Consistent formulations of sets in Coq? - set

I'm quite new at Coq and trying to develop a framework based on my research. My work is quite definition-heavy and I'm having trouble encoding it because of how Coq seems to treat sets.
There are Type and Set, which they call 'sorts', and I can use them to define a new set:
Variable X: Type.
And then there's a library encoding (sub)sets as 'Ensembles', which are functions from some Type to a Prop. In other words, they are predicates on a Type:
Variable Y: Ensemble X.
Ensembles feel more like proper mathematical sets. Plus, they are built upon by many other libraries. I've tried focussing on them: defining one universal set U: Set, and then limiting myself to (sub)Ensembles on U. But no. Ensembles cannot be used as types for other variables, nor to define new subsets:
Variable y: Y. (* Error *)
Variable Z: Ensemble Y. (* Error *)
Now, I know there are several ways to get around that. The question "Subset parameter" offers two. Both use coercions. The first sticks to Sets. The second essentially uses Ensembles (though not by name). But both require quite some machinery to accomplish something so simple.
Question: What is the recommended way of consistently (and elegantly) handling sets?
Example: Here's an example of what I want to do: Assume a set DD. Define a pair dm = (D, <) where D is a finite subset of DD and < is a strict partial order on D.
I'm sure that with enough tinkering with coercions or other structures, I could accomplish it; but not in a particularly readable way; and without a good intuition of how to manipulate the structure further. For example, the following type-checks:
Record OrderedSet {DD: Set} : Type := {
D : (Ensemble DD);
order : (relation {d | In _ D d});
is_finite : (Finite _ D);
is_strict_partial : (is_strict_partial_order order)
}.
But I'm not so sure it's what I want; and it certainly doesn't look very pretty. Note that I'm going backwards and forwards between Set and Ensemble in a seemingly arbitrary way.
There are plenty of libraries out there which use Ensembles, so there must be a nice way to treat them, but those libraries don't seem to be documented very well (or... at all).
Update: To complicate matters further, there appear to be a number of other set implementations too, like MSets. This one seems to be completely separate and incompatible with Ensemble. It also uses bool rather than Prop for some reason. There is also FSets, but it appears to be an outdated version of MSets.

It's been (literally) years since I used Coq, but let me try to help.
I think mathematically speaking U: Set is like saying U is an universe of elements and Ensemble U would then mean a set of elements from that universe. So for generic notions and definitions you will almost certainly use Set and Ensemble is one possible way about reasoning about subsets of elements.
I'd suggest that you take a look at great work by Matthieu Sozeau who introduced type classes to Coq, a very useful feature based on Haskell's type classes. In particular in the standard library you will find a class-based definition of a PartialOrder that you mention in your question.
Another reference would be the CoLoR library formalizing notions needed to prove termination of term rewriting. It has a fairly large set of generic purpose definitions on orders and what-not.

Related

Why are epsilon transitions used in NFA?

I'm trying to understand how to create NFA-s from regular expressions, but I am really confused from epsilon transitions. I have this example in my textbook , but I don't understand why epsilon transitions are used and how does one know when to use them.
In general, espilon-transitions are used when they are convenient. For example, when constructing an NFA from a regular expression, you start by constructing small parts of the automaton corresponding to parts of the expression. To connect them, you need to put a transition. But if there is no symbol to be read there, an epsilon transition is a simple way to do this. They are, however never necessary, you can always find a solution without them.
In your example, just apply the algorithm described in your textbook. It tells you when to use them.
The epsilon transitions
from 1 to 2 probably connects the parts for (a|b)* and for ac
1->5 and 8->1 probably result from the *
5->6 and 5->7 probably result from the alternative in |
Epsilon-transitions in NFAs are a natural representation of choice or disjunction or union in regular expressions. That is, a regular expression like r + s (or r | s or r U s depending on your preferred notation) is naturally represented as an NFA consisting of two independent NFAs, one for r and one for s, joined using e-transitions as follows:
e
----->q0----->(r)
|
| e
|
V
(s)
When used to connect states in more complicated ways, the effect may not be as easy or natural to describe, but essentially these transitions let you choose unconditionally among multiple options. So, if I have seen a part of the input already and there are a few different ways the string could end, I can represent that by using e-transitions to states that handle the different possibilities.
In your example, the e-transitions are not really serving any very useful function and are merely artifacts of the conversion algorithm you have used. That algorithm includes them because, in the general case, they may be useful or necessary. In your specific case this was not true, so they look out of place.

most readable way in XPath to write "is value X a member of sequence S"?

