List index out of bounds: 0 - apex-code

I have declared a two dimensional array "S" in a class as follows:
public class TestClass {
private static final List<List<Long>> S = new List<List<Long>>{};
Public TestClass {
}
public void setKey(string key, string keylength) {
integer i, j
for ( i = 0; i < 4; ++i ){
for ( j = 0; j < 256; ++j ){
S[i][j] = 0;
}
}
}
}
Im getting a List index out of bounds: 0 at this line:
S[i][j] = 0;
It seems that its not calling the List correctly,
Can someone please tell me what's wrong?
Thanks

I don't have any experience in apex-code, but I'd guess that you haven't initialised the List elsewhere in the code, or at least not initialised the inner List.
Putting this in context with a well known language such as C# or Java, the initialisation would look something like this:
// ** NOTE: Pseudo-code **
// Loop over the outer List first
for ( i = 0; i < 4; ++i ){
// Initialise each List index as a new List, storing 256 integers.
S[i] = new List<long>(new int[256]);
// Loop over the newly initialised inner List, setting the int values.
for ( j = 0; j < 256; ++j ){
S[i][j] = 0;
}
}
}

Related

Why won't my random selection without replacement algorithm work?

I have made a very simple algorithm that picks a set of numToPick random numbers from the range 0 to batchMax, without replacement. Then it places each selected number in an array called numsPicked. For some reason I cannot explain, it isn't working on DartPad.
import 'dart:math';
void main() {
print(randNoReplace(2, 9));
}
List<int> randNoReplace(int numToPick, int batchMax) {
List<int> numsPicked = List(numToPick);
List<int> tmpArray = List(batchMax);
//this for loop creates the tmpArray from 0 to batchMax.
for (int i = 0; i <= batchMax; i++) {
tmpArray[i] = i;
}
//this for loop randomly scrambles said tmpArray.
for (int i = 0; i <= batchMax; i++) {
int randIndex = Random().nextInt(batchMax);
int tmp = tmpArray[i];
tmpArray[i] = tmpArray[randIndex];
tmpArray[randIndex] = tmp;
}
//finally, this for loop adds the first numToPick entries of the scrambled tmpArray and adds them to numsPicked.
for (int i = 0; i < numToPick; i++) {
numsPicked[i] = tmpArray[i];
}
return numsPicked;
}
So, for example, with 2 and 9 respectively, this algorithm should theoretically give me 2 random non-duplicate numbers in the range [0, 9].
I think the main issue in your code is that your first two for-loops are going from 0 to
batchMax including batchMax. This is a problem since you are using batchMax to specify the size of your tmpArray. Since the index of a List starts at 0, we cannot ask for the batchMax-element but at most batchMax - 1.
So you code should properly be (or `tmpArray should be one element bigger):
import 'dart:math';
void main() {
print(randNoReplace(2, 9));
}
List<int> randNoReplace(int numToPick, int batchMax) {
List<int> numsPicked = List(numToPick);
List<int> tmpArray = List(batchMax);
//this for loop creates the tmpArray from 0 to batchMax.
for (int i = 0; i < batchMax; i++) {
tmpArray[i] = i;
}
//this for loop randomly scrambles said tmpArray.
for (int i = 0; i < batchMax; i++) {
int randIndex = Random().nextInt(batchMax);
int tmp = tmpArray[i];
tmpArray[i] = tmpArray[randIndex];
tmpArray[randIndex] = tmp;
}
//finally, this for loop adds the first numToPick entries of the scrambled tmpArray and adds them to numsPicked.
for (int i = 0; i < numToPick; i++) {
numsPicked[i] = tmpArray[i];
}
return numsPicked;
}
Some other minor comments:
You should properly not initialize a new Random() object each time you need a random number. Instead, you should create one instance and reuse it.
Your code are not making much use of the Dart SDK. In fact, your code could properly be simplified into:
void main() {
print(randNoReplace(2, 9));
}
List<int> randNoReplace(int numToPick, int batchMax) =>
(List.generate(batchMax, (index) => index)..shuffle())
.sublist(0, numToPick);

Missing integer variation - O(n) solution needed [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
The problem comes from Codility programming training and it sounds as follows:
we have an array (A[]) with n (ranging from 1 to 100,000) elements and these are our parameters. The elements of the array are integers from −2,147,483,648 to 2,147,483,647, and we need to find smallest positive integer that is NOT in the array. Of course this could be done easily in O(n*log n) by sorting them all and going through the sorted array, looking for the missing posiitve number (this last operation has O(n) worst time complexity in my solution). But according to Codility, this ENTIRE problem can be done in O(n), and I cannot see any way to do that. Could someone give some tips to let me get un-stuck?
