumerator.isInVoid = false;
enumerator.index = 1;
enumerator.current = enumerator.v(enumerator.index);
else
enumerator.isInVoid = false;
enumerator.index = 1;
enumerator.recursion = CombinaisonEnumerator(enumerator.k - 1, enumerator.n - enumerator.index);
enumerator.recursion.v = enumerator.v((enumerator.index + 1):end); % adapt v (todo: should use private constructor)
enumerator.recursion.MoveNext();
enumerator.current = [enumerator.v(enumerator.index) enumerator.recursion.Current];
end
else
if (enumerator.k == enumerator.n),
enumerator.isInVoid = true;
enumerator.isOkNext = false;
elseif (enumerator.k == 1)
enumerator.index = enumerator.index + 1;
if (enumerator.index <= enumerator.n)
enumerator.current = enumerator.v(enumerator.index);
else
enumerator.isInVoid = true;
enumerator.isOkNext = false;
end
else
if (enumerator.recursion.MoveNext())
enumerator.current = [enumerator.v(enumerator.index) enumerator.recursion.Current];
else
enumerator.index = enumerator.index + 1;
if (enumerator.index <= (enumerator.n - enumerator.k + 1))
enumerator.recursion = CombinaisonEnumerator(enumerator.k - 1, enumerator.n - enumerator.index);
enumerator.recursion.v = enumerator.v((enumerator.index + 1):end); % adapt v (todo: should use private constructor)
enumerator.recursion.MoveNext();
enumerator.current = [enumerator.v(enumerator.index) enumerator.recursion.Current];
else
enumerator.isInVoid = true;
enumerator.isOkNext = false;
end
end
end
end
b = enumerator.isOkNext;
end
function [] = Reset(enumerator)
% Sets the enumerator to its initial position, which is before the first element.
enumerator.isInVoid = true;
enumerator.isOkNext = (enumerator.k > 0);
end
function [c] = get.Current(enumerator)
if (enumerator.isInVoid), error('Enumerator is positioned (before/after) the (first/last) element.'); end
c = enumerator.current;
end
end
properties (GetAccess=private, SetAccess=private)
k = [];
n = [];
v = [];
index = [];
recursion = [];
current = [];
isOkNext = false;
isInVoid = true;
end
end
We can test implementation is ok from command window like this:
>> e = CombinaisonEnumerator(3, 6);
>> while(e.MoveNext()), fprintf(1, '%s\n', num2str(e.Current)); end
Which returns as expected the following n!/(k!*(n-k)!) combinations:
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6
1 4 5
1 4 6
1 5 6
2 3 4
2 3 5
2 3 6
2 4 5
2 4 6
2 5 6
3 4 5
3 4 6
3 5 6
4 5 6
Implementation of this enumerator may be further optimized for speed, or by enumerating combinations in an order more appropriate for your case (e.g., test some combinations first rather than others) ... Well, at least it works! :)
Problem solving
Now solving your problem is really easy:
n = 100;
m = 25;
matrix = rand(n, m);
k = n;
cont = true;
while(cont && (k >= 1))
e = CombinationEnumerator(k, n);
while(cont && e.MoveNext());
cont = f(matrix(e.Current(:), :)) ~= 1;
end
if (cont), k = k - 1; end
end