XPath 2.0 has some new functions and syntax, relative to 1.0, that work with sequences. Some of theset don't really add to what the language could already do in 1.0 (with node sets), but they make it easier to express the desired logic in ways that are more readable. This increases the chances of the programmer getting the code correct -- and keeping it that way. For example,
empty(s) is equivalent to not(s), but its intent is much clearer when you want to test whether a sequence is empty.
Correction: the effective boolean value of a sequence is in general more complicated than that. E.g. empty((0)) != not((0)). This applies to exists(s) vs. s in a boolean context as well. However, there are domains of s where empty(s) is equivalent to not(s), so the two could be used interchangeably within those domains. But this goes to show that the use of empty() can make a non-trivial difference in making code easier to understand.
Similarly, exists(s) is equivalent to boolean(s) that already existed in XPath 1.0 (or just s in a boolean context), but again is much clearer about the intent.
Quantified expressions; e.g. "some $x in expression satisfies test($x)" would be equivalent to boolean(expression[test(.)]) (although the new syntax is more flexible, in that you don't need to worry about losing the context item because you have the variable to refer to it by).
Similarly, "every $x in expression satisfies test($x)" would be equivalent to not(expression[not(test(.))]) but is more readable.
These functions and syntax were evidently added at no small cost, solely to serve the goal of writing XPath that is easier to map to how humans think. This implies, as experienced developers know, that understandable code is significantly superior to code that is difficult to understand.
Given all that ... what would be a clear and readable way to write an XPath test expression that asks
Does value X occur in sequence S?
Some ways to do it: (Note: I used X and S notation here to indicate the value and the sequence, but I don't mean to imply that these subexpressions are element name tests, nor that they are simple expressions. They could be complicated.)
X = S: This would be one of the most unreadable, since it requires the reader to
think about which of X and S are sequences vs. single values
understand general comparisons, which are not obvious from the syntax
However, one advantage of this form is that it allows us to put the topic (X) before the comment ("is a member of S"), which, I think, helps in readability.
See also CMS's good point about readability, when the syntax or names make the "cardinality" of X and S obvious.
index-of(S, X): This one is clear about what's intended as a value and what as a sequence (if you remember the order of arguments to index-of()). But it expresses more than we need to: it asks for the index, when all we really want to know is whether X occurs in S. This is somewhat misleading to the reader. An experienced developer will figure out what's intended, with some effort and with understanding of the context. But the more we rely on context to understand the intent of each line, the more understanding the code becomes a circular (spiral) and potentially Sisyphean task! Also, since index-of() is designed to return a list of all the indexes of occurrences of X, it could be more expensive than necessary: a smart processor, in order to evaluate X = S, wouldn't necessarily have to find all the contents of S, nor enumerate them in order; but for index-of(S, X), correct order would have to be determined, and all contents of S must be compared to X. One other drawback of using index-of() is that it's limited to using eq for comparison; you can't, for example, use it to ask whether a node is identical to any node in a given sequence.
Correction: This form, used as a conditional test, can result in a runtime error: Effective boolean value is not defined for a sequence of two or more items starting with a numeric value. (But at least we won't get wrong boolean values, since index-of() can't return a zero.) If S can have multiple instances of X, this is another good reason to prefer form 3 or 6.
exists(index-of(X, S)): makes the intent clearer, and would help the processor eliminate the performance penalty if the processor is smart enough.
some $m in S satisfies $m eq X: This one is very clear, and matches our intent exactly. It seems long-winded compared to 1, and that in itself can reduce readability. But maybe that's an acceptable price for clarity. Keep in mind that X and S could potentially be complex expressions themselves -- they're not necessarily just variable references. An advantage is that since the eq operator is explicit, you can replace it with is or any other comparison operator.
S[. eq X]: clearer than 1, but shares the semantic drawbacks of 2: it computes all members of S that are equal to X. Actually, this could return a false negative (incorrect effective boolean value), if X is falsy. E.g. (0, 1)[. eq 0] returns 0 which is falsy, even though 0 occurs in (0, 1).
exists(S[. eq X]): Clearer than 1, 2, 3, and 5. Not as clear as 4, but shorter. Avoids the drawbacks of 5 (or at least most of them, depending on the processor smarts).
I'm kind of leaning toward the last one, at this point: exists(S[. eq X])
What about you... As a developer coming to a complex, unfamiliar XSLT or XQuery or other program that uses XPath 2.0, and wanting to figure out what that program is doing, which would you find easiest to read?
Apologies for the long question. Thanks for reading this far.
Edit: I changed = to eq wherever possible in the above discussion, to make it easier to see where a "value comparison" (as opposed to a general comparison) was intended.
For what it's worth, if names or context make clear that X is a singleton, I'm happy to use your first form, X = S -- for example when I want to check an attribute value against a set of possible values:
<xsl:when test="#type = ('A', 'A+', 'A-', 'B+')" />
or
<xsl:when test="#type = $magic-types"/>
If I think there is a risk of confusion, then I like your sixth formulation. The less frequently I have to remember the rules for calculating an effective boolean value, the less frequently I make a mistake with them.
I prefer this one:
count(distinct-values($seq)) eq count(distinct-values(($x, $seq)))
When $x is itself a sequence, this expression implements the (value-based) subset of relation between two sets of values, that are represented as sequences. This implementation of subset of has just linear time complexity -- vs many other ways of expressing this, that have O(N^2)) time complexity.
To summarize, the question whether a single value belongs to a set of values is a special case of the question whether one set of values is a subset of another. If we have a good implementation of the latter, we can simply use it for answering the former.
The functx library has a nice implementation of this function, so you can use
functx:is-node-in-sequence($X, $Y)
(this particular function can be found at http://www.xqueryfunctions.com/xq/functx_is-node-in-sequence.html)
The whole functx library is available for both XQuery (http://www.xqueryfunctions.com/) and XSLT (http://www.xsltfunctions.com/)
Marklogic ships the functx library with their core product; other vendors may also.
Another possibility, when you want to know whether node X occurs in sequence S, is
exists((X) intersect S)
I think that's pretty readable, and concise. But it only works when X and the values in S are nodes; if you try to ask
exists(('bob') intersect ('alice', 'bob'))
you'll get a runtime error.
In the program I'm working on now, I need to compare strings, so this isn't an option.
As Dimitri notes, the occurrence of a node in a sequence is a question of identity, not of value comparison.

