Global mapping of one subscript dimension to another database - performance

I have a vendor defined database (about 140GB total) on Caché 2007. It uses the old style MUMPS programming environment and accesses globals directly in a hierarchical style. There is one global that accounts for about 75% of the total database size. The first subscript in this table is an artificial integer account number. The next 2-3 subscripts are constant subrecord identifiers that break up blocks of fields and denote repeating sub record kinds.
One of these repeating subrecords (record type 30) is for notes on an account. Because of the way the system is used, this dimension accounts for a very large portion of the global's total space; I'd estimate it to be at least 50%. Because of the way Caché stores data physically in the database, a scan of this global ends up loading all or most of these notes as a side effect even though they aren't relevant to most operations. It has the effect of greatly increasing the cost of IO operations on the global, especially when you only want one tiny detail from a bunch of accounts.
Example subscript references for this global:
^ACCT(3461,10,1)="SOME^DATA"
^ACCT(3461,10,2)="MORE^DATA"
...
^ACCT(3461,30,1)="NOTE1 blah blah"
^ACCT(3461,30,2)="NOTE2 blah blah"
...
^ACCT(3461,30,100)="NOTE100 blah blah"
I can't change the design of the database. It's controlled by an outside vendor and there is a large amount of MUMPS style hardcoded references in the database. I'm thinking that a big reason that batch operations are so slow on the system are due to the high cost of these mostly irrelevant notes coming along for the IO ride whenever account data is accessed. Scanning this whole global (i.e. when there is no useful application maintained index) takes at least 8 hours.
One thought I had is to shift the note data from being stored along side other details in the global to a separate database file by using the global mapping facility described in the Guide to Using Caché Globals and Guide to System Administration. If I could map all the subscript 30s to a separate database file in the same Caché database, most data operations (the ones that don't even care about notes) wouldn't be bringing those in to memory along with the details they do care about.
In the global structure guide (1st link), this looks plausible as they show a particular 2nd subscript mapping separately than the 1st subscript. What they don't show in any of the examples is what the syntax is to make that happen. In the "Add a new global mapping" screen in the Caché Management Portal, I should be able to do something like
Global name: ACCT
Subscripts to be mapped: (BEGIN:END)(30)
But whatever variations I try in the syntax, I always get ERROR #657: Invalid subscript in reference 1 subscript #1.
StackExchange note: This question would possibly be better suited to dba.stackexchange.com but there are apparently zero Intersystems questions there and I don't think it would get any attention.

Unfortunately, while it's possible to map 2nd level subscripts of a particular node, it's not possible to map 2nd level subscripts of all nodes.
There is an experienced Performance team on WRC, did you try to contact them?

Related

Is it possible to set the content level for all logical table sources?

I work regularly on an OBIEE repository with 100+ facts and 200+ logical table sources.
Every time I add a new dimension, I have to go one-by-one to set the logical level for that dimension in each and every table source.
Is there any way, when adding a dimension, to default all LTS to a specific logical level?
Same answer as for cross-post here:
Is there any way, when adding a dimension, to default all LTS to a specific logical level?
No.
A model this size is probably not the best approach in an ideal world.
The only option you have is to look at a script-based approach. There is a supported API for modifying the RPD metadata, (and here too), but it'd be pretty easy to screw things up, doubly so given the size and complexity of your existing RPD.
You can see an example of it in action in a blog I wrote here. Note that all I change in that blog post is the value of an existing repository variable. To add in additional content, with the issue of GUIDs etc, gets very hairy indeed.
tl;dr : sit tight, and keep clicking, unless you're feeling brave

Mongo Db design (embed vs references)