MATLAB program takes more than 1 hour to execute

The below program is a program for finding k-clique communities from a input graph.
The graph dataset can be found here.
The first line of the dataset contains 'number of nodes and edges' respectively. The following lines have 'node1 node2' representing an edge between node1 and node2 .
For example:
2500 6589 // number_of_nodes, number_of_edges
0 5 // edge between node[0] and node[5]
.
.
.
The k-clique( aCliqueSIZE, anAdjacencyMATRIX ) function is contained here.
The following commands are executed in command window of MATLAB:
x = textread( 'amazon.graph.small' ); %% source input file text
s = max(x(1,1), x(1,2)); %% take largest dimemsion
adjMatrix = sparse(x(2:end,1)+1, x(2:end,2)+1, 1, s, s); %% now matrix is square
adjMatrix = adjMatrix | adjMatrix.'; %% apply "or" with transpose to make symmetric
adjMatrix = full(adjMatrix); %% convert to full if needed
k=4;
[X,Y,Z]=k_clique(k,adjMatrix); %%
% The output can be viewed by the following commands
celldisp(X);
celldisp(Y);
Z
The above program takes more than 1 hour to execute whereas I think this shouldn't be the case. While running the program on windows, I checked the task manager and found that only 500 MB is allocated for the program. Is this the reason for the slowness of the program? If yes, then how can I allocate more heap memory (close to 4GB) to this program in MATLAB?
The problem does not seem to be Memory-bound
Having a sparse, square, symmetric matrix of 6k5 * 6k5 edges does not mean a big memory.
The provided code has many for loops and is heavily recursive in the tail function transfer_nodes()
Add a "Stone-Age-Profiler" into the code
To show the respective times spent on a CPU-bound sections of the processing, wrap the main sections of the code into a construct of:
tic(); for .... end;toc()
which will print you the CPU-bound times spent on relevent sections of the k_clique.m code, showing the readings "on-the-fly"
Your original code k_clique.m
function [components,cliques,CC] = k_clique(k,M)
% k-clique algorithm for detecting overlapping communities in a network
% as defined in the paper "Uncovering the overlapping
% community structure of complex networks in nature and society"
%
% [X,Y,Z] = k_clique(k,A)
%
% Inputs:
% k - clique size
% A - adjacency matrix
%
% Outputs:
% X - detected communities
% Y - all cliques (i.e. complete subgraphs that are not parts of larger
% complete subgraphs)
% Z - k-clique matrix
nb_nodes = size(M,1); % number of nodes
% Find the largest possible clique size via the degree sequence:
% Let {d1,d2,...,dk} be the degree sequence of a graph. The largest
% possible clique size of the graph is the maximum value k such that
% dk >= k-1
degree_sequence = sort(sum(M,2) - 1,'descend');
%max_s = degree_sequence(1);
max_s = 0;
for i = 1:length(degree_sequence)
if degree_sequence(i) >= i - 1
max_s = i;
else
break;
end
end
cliques = cell(0);
% Find all s-size kliques in the graph
for s = max_s:-1:3
M_aux = M;
% Looping over nodes
for n = 1:nb_nodes
A = n; % Set of nodes all linked to each other
B = setdiff(find(M_aux(n,:)==1),n); % Set of nodes that are linked to each node in A, but not necessarily to the nodes in B
C = transfer_nodes(A,B,s,M_aux); % Enlarging A by transferring nodes from B
if ~isempty(C)
for i = size(C,1)
cliques = [cliques;{C(i,:)}];
end
end
M_aux(n,:) = 0; % Remove the processed node
M_aux(:,n) = 0;
end
end
% Generating the clique-clique overlap matrix
CC = zeros(length(cliques));
for c1 = 1:length(cliques)
for c2 = c1:length(cliques)
if c1==c2
CC(c1,c2) = numel(cliques{c1});
else
CC(c1,c2) = numel(intersect(cliques{c1},cliques{c2}));
CC(c2,c1) = CC(c1,c2);
end
end
end
% Extracting the k-clique matrix from the clique-clique overlap matrix
% Off-diagonal elements <= k-1 --> 0
% Diagonal elements <= k --> 0
CC(eye(size(CC))==1) = CC(eye(size(CC))==1) - k;
CC(eye(size(CC))~=1) = CC(eye(size(CC))~=1) - k + 1;
CC(CC >= 0) = 1;
CC(CC < 0) = 0;
% Extracting components (or k-clique communities) from the k-clique matrix
components = [];
for i = 1:length(cliques)
linked_cliques = find(CC(i,:)==1);
new_component = [];
for j = 1:length(linked_cliques)
new_component = union(new_component,cliques{linked_cliques(j)});
end
found = false;
if ~isempty(new_component)
for j = 1:length(components)
if all(ismember(new_component,components{j}))
found = true;
end
end
if ~found
components = [components; {new_component}];
end
end
end
function R = transfer_nodes(S1,S2,clique_size,C)
% Recursive function to transfer nodes from set B to set A (as
% defined above)
% Check if the union of S1 and S2 or S1 is inside an already found larger
% clique
found_s12 = false;
found_s1 = false;
for c = 1:length(cliques)
for cc = 1:size(cliques{c},1)
if all(ismember(S1,cliques{c}(cc,:)))
found_s1 = true;
end
if all(ismember(union(S1,S2),cliques{c}(cc,:)))
found_s12 = true;
break;
end
end
end
if found_s12 || (length(S1) ~= clique_size && isempty(S2))
% If the union of the sets A and B can be included in an
% already found (larger) clique, the recursion is stepped back
% to check other possibilities
R = [];
elseif length(S1) == clique_size;
% The size of A reaches s, a new clique is found
if found_s1
R = [];
else
R = S1;
end
else
% Check the remaining possible combinations of the neighbors
% indices
if isempty(find(S2>=max(S1),1))
R = [];
else
R = [];
for w = find(S2>=max(S1),1):length(S2)
S2_aux = S2;
S1_aux = S1;
S1_aux = [S1_aux S2_aux(w)];
S2_aux = setdiff(S2_aux(C(S2(w),S2_aux)==1),S2_aux(w));
R = [R;transfer_nodes(S1_aux,S2_aux,clique_size,C)];
end
end
end
end
end