2D PHP Pattern Creator Altgorithm

I'm looking for an algorithm to help me build 2D patterns based on rules. The idea is that I could write a script using a given site of parameters, and it would return a random, 2-dimensional sequence up to a given length.
My plan is to use this to generate image patterns based on rules. Things like image fractals or sprites for game levels could possibly use this.
For example, lets say that you can use A, B, C, & D to create the pattern. The rule is that C and A can never be next to each other, and that D always follows C. Next, lets say I want a pattern of size 4x4. The result might be the following which respects all the rules.
A B C D
B B B B
C D B B
C D C D
Are there any existing libraries that can do calculations like this? Are there any mathematical formulas I can read-up on?
While pretty inefficient concering runtime, backtracking is an often used algorithm for such a problem.
It follows a simple pattern, and if written correctly, you can easily replace a rule set into it.
Define your rule data structures; i.e., define the set of operations that the rules can encapsulate, and define the available cross-referencing that can be done. Once you've done this, you should have a clearer view of what type of algorithms to use to apply these rules to a potential result set.
Supposing that your rules are restricted to "type X is allowed to have type Y immediately to its left/right/top/bottom" you potentially have situations where generating possible patterns is computationally difficult. Take a look at Wang Tiles (a good source is the book Tilings and Patterns by Grunbaum and Shephard) and you'll see that with the states sets of rules you might define sets of Wang Tiles. Appropriate sets of these are Turing Complete.
For small rectangles, or your sets of rules, this may only be of academic interest. As mentioned elsewhere a backtracking approach might be appropriate for your ruleset - in which case you may want to consider appropriate heuristics for the order in which new components are added to your grid. Again, depending on your rulesets, other approaches might work. E.g. if your ruleset admits many solutions you might get a long way by randomly allocating many items to the grid before attempting to fill in remaining gaps.

