Beginner Ruby question. What is the simplest way to change this code, but leaving the block completely intact, that eliminates the side effect?
x = lambda { |v| x = 2 ; v}
x.call(3)
#=> 3
x
#=> 2
This is the simplest example I could contrive to illustrate my issue, so "remove the assignment" or "don't assign the Proc to x" is not what I'm looking for.
I want to set local variables in a Proc (or lambda) that can be assigned without affecting the original enclosing scope. I could dynamically create a class or module to wrap the block, but that seems overkill for such a basic thing.
Equivalent Python to what I'm trying to do:
def x(v):
x = 2 # this is a local variable, what a concept
return v
Sometimes it is the desired behavior:
total = 0
(1..10).each{|x| total += x}
puts total
But sometimes it's accidental and you don't want to mess with an outside variable which happens to have the same name. In that case, follow the list of parameters with a semicolon and a list of the block-local variables:
x = lambda{|v; x| x = 2; v}
p x.call(3) #3
p x #<Proc:0x83f7570#test1.rb:2 (lambda)>
The reason for this is that the lambda is bound to its defining scope (NOT its calling scope), and is a full closure, which, among other things, includes the local variable x. What you really want here is an unbound proc to pass around and call without any particular binding. This isn't something that Ruby does very easily at all, by design (it's possible with eval, but that's less of a block and more just of a string statement). Procs, lambdas, and blocks are all bound to their defining scope. Lexical scope is only established on classes, modules, and methods; not on blocks/procs/lambdas/anything else.
It's worth noting that Python doesn't even permit assignment in lambdas in the first place.
Related
def foo(a)
# some computation
bar(a, b)
end
def bar(a,b)
# some computation
baz(a, b, c)
end
def baz(a, b ,c)
print a
end
How to avoid passing same parameter (a) to all methods? One way is to make parameter a as an instance variable. What is the right way to do this?
There is no single solution which works in every case, and often, passing the parameters explicitly is simply the best choice, especially when it comes to debugging.
You can use instance variables, but I would not introduce a new instance variable for the sole reason not to avoid passing it down the call chain. It should have its own value in addition.
One approach which I can see often in projects, is to us a single parameter hash, where the new parameters are added:
def foo(a)
....
bar({a:a, b:b})
end
def bar(par)
....
par[:c] = c
end
def baz(par)
par[:a]+par[:b]+par[:c]
end
This is not without drawbacks either. If you, for instance, forget to "add" a necessary parameter, this will either yield wrong results or throw an exception (depending on how to used them), while forgetting them explicitly via the parameter list, would be found at compile time already.
I would make the decisiion depending on the length of the parameter lists involved. If the number of parameters to a methods is larger than 5, I would start thinking, whether a different design might be more appropriate.
Answering the question stated: yes, ruby is a stateful OO language, having mutable everything. So in ruby one might introduce instance variables:
class MyClass
def foo(a)
#a = a
# some computation
bar(b)
end
def bar(b)
#b = b
# some computation
baz(c)
end
def baz(c)
print [#a, #b, c].inspect
end
end
In the real life, the best practice would be to avoid using instance variables wherever possible, and pass everything across methods. That might save you days of debugging in the future.
The pre/post increment/decrement operator (++ and --) are pretty standard programing language syntax (for procedural and object-oriented languages, at least).
Why doesn't Ruby support them? I understand you could accomplish the same thing with += and -=, but it just seems oddly arbitrary to exclude something like that, especially since it's so concise and conventional.
Example:
i = 0 #=> 0
i += 1 #=> 1
i #=> 1
i++ #=> expect 2, but as far as I can tell,
#=> irb ignores the second + and waits for a second number to add to i
I understand Fixnum is immutable, but if += can just instanciate a new Fixnum and set it, why not do the same for ++?
Is consistency in assignments containing the = character the only reason for this, or am I missing something?