I've read a lot of documents, Q&A etc about that topic (embed or to use references).
I understand the points why you should use one or another approach, but I can't see that someone discuss (asked) similar case:
I have 2 (A and B) entities and relation between them is ONE_TO_MANY (A could belongs to many B), I can use embed (denormalization approach) and it's ok (I clearly understand it), but what if I would like (later) to modify one of used, into many B documents, A document field ? Modify it does not mean replace A by A', it means some changes into exactly A record. It means that (in embed case) I have to apply such changes in all B documents which had A version already.
based on description here http://docs.mongodb.org/manual/tutorial/model-embedded-one-to-many-relationships-between-documents/#data-modeling-example-one-to-many
What If later we would like to change used in many documents address:name field ?
What If we need the list of available addresses in the system ?
How fast that operations will be done in MongoDb ?
It's based on what operations are used mostly. If you are inserting and selecting lot of documents and there is a possibility, that e.g. once a month you will need to modify many nested sub-documents, I think that storing A inside B is good practice, it's what mongodb is supposed to be. You will save lot of time just selecting one document without needing to join another ones and slower update once a time you can stand without any problems.
How fast the update ops will be is obviously dependent on volume of data.
Other considerations as to whether to use embedded docs or references is whether the volume of data in a single document would exceed 16mb. That's a lot of documents mind.
In some cases however, it simply doesn't make sense to denormalise entire documents especially where they're used/referenced elsewhere.
Take a User document for example, you wouldn't usually denormalise all user attributes across each collection that needs to reference a user. Instead you reference the user [with maybe some denormalised user detail].
Obviously each additional denormalised value (unless it was an audit) would need to be updated when the referenced User changes, but you could queue the updates for a background process to deal with - rather than making the caller wait.
I'll throw in some more advice as to speed.
If you have a sub-document called A that is embedded in lots of documents - and you want to change instances of A ...
Careful that the documents don't grow too much with a change. That will hurt performance if A grows too big because it will force Mongo to move the document in memory.
It obviously depends on how many embedded instances you have. The more you have, the slower it will be.
It depends on how you match the sub-document. If you are finding A without an index, it's going to be slow. If you are using range operators to identify it, it will be slow.
Someone already mentioned the size of documents will most likely affect the speed.
The best advice I heard about whether to link or embed was this ... if the entity (A in this case) is mutable ... if it is going to mutate/change often ... then link it, don't embed it.