PS Here is a link to detailed description of the problem which I'm not allowed to copy - https://codility.com/c/intro/demo35UEXH-EAT
By pigeonhole principle, at least one of the numbers 1, 2, ..., n+1 is not in the array.
Let us create a boolean array b of size n+1 to store whether each of these numbers is present.
Now, we process the input array. If we find a number from 1 to n+1, we mark the corresponding entry in b. If the number we see does not fit into these bounds, just discard it and proceed to the next one. Both cases are O(1) per input entry, total O(n).
After we are done processing the input, we can find the first non-marked entry in our boolean array b trivially in O(n).
Simple solution 100% in Java.
Please note it is O(nlogn) solution but gives 100% result in codility.
public static int solution(final int[] A)
{
Arrays.sort(A);
int min = 1;
// Starting from 1 (min), compare all elements, if it does not match
// that would the missing number.
for (int i : A) {
if (i == min) {
min++;
}
}
return min;
}
wrote this today and got 100/100. not the most elegant solution, but easy to understand -
public int solution(int[] A) {
int max = A.length;
int threshold = 1;
boolean[] bitmap = new boolean[max + 1];
//populate bitmap and also find highest positive int in input list.
for (int i = 0; i < A.length; i++) {
if (A[i] > 0 && A[i] <= max) {
bitmap[A[i]] = true;
}
if (A[i] > threshold) {
threshold = A[i];
}
}
//find the first positive number in bitmap that is false.
for (int i = 1; i < bitmap.length; i++) {
if (!bitmap[i]) {
return i;
}
}
//this is to handle the case when input array is not missing any element.
return (threshold+1);
}
public int solutionMissingInteger(int[] A) {
int solution = 1;
HashSet<Integer> hashSet = new HashSet<>();
for(int i=0; i<A.length; ++i){
if(A[i]<1) continue;
if(hashSet.add(A[i])){
//this int was not handled before
while(hashSet.contains(solution)){
solution++;
}
}
}
return solution;
}
Simple Java soution. Scored 100/100 in correctness and performance.
public int solution(int[] A) {
int smallestMissingInteger = 1;
if (A.length == 0) {
return smallestMissingInteger;
}
Set<Integer> set = new HashSet<Integer>();
for (int i = 0; i < A.length; i++) {
if (A[i] > 0) {
set.add(A[i]);
}
}
while (set.contains(smallestMissingInteger)) {
smallestMissingInteger++;
}
return smallestMissingInteger;
}
Build a hash table of all the values. For the numbers 1 to n + 1, check if they are in the hash table. At least one of them is not. Print out the lowest such number.
This is O(n) expected time (you can get with high probability). See #Gassa's answer for how to avoid the hash table in favor of a lookup table of size O(n).
JavaScript 100%
function solution(A) {
let sortedOb = {};
let biggest = 0;
A.forEach(el => {
if (el > 0) {
sortedOb[el] = 0;
biggest = el > biggest ? el : biggest;
}
});
let arr = Object.keys(sortedOb).map(el => +el);
if (arr.length == 0) return 1;
for(let i = 1; i <= biggest; i++) {
if (sortedOb[i] === undefined) return i;
}
return biggest + 1;
}
100% Javascript
function solution(A) {
// write your code in JavaScript (Node.js 4.0.0)
var max = 0;
var array = [];
for (var i = 0; i < A.length; i++) {
if (A[i] > 0) {
if (A[i] > max) {
max = A[i];
}
array[A[i]] = 0;
}
}
var min = max;
if (max < 1) {
return 1;
}
for (var j = 1; j < max; j++) {
if (typeof array[j] === 'undefined') {
return j
}
}
if (min === max) {
return max + 1;
}
}
C# scored 100%,
Explanation: use of lookup table where we store already seen values from input array, we only care about values that are greater than 0 and lower or equal than length on input array
public static int solution(int[] A)
{
var lookUpArray = new bool[A.Length];
for (int i = 0; i < A.Length; i++)
if (A[i] > 0 && A[i] <= A.Length)
lookUpArray[A[i] - 1] = true;
for (int i = 0; i < lookUpArray.Length; i++)
if (!lookUpArray[i])
return i + 1;
return A.Length + 1;
}
This is my solution is Swift 4
public func solution(_ A: inout [Int]) -> Int {
var minNum = 1
var hashSet = Set<Int>()
for int in A {
if int > 0 {
hashSet.insert(int)
}
}
while hashSet.contains(minNum) {
minNum += 1
}
return minNum
}
var array = [1,3,6]
solution(&array)
// Answer: 2
100%: the Python sort routine is not regarded as cheating...