Here is how Matz(Yukihiro Matsumoto) explains it in an old thread:
Hi,
In message "[ruby-talk:02706] X++?"
on 00/05/10, Aleksi Niemelä <aleksi.niemela#cinnober.com> writes:
|I got an idea from http://www.pragprog.com:8080/rubyfaq/rubyfaq-5.html#ss5.3
|and thought to try. I didn't manage to make "auto(in|de)crement" working so
|could somebody help here? Does this contain some errors or is the idea
|wrong?
(1) ++ and -- are NOT reserved operator in Ruby.
(2) C's increment/decrement operators are in fact hidden assignment.
They affect variables, not objects. You cannot accomplish
assignment via method. Ruby uses +=/-= operator instead.
(3) self cannot be a target of assignment. In addition, altering
the value of integer 1 might cause severe confusion throughout
the program.
matz.
One reason is that up to now every assignment operator (i.e. an operator which changes a variable) has a = in it. If you add ++ and --, that's no longer the case.
Another reason is that the behavior of ++ and -- often confuse people. Case in point: The return value of i++ in your example would actually be 1, not 2 (the new value of i would be 2, however).
It's not conventional in OO languages. In fact, there is no ++ in Smalltalk, the language that coined the term "object-oriented programming" (and the language Ruby is most strongly influenced by). What you mean is that it's conventional in C and languages closely imitating C. Ruby does have a somewhat C-like syntax, but it isn't slavish in adhering to C traditions.
As for why it isn't in Ruby: Matz didn't want it. That's really the ultimate reason.
The reason no such thing exists in Smalltalk is because it's part of the language's overriding philosophy that assigning a variable is fundamentally a different kind of thing than sending a message to an object — it's on a different level. This thinking probably influenced Matz in designing Ruby.
It wouldn't be impossible to include it in Ruby — you could easily write a preprocessor that transforms all ++ into +=1. but evidently Matz didn't like the idea of an operator that did a "hidden assignment." It also seems a little strange to have an operator with a hidden integer operand inside of it. No other operator in the language works that way.
I think there's another reason: ++ in Ruby wouldn't be remotely useful as in C and its direct successors.
The reason being, the for keyword: while it's essential in C, it's mostly superfluous in Ruby. Most of the iteration in Ruby is done through Enumerable methods, such as each and map when iterating through some data structure, and Fixnum#times method, when you need to loop an exact number of times.
Actually, as far as I have seen, most of the time +=1 is used by people freshly migrated to Ruby from C-style languages.
In short, it's really questionable if methods ++ and -- would be used at all.
You can define a .+ self-increment operator:
class Variable
def initialize value = nil
#value = value
end
attr_accessor :value
def method_missing *args, &blk
#value.send(*args, &blk)
end
def to_s
#value.to_s
end
# pre-increment ".+" when x not present
def +(x = nil)
x ? #value + x : #value += 1
end
def -(x = nil)
x ? #value - x : #value -= 1
end
end
i = Variable.new 5
puts i #=> 5
# normal use of +
puts i + 4 #=> 9
puts i #=> 5
# incrementing
puts i.+ #=> 6
puts i #=> 6
More information on "class Variable" is available in "Class Variable to increment Fixnum objects".
I think Matz' reasoning for not liking them is that it actually replaces the variable with a new one.
ex:
a = SomeClass.new
def a.go
'hello'
end
# at this point, you can call a.go
# but if you did an a++
# that really means a = a + 1
# so you can no longer call a.go
# as you have lost your original
Now if somebody could convince him that it should just call #succ! or what not, that would make more sense, and avoid the problem. You can suggest it on ruby core.
And in the words of David Black from his book "The Well-Grounded Rubyist":
Some objects in Ruby are stored in variables as immediate values. These include
integers, symbols (which look like :this), and the special objects true, false, and
nil. When you assign one of these values to a variable (x = 1), the variable holds
the value itself, rather than a reference to it.
In practical terms, this doesn’t matter (and it will often be left as implied, rather than
spelled out repeatedly, in discussions of references and related topics in this book).
Ruby handles the dereferencing of object references automatically; you don’t have to
do any extra work to send a message to an object that contains, say, a reference to
a string, as opposed to an object that contains an immediate integer value.