Transferring lots of objects with Guid IDs to the client

I have a web app that uses Guids as the PK in the DB for an Employee object and an Association object.
One page in my app returns a large amount of data showing all Associations all Employees may be a part of.
So right now, I am sending to the client essentially a bunch of objects that look like:
{assocation_id: guid, employees: [guid1, guid2, ..., guidN]}
It turns out that many employees belong to many associations, so I am sending down the same Guids for those employees over and over again in these different objects. For example, it is possible that I am sending down 30,000 total guids across all associations in some cases, of which there are only 500 unique employees.
I am wondering if it is worth me building some kind of lookup index that I also send to the client like
{ 1: Guid1, 2: Guid2 ... }
and replacing all of the Guids in the objects I send down with those ints,
or if simply gzipping the response will compress it enough that this extra effort is not worth it?
Note: please don't get caught up in the details of if I should be sending down 30,000 pieces of data or not -- this is not my choice and there is nothing I can do about it (and I also can't change Guids to ints or longs in the DB).
Your wrote at the end of your question the following
Note: please don't get caught up in the details of if I should be
sending down 30,000 pieces of data or not -- this is not my choice and
there is nothing I can do about it (and I also can't change Guids to
ints or longs in the DB).
I think it's your main problem. If you don't solve the main problem you will be able to reduce the size of transferred data to 10 times for example, but you still don't solve the main problem. Let us we think about the question: Why so many data should be sent to the client (to the web browser)?
The data on the client side are needed to display some information to the user. The monitor is not so large to show 30,000 total on one page. No user are able to grasp so much information. So I am sure that you display only small part of the information. In the case you should send only the small part of information which you display.
You don't describe how the guids will be used on the client side. If you need the information during row editing for example. You can transfer the data only when the user start editing. In the case you need transfer the data only for one association.
If you need display the guids directly, then you can't display all the information at once. So you can send the information for one page only. If the user start to scroll or start "next page" button you can send the next portion of data. In the way you can really dramatically reduce the size of transferred data.
If you do have no possibility to redesign the part of application you can implement your original suggestion: by replacing of GUID "{7EDBB957-5255-4b83-A4C4-0DF664905735}" or "7EDBB95752554b83A4C40DF664905735" to the number like 123 you reduce the size of GUID from 34 characters to 3. If you will send additionally array of "guid mapping" elements like
123:"7EDBB95752554b83A4C40DF664905735",
you can reduce the original size of data 30000*34 = 1020000 (1 MB) to 300*39 + 30000*3 = 11700+90000 = 101700 (100 KB). So you can reduce the size of data in 10 times. The usage of compression of dynamic data on the web server can reduce the size of data additionally.
In any way you should examine why your page is so slowly. If the program works in LAN, then the transferring of even 1MB of data can be quick enough. Probably the page is slowly during placing of the data on the web page. I mean the following. If you modify some element on the page the position of all existing elements have to be recalculated. If you would be work with disconnected DOM objects first and then place the whole portion of data on the page you can improve the performance dramatically. You don't posted in the question which technology you use in you web application so I don't include any examples. If you use jQuery for example I could give some example which clear more what I mean.
The lookup index you propose is nothing else than a "custom" compression scheme. As amdmax stated, this will increase your performance if you have a lot of the same GUIDs, but so will gzip.
IMHO, the extra effort of writing the custom coding will not be worth it.
Oleg states correctly, that it might be worth fetching the data only when the user needs it. But this of course depends on your specific requirements.
if simply gzipping the response will compress it enough that this extra effort is not worth it?
The answer is: Yes, it will.
Compressing the data will remove redundant parts as good as possible (depending on the algorithm) until decompression.
To get sure, just send/generate the data uncompressed and compressed and compare the results. You can count the duplicate GUIDs to calculate how big your data block would be with the dictionary compression method. But I guess gzip will be better because it can also compress the syntactic elements like braces, colons, etc. inside your data object.
So what you are trying to accomplish is Dictionary compression, right?
http://en.wikibooks.org/wiki/Data_Compression/Dictionary_compression
What you will get instead of Guids which are 16 bytes long is int which is 4 bytes long. And you will get a dictionary full of key value pairs that will associate each guid to some int value, right?
It will decrease your transfer time when there're many objects with the same id used. But will spend CPU time before transfer to compress and after transfer to decompress. So what is the amount of data you transfer? Is it mb / gb / tb? And is there any good reason to compress it before sending?
I do not know how dynamic is your data, but I would
on a first call send two directories/dictionaries mapping short ids to long GUIDS, one for your associations and on for your employees e.g. {1: AssoGUID1, 2: AssoGUID2,...} and {1: EmpGUID1, 2:EmpGUID2,...}. These directories may also contain additional information on the Associations and Employees instances; I suspect you do not simply display GUIDs
on subsequent calls just send the index of Employees per Association { 1: [2,4,5], 3:[2,4], ...}, the key being the association short id and the ids in the array value, the short ids of the employees. Given your description building the reverse index: Employee to Associations may give better result size wise (but higher processing)
Then its all down to associative arrays manipulations which is straightforward in JS.
Again, if your data is (very) dynamic server side, the two directories will soon be obsolete and maintaining synchronization may cost you a lot.
I would start by answering the following questions:
What are the performance requirements? Are there size requirements? Speed requirements? What is the minimum performance that is truly needed?
What are the current performance metrics? How far are you from the requirements?
You characterized the data as possibly being mostly repeats. Is that the normal case? If not, what is?
The 2 options you listed above sound reasonable and trivial to implement. Try creating a look-up table and see what performance gains you get on actual queries. Try zipping the results (with look-ups and without), and see what gains you get.
In my experience if you're not TOO far from the goal, performance requirements are often trial and error.
If those options don't get you close to the requirements, I would take a step back and see if the requirements are reasonable in the time you have to solve the problem.
What you do next depends on which performance goals are lacking. If it is size, you're starting to be limited if you're required to send the entire association list ever time. Is that truly a requirement? Can you send the entire list once, and then just updates?