def solution(A):
"""
Sort the array then loop till the value is higher than expected
"""
missing = 1
for elem in sorted(A):
if elem == missing:
missing += 1
if elem > missing:
break
return missing
It worked for me. It is not O(n), but little simpler:
import java.util.stream.*;
class Solution {
public int solution(int[] A) {
A = IntStream.of(A)
.filter(x->x>0)
.distinct()
.sorted()
.toArray();
int min = 1;
for(int val : A)
{
if(val==min)
min++;
else
return min;
}
return min;
}
}
My solution. 100%. In Java.
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class Solution {
public int solution(int[] A) {
Arrays.sort(A);
ArrayList<Integer> positive = new ArrayList<>();
for (int i = 0; i < A.length; i++) {
if(A[i] > 0)
positive.add(A[i]);
}
if(positive.isEmpty()) return 1;
if(positive.get(0) > 1) return 1;
for(int i = 0; i < positive.size() - 1; i++) {
if(positive.get(i + 1) - positive.get(i) > 1)
return positive.get(i) + 1;
}
return positive.get(positive.size() - 1) + 1;
}
public static void main(String[] args) {
Solution solution = new Solution();
int[] A = {-5,1,2,3,4,6,7,8,9,5};
System.out.println(solution.solution(A));
}
}
javascript 100% 100%
first sort the array, you just need to scan positive elements so find index of 1 (if there is no 1 in array then answer is 1). then search elements after 1 till find missing number.
function solution(A) {
// write your code in JavaScript (Node.js 6.4.0)
var missing = 1;
// sort the array.
A.sort(function(a, b) { return a-b });
// try to find the 1 in sorted array if there is no 1 so answer is 1
if ( A.indexOf(1) == -1) { return 1; }
// just search positive numbers to find missing number
for ( var i = A.indexOf(1); i < A.length; i++) {
if ( A[i] != missing) {
missing++;
if ( A[i] != missing ) { return missing; }
}
}
// if cant find any missing number return next integer number
return missing + 1;
}
I believe the solution is more involved than 'marking' corresponding values using a boolean array of n (100,000) elements. The boolean array of size n will not 'directly' map to the possible range of values (−2,147,483,648 to 2,147,483,647).
This Java example I wrote attempts to map the 100K rows by mapping the value based on their offset from the max value. It also performs a modulus to reduce the resulting array to the same size as the sample element length.
/**
*
* This algorithm calculates the values from the min value and mods this offset with the size of the 100K sample size.
* This routine performs 3 scans.
* 1. Find the min/max
* 2. Record the offsets for the positive integers
* 3. Scan the offsets to find missing value.
*
* #author Paul Goddard
*
*/
public class SmallestPositiveIntMissing {
static int ARRAY_SIZE = 100000;
public static int solve(int[] array) {
int answer = -1;
Maxmin maxmin = getMaxmin(array);
int range = maxmin.max - maxmin.min;
System.out.println("min: " + maxmin.min);
System.out.println("max: " + maxmin.max);
System.out.println("range: " + range);
Integer[] values = new Integer[ARRAY_SIZE];
if (range == ARRAY_SIZE) {
System.out.println("No gaps");
return maxmin.max + 1;
}
for (int val: array) {
if (val > 0) {
int offset = val - maxmin.min;
int index = offset % ARRAY_SIZE;
values[index] = val;
}
}
for (int i = 0; i < ARRAY_SIZE; i++) {
if (values[i] == null) {
int missing = maxmin.min + i;
System.out.println("Missing: " + missing);
answer = missing;
break;
}
}
return answer;
}
public static Maxmin getMaxmin(int[] array) {
int max = Integer.MIN_VALUE;
int min = Integer.MAX_VALUE;
for (int val:array) {
if (val >=0) {
if (val > max) max = val;
if (val < min) min = val;
}
}
return new Maxmin(max,min);
}
public static void main(String[] args) {
int[] A = arrayBuilder();
System.out.println("Min not in array: " + solve(A));
}
public static int[] arrayBuilder() {
int[] array = new int[ARRAY_SIZE];
Random random = new Random();
System.out.println("array: ");
for (int i=0;i < ARRAY_SIZE; i++) {