But the immediate-value representation rule has a couple of interesting ramifications,
especially when it comes to integers. For one thing, any object that’s represented
as an immediate value is always exactly the same object, no matter how many
variables it’s assigned to. There’s only one object 100, only one object false, and
so on.
The immediate, unique nature of integer-bound variables is behind Ruby’s lack of
pre- and post-increment operators—which is to say, you can’t do this in Ruby:
x = 1
x++ # No such operator
The reason is that due to the immediate presence of 1 in x, x++ would be like 1++,
which means you’d be changing the number 1 to the number 2—and that makes
no sense.
Some objects in Ruby are stored in variables as immediate values. These include integers, symbols (which look like :this), and the special objects true, false, and nil. When you assign one of these values to a variable (x = 1), the variable holds the value itself, rather than a reference to it.
Any object that’s represented as an immediate value is always exactly the same object, no matter how many variables it’s assigned to. There’s only one object 100, only one object false, and so on.
The immediate, unique nature of integer-bound variables is behind Ruby’s lack of pre-and post-increment operators—which is to say, you can’t do this in Ruby:
x=1
x++ # No such operator
The reason is that due to the immediate presence of 1 in x, x++ would be like 1++, which means you’d be changing the number 1 to the number 2—and that makes no sense.
Couldn't this be achieved by adding a new method to the fixnum or Integer class?
$ ruby -e 'numb=1;puts numb.next'
returns 2
"Destructive" methods seem to be appended with ! to warn possible users, so adding a new method called next! would pretty much do what was requested ie.
$ ruby -e 'numb=1; numb.next!; puts numb'
returns 2 (since numb has been incremented)
Of course, the next! method would have to check that the object was an integer variable and not a real number, but this should be available.
I personally like to iterate using the for keyword in Ruby since it reads very clean, from my eye. I generally assume that for may be an alias to Enumerable#each, but I do not know whether is is correct. In the most basic example:
for i in (1..10)
puts i
end
behaves the same as
(1..10).each do |i|
puts i
end
just without creating a new variable scope. Moreover, ruby-doc says
The for loop is rarely used in modern ruby programs.
which makes me feel there is a specific, technical reason against the usage. Does it matter that there's no new variable scope? In what way?
behaves the same as
This is incorrect. for is built on top of each, but it is semantically distinct:
array = %w(a b c d)
array.each { |character| }
defined? character # nil
for character in array; end
defined? character # "local-variable"
The for keyword doesn't introduce a new scope. Any variables introduced inside the block remain visible outside of it; as if it was written inline.
You should take this fact into account when you decide which form to use.
The pre/post increment/decrement operator (++ and --) are pretty standard programing language syntax (for procedural and object-oriented languages, at least).
Why doesn't Ruby support them? I understand you could accomplish the same thing with += and -=, but it just seems oddly arbitrary to exclude something like that, especially since it's so concise and conventional.
Example:
i = 0 #=> 0
i += 1 #=> 1
i #=> 1
i++ #=> expect 2, but as far as I can tell,
#=> irb ignores the second + and waits for a second number to add to i
I understand Fixnum is immutable, but if += can just instanciate a new Fixnum and set it, why not do the same for ++?
Is consistency in assignments containing the = character the only reason for this, or am I missing something?
Here is how Matz(Yukihiro Matsumoto) explains it in an old thread:
Hi,
In message "[ruby-talk:02706] X++?"
on 00/05/10, Aleksi Niemelä <aleksi.niemela#cinnober.com> writes:
|I got an idea from http://www.pragprog.com:8080/rubyfaq/rubyfaq-5.html#ss5.3
|and thought to try. I didn't manage to make "auto(in|de)crement" working so
|could somebody help here? Does this contain some errors or is the idea
|wrong?
(1) ++ and -- are NOT reserved operator in Ruby.
(2) C's increment/decrement operators are in fact hidden assignment.
They affect variables, not objects. You cannot accomplish
assignment via method. Ruby uses +=/-= operator instead.