Performance: Need to read from LONGTEXT

I'm building a CMS-type webapp that allows users to enter arbitrary-sized blocks of HTML. These blocks are entered by the user in their admin area and inserted into their template of choice when a page is delivered.
I'm guessing a user is not going to add more than 50-100 blocks and I'm not going to be getting more than 1000 users any time soon.
I was planning on using mySQL's LONGTEXT type to store these but I'm wondering if storing files in a directory will be more performant as the Linux OS will cache them? Given that I'm building for at most (1000 * 100) text blocks is there any reasonable performance worry with using mySQL?
Obviously I will be caching the HTML before delivery so I won't be reading these blocks on every delivery - reads will only occur when someone updates/creates new content.
I could use memcached/other cache/noSQL implementation or some other storage mechanism but I'm focusing on keeping it simple and delivering ASAP so don't want to introduce other stuff that I don't have experience with unless there's a significant performance worry.
Are the blocks of HTML content the only thing you are saving? If so, a file may be easiest.
However, it seems likely that you may want to save other bits of information along with the HTML and be able to query based on those bits of data. For example: date created, date last modified, name of the block, the user(s) who have edited the block.
If this is the case, then a database may be the best way to go. Since you said you do not expect to have many users (at least not a first) I would concentrate on finding the solution that is the fastest / most flexible to program and focus on performance and caching after your website begins to grow in size.
I advise you to use a flat file rather than Mysql to store this kind of data.
Html is more a "file" than a "value information" so it hasn't to be in a DB.
Moreover, you will certainly have better performances.
You can also read this post.

Does soCaseInsensitive greatly impact performance for a TdxMemIndex on a TdxMemDataset?

I am adding some indexes to my DevExpress TdxMemDataset to improve performance. The TdxMemIndex has SortOptions which include the option for soCaseInsensitive. My data is usually a GUID string, so it is not case sensitive. I am wondering if I am better off just forcing all the data to the same case or if the soCaseInsensitive flag and using the loCaseInsensitive flag with the call to Locate has only a minor performance penalty (roughly equal to converting the case of my string every time I need to use the index).
At this point I am leaving the CaseInsentive off and just converting case.
IMHO, The best is to assure the data quality at Post time. Reasonings:
You (usually) know the nature of the data. So, eg. you can use UpperCase (knowing that GUIDs are all in ASCII range) instead of much slower AnsiUpperCase which a general component like TdxMemDataSet is forced to use.
You enter the data only once. Searching/Sorting/Filtering which all implies the internal upercassing engine of TdxMemDataSet it's a repeated action. Also, there are other chained actions which will trigger this engine whithout realizing. (Eg. a TcxGrid which is Sorted by default having GridMode:=True (I assume that you use the DevEx. components) and having a class acting like a broker passing the sort message to the underlying dataset.
Usually the data entry is done in steps, one or few records in a batch. The only notable exception is data aquisition applications. But in both cases above the user's usability culture allows way greater response times for you to play with. (IOW how much would add an UpperCase call to a record post which lasts 0.005 ms?) OTOH, users are very demanding with the speed of data retreival operations (searching, sorting, filtering etc.). Keep the data retreival as fast as you can.
Having the data in the database ready to expose reduces the risk of processing errors when you'll write (if you'll write) other modules (you need to remember to AnsiUpperCase the data in any module in any language you'll write). Also here a classical example is when you'll use other external tools to access the data (for ex. db managers to execute an SQL SELCT over the data).
hth.
Maybe the DevExpress forums (or ever a support email, if you have access to it) would be a better place to seek an authoritative answer on that performance question.
Anyway, is better to guarantee that data is on the format you want - for the reasons plainth already explained - the moment you save it. So, in that specific, make sure the GUID is written in upper(or lower, its a matter of taste)case. If it is SQL Server or another database server that have an guid datatype, make sure the SELECT make the work - if applicable and possible, even the sort.

Resources