array[i] = random.nextInt();
System.out.print(array[i] + ", ");
}
System.out.println(" array done.");
return array;
}
}
class Maxmin {
int max;
int min;
Maxmin(int max, int min) {
this.max = max;
this.min = min;
}
}
Sweet Swift version. 100% correct
public func solution(inout A : [Int]) -> Int {
//Create a Hash table
var H = [Int:Bool]()
// Create the minimum possible return value
var high = 1
//Iterate
for i in 0..<A.count {
// Get the highest element
high = A[i] > high ? A[i] : high
// Fill hash table
if (A[i] > 0){
H[A[i]] = true
}
}
// iterate through possible values on the hash table
for j in 1...high {
// If you could not find it on the hash, return it
if H[j] != true {
return j
} else {
// If you went through all values on the hash
// and can't find it, return the next higher value
// e.g.: [1,2,3,4] returns 5
if (j == high) {
return high + 1
}
}
}
return high
}
int[] copy = new int[A.length];
for (int i : A)
{
if (i > 0 && i <= A.length)
{
copy[i - 1] = 1;
}
}
for (int i = 0; i < copy.length; i++)
{
if (copy[i] == 0)
{
return i + 1;
}
}
return A.length + 1;
Swift 3 - 100%
public func solution(_ A : inout [Int]) -> Int {
// write your code in Swift 3.0 (Linux)
var solution = 1
var hashSet = Set<Int>()
for int in A
{
if int > 0
{
hashSet.insert(int)
while hashSet.contains(solution)
{
solution += 1
}
}
}
return solution
}
Thanks to Marian's answer above.
This is my solution using python:
def solution(A):
m = max(A)
if m <= 0:
return 1
if m == 1:
return 2
# Build a sorted list with all elements in A
s = sorted(list(set(A)))
b = 0
# Iterate over the unique list trying to find integers not existing in A
for i in xrange(len(s)):
x = s[i]
# If the current element is lte 0, just skip it
if x <= 0:
continue;
b = b + 1
# If the current element is not equal to the current position,
# it means that the current position is missing from A
if x != b:
return b
return m + 1
Scored 100%/100% https://codility.com/demo/results/demoDCU7CA-SBR/
Create a binary array bin of N+1 length (C uses 0 based indexing)
Traverse the binary array O(n)
If A[i] is within the bounds of bin then mark bin entry at index A[i] as present or true.
Traverse the binary array again
Index of any bin entry that is not present or false is your missing integer
~
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
int solution(int A[], int N) {
// write your code in C99 (gcc 6.2.0)
int i;
bool *bin = (bool *)calloc((N+1),sizeof(bool));
for (i = 0; i < N; i++)
{
if (A[i] > 0 && A[i] < N+1)
{
bin[A[i]] = true;
}
}
for (i = 1; i < N+1; i++)
{
if (bin[i] == false)
{
break;
}
}
return i;
}
May be helpful, I am using arithmetic progression to calculate the sum, and using binary searach the element is fetched. checked with array of couple of hundred values works good. As there is one for loop and itression in step of 2, O(n/2) or less
def Missingelement (A):
B = [x for x in range(1,max(A)+1,1)]
n1 = len(B) - 1
begin = 0
end = (n1)//2
result = 0
print(A)
print(B)
if (len(A) < len(B)):
for i in range(2,n1,2):
if BinSum(A,begin,end) > BinSum(B,begin,end) :
end = (end + begin)//2
if (end - begin) <= 1 :
result=B[begin + 1 ]
elif BinSum(A,begin,end) == BinSum(B,begin,end):
r = end - begin
begin = end
end = (end + r)
if begin == end :
result=B[begin + 1 ]
return result
def BinSum(C,begin,end):
n = (end - begin)
if end >= len(C):
end = len(C) - 1
sum = n*((C[begin]+C[end])/2)
return sum
def main():
A=[1,2,3,5,6,7,9,10,11,12,14,15]
print ("smallest number missing is ",Missingelement(A))
if __name__ == '__main__': main()
Code for C, in fact, this can be used for any programming language without any change in the logic.
Logic is sum of N number is N*(N+1)/2.
int solution(int A[], int N) {
// write your code in C99
long long sum=0;
long long i;
long long Nsum=0;
for(i=0;i<N;i++){
sum=sum + (long long)A[i];
}
if (N%2==0){
Nsum= (N+1)*((N+2)/2);
return (int)(Nsum-sum);
}
else{
Nsum= ((N+1)/2)*(N+2);
return (int)(Nsum-sum);
}