Using matrix structure to speed up matlab

Suppose that I have an N-by-K matrix A, N-by-P matrix B. I want to do the following calculations to get my final N-by-P matrix X.
X(n,p) = B(n,p) - dot(gamma(p,:),A(n,:))
where
gamma(p,k) = dot(A(:,k),B(:,p))/sum( A(:,k).^2 )
In MATLAB, I have my code like
for p = 1:P
for n = 1:N
for k = 1:K
gamma(p,k) = dot(A(:,k),B(:,p))/sum(A(:,k).^2);
end
x(n,p) = B(n,p) - dot(gamma(p,:),A(n,:));
end
end
which are highly inefficient since it uses three for loops! Is there a good way to speed up this code?
Use bsxfun for the division and matrix multiplication for the loops:
gamma = bsxfun(#rdivide, B.'*A, sum(A.^2));
x = B - A*gamma.';
And here is a test script
N = 3;
K = 4;
P = 5;
A = rand(N, K);
B = rand(N, P);
for p = 1:P
for n = 1:N
for k = 1:K
gamma(p,k) = dot(A(:,k),B(:,p))/sum(A(:,k).^2);
end
x(n,p) = B(n,p) - dot(gamma(p,:),A(n,:));
end
end
gamma2 = bsxfun(#rdivide, B.'*A, sum(A.^2));
X2 = B - A*gamma2.';
isequal(x, X2)
isequal(gamma, gamma2)
which returns
ans =
1
ans =
1
It looks to me like you can hoist the gamma calculations out of the loop; at least, I don't see any dependencies on N in the gamma calculations.
So something like this:
for p = 1:P
for k = 1:K
gamma(p,k) = dot(A(:,k),B(:,p))/sum(A(:,k).^2);
end
end
for p = 1:P
for n = 1:N
x(n,p) = B(n,p) - dot(gamma(p,:),A(n,:));
end
end
I'm not familiar enough with your code (or matlab) to really know if you can merge the two loops, but if you can:
for p = 1:P
for k = 1:K
gamma(p,k) = dot(A(:,k),B(:,p))/sum(A(:,k).^2);
end
for n = 1:N
x(n,p) = B(n,p) - dot(gamma(p,:),A(n,:));
end
end
bxfun is slow...
How about something like the following (I might have a transpose wrong)
modA = A * (1./sum(A.^2,2)) * ones(1,k);
gamma = B' * modA;
x = B - A * gamma';

Resources