(3) self cannot be a target of assignment. In addition, altering
the value of integer 1 might cause severe confusion throughout
the program.
matz.
One reason is that up to now every assignment operator (i.e. an operator which changes a variable) has a = in it. If you add ++ and --, that's no longer the case.
Another reason is that the behavior of ++ and -- often confuse people. Case in point: The return value of i++ in your example would actually be 1, not 2 (the new value of i would be 2, however).
It's not conventional in OO languages. In fact, there is no ++ in Smalltalk, the language that coined the term "object-oriented programming" (and the language Ruby is most strongly influenced by). What you mean is that it's conventional in C and languages closely imitating C. Ruby does have a somewhat C-like syntax, but it isn't slavish in adhering to C traditions.
As for why it isn't in Ruby: Matz didn't want it. That's really the ultimate reason.
The reason no such thing exists in Smalltalk is because it's part of the language's overriding philosophy that assigning a variable is fundamentally a different kind of thing than sending a message to an object — it's on a different level. This thinking probably influenced Matz in designing Ruby.
It wouldn't be impossible to include it in Ruby — you could easily write a preprocessor that transforms all ++ into +=1. but evidently Matz didn't like the idea of an operator that did a "hidden assignment." It also seems a little strange to have an operator with a hidden integer operand inside of it. No other operator in the language works that way.
I think there's another reason: ++ in Ruby wouldn't be remotely useful as in C and its direct successors.
The reason being, the for keyword: while it's essential in C, it's mostly superfluous in Ruby. Most of the iteration in Ruby is done through Enumerable methods, such as each and map when iterating through some data structure, and Fixnum#times method, when you need to loop an exact number of times.
Actually, as far as I have seen, most of the time +=1 is used by people freshly migrated to Ruby from C-style languages.
In short, it's really questionable if methods ++ and -- would be used at all.
You can define a .+ self-increment operator:
class Variable
def initialize value = nil
#value = value
end
attr_accessor :value
def method_missing *args, &blk
#value.send(*args, &blk)
end
def to_s
#value.to_s
end
# pre-increment ".+" when x not present
def +(x = nil)
x ? #value + x : #value += 1
end
def -(x = nil)
x ? #value - x : #value -= 1
end
end
i = Variable.new 5
puts i #=> 5
# normal use of +
puts i + 4 #=> 9
puts i #=> 5
# incrementing
puts i.+ #=> 6
puts i #=> 6
More information on "class Variable" is available in "Class Variable to increment Fixnum objects".
I think Matz' reasoning for not liking them is that it actually replaces the variable with a new one.
ex:
a = SomeClass.new
def a.go
'hello'
end
# at this point, you can call a.go
# but if you did an a++
# that really means a = a + 1
# so you can no longer call a.go
# as you have lost your original
Now if somebody could convince him that it should just call #succ! or what not, that would make more sense, and avoid the problem. You can suggest it on ruby core.
And in the words of David Black from his book "The Well-Grounded Rubyist":
Some objects in Ruby are stored in variables as immediate values. These include
integers, symbols (which look like :this), and the special objects true, false, and
nil. When you assign one of these values to a variable (x = 1), the variable holds
the value itself, rather than a reference to it.
In practical terms, this doesn’t matter (and it will often be left as implied, rather than
spelled out repeatedly, in discussions of references and related topics in this book).
Ruby handles the dereferencing of object references automatically; you don’t have to
do any extra work to send a message to an object that contains, say, a reference to
a string, as opposed to an object that contains an immediate integer value.
But the immediate-value representation rule has a couple of interesting ramifications,
especially when it comes to integers. For one thing, any object that’s represented
as an immediate value is always exactly the same object, no matter how many
variables it’s assigned to. There’s only one object 100, only one object false, and
so on.
The immediate, unique nature of integer-bound variables is behind Ruby’s lack of
pre- and post-increment operators—which is to say, you can’t do this in Ruby:
x = 1
x++ # No such operator
The reason is that due to the immediate presence of 1 in x, x++ would be like 1++,
which means you’d be changing the number 1 to the number 2—and that makes
no sense.