Mapping Untyped Lisp data into a typed binary format for use in compiled functions

Background: I'm writing a toy Lisp (Scheme) interpreter in Haskell. I'm at the point where I would like to be able to compile code using LLVM. I've spent a couple days dreaming up various ways of feeding untyped Lisp values into compiled functions that expect to know the format of the data coming at them. It occurs to me that I am not the first person to need to solve this problem.
Question: What are some historically successful ways of mapping untyped data into an efficient binary format.
Addendum: In point of fact, I do know which of about a dozen different types the data is, I just don't know which one might be sent to the function at compile time. The function itself needs a way to determine what it got.
Do you mean, "I just don't know which [type] might be sent to the function at runtime"? It's not that the data isn't typed; certainly 1 and '() have different types. Rather, the data is not statically typed, i.e., it's not known at compile time what the type of a given variable will be. This is called dynamic typing.
You're right that you're not the first person to need to solve this problem. The canonical solution is to tag each runtime value with its type. For example, if you have a dozen types, number them like so:
0 = integer
1 = cons pair
2 = vector
etc.
Once you've done this, reserve the first four bits of each word for the tag. Then, every time two objects get passed in to +, first you perform a simple bit mask to verify that both objects' first four bits are 0b0000, i.e., that they are both integers. If they are not, you jump to an error message; otherwise, you proceed with the addition, and make sure that the result is also tagged accordingly.
This technique essentially makes each runtime value a manually-tagged union, which should be familiar to you if you've used C. In fact, it's also just like a Haskell data type, except that in Haskell the taggedness is much more abstract.
I'm guessing that you're familiar with pointers if you're trying to write a Scheme compiler. To avoid limiting your usable memory space, it may be more sensical to use the bottom (least significant) four bits, rather than the top ones. Better yet, because aligned dword pointers already have three meaningless bits at the bottom, you can simply co-opt those bits for your tag, as long as you dereference the actual address, rather than the tagged one.
Does that help?
Your default solution should be a simple tagged union. If you want to narrow your typing down to more specific types, you can do it - but it won't be that "toy" any more. A thing to look at is called abstract interpretation.
There are few successful implementations of such an optimisation, with V8 being probably the most widespread. In the Scheme world, the most aggressively optimising implementation is Stalin.

Where is DropWhile in Mathematica?

Mathematica 6 added TakeWhile, which has the syntax:
TakeWhile[list, crit]
gives elements ei from the beginning of list, continuing so long as crit[ei] is True.
There is however no corresponding "DropWhile" function. One can construct DropWhile using LengthWhile and Drop, but it almost seems as though one is discouraged from using DropWhile. Why is this?
To clarify, I am not asking for a way to implement this function. Rather: why is it not already present? It seems to me that there must be a reason for its absence other than an oversight, or it would have been corrected by now. Is there something inefficient, undesirable, or superfluous about DropWhile?
There appears to be some ambiguity about the function of DropWhile, so here is an example:
DropWhile = Drop[#, LengthWhile[#, #2]] &;
DropWhile[{1,2,3,4,5}, # <= 3 &]
Out= {4, 5}
Just a blind guess.
There are a lot list operations that could take a while criteria. For example:
Total..While
Accumulate..While
Mean..While
Map..While
Etc..While
They are not difficult to construct, anyway.
I think those are not included just because the number of "primitive" functions is already growing too long, and the criteria of "is it frequently needed and difficult to implement with good performance by the user?" is prevailing in those cases.
The ubiquitous Lists in Mathematica are fixed length vectors, and when they are of a machine numbers it is a packed array.
Thus the natural functions for a recursively defined linked list (e.g. in Lisp or Haskell) are not the primary tools in Mathematica.
So I am inclined to think this explains why Wolfram did not fill out its repertoire of manipulation functions.

Resources