Some objects in Ruby are stored in variables as immediate values. These include integers, symbols (which look like :this), and the special objects true, false, and nil. When you assign one of these values to a variable (x = 1), the variable holds the value itself, rather than a reference to it.
Any object that’s represented as an immediate value is always exactly the same object, no matter how many variables it’s assigned to. There’s only one object 100, only one object false, and so on.
The immediate, unique nature of integer-bound variables is behind Ruby’s lack of pre-and post-increment operators—which is to say, you can’t do this in Ruby:
x=1
x++ # No such operator
The reason is that due to the immediate presence of 1 in x, x++ would be like 1++, which means you’d be changing the number 1 to the number 2—and that makes no sense.
Couldn't this be achieved by adding a new method to the fixnum or Integer class?
$ ruby -e 'numb=1;puts numb.next'
returns 2
"Destructive" methods seem to be appended with ! to warn possible users, so adding a new method called next! would pretty much do what was requested ie.
$ ruby -e 'numb=1; numb.next!; puts numb'
returns 2 (since numb has been incremented)
Of course, the next! method would have to check that the object was an integer variable and not a real number, but this should be available.
What does block in Ruby mean? It looks similar with Smalltalk, but you can't send messages to it.
For example, in smalltalk:
[:x | x + 3] value: 3
returns 6. But in ruby:
{|x| x + 3}.call 3
will cause SyntaxError.
Well, you can pass messages to lambda in ruby, though:
irb(main):025:0> ->(x){x+3}.call 3
=> 6
So in Ruby, block is not a block, but lambda is a block? Is this true? I mean, are there any differences between ruby lambda and smalltalk block? If this is true, then what is a ruby block?
Update:
From the comment and answer below, together with some googling, I guess I
have more understanding of Ruby block. In Ruby, usually a piece of code evaluates an value, and every value is an object. But, block doesn't evaluate an value. So it's not an object. Instead it can act as part of an object. For example, in {|x| x + 3} can act as a part of the object proc {|x| x + 3 }.
But it did confuse me. In smalltalk, almost every expression can be divided into objects (binding to variables are exceptions). It seems in Ruby, there are more exceptions.
First and the most important thing that Ruby block isn't: an object. It is a syntactic construct, and also obviously has an equivalent implementation - but it is not an object, and thus can't receive messages. Which makes your example of
{|x| x + 3}.call 3
ungrammatical. Lambdas, procs - those are objects that wrap a block, and have a call method which executes the block.
Thus, a block is simply a piece of code which can be passed to a method, outside the argument list - no more, no less. If you pass it to Proc.new constructor, for example, it will wrap it and give you an object you can handle:
Proc.new {|x| x + 3}.call 3
A precision:
I would even say that in smalltalk even binding is made up with object.
Think of the MethodContext.
What you are actually doing is to store the object in the MethodContext.
So
a := Object new
Can be rewrite in:
thisContext at: 1 put: Object new.
But obviously you wont write it this way since you need to know were are the temps variable.
A block in Smalltalk is an anonymous object. Syntactically, it is delimited by a [ ... ] pair.
When evaluated, it will return the last expression evaluated within itself, and there are lots of methods in its protocol.
Here are the Class comments for Blocks from a Smalltalk (in this instance, Dolphin Smalltalk 6.03 Community Edition)
"Blocks encapsulate a sequence of statements to be performed at a later time. Blocks may capture (or "close over") runtime state, such as the values of temporary variables, from the enclosing lexical scope at the point where they are created. When evaluated a block executes as if in the lexical scope in which it was defined, except that blocks may have arguments that are bound at the time of evaluation. Blocks may be passed as arguments with messages to other objects and evaluated by those objects when appropriate, and thus form a very powerful and generic "pluggability" mechanism that is a core feature which provides much of the power of Smalltalk".
By contrast, a block in Ruby is simply a parameter string. It's syntactically delimited by a { ... } pair, but it has no methods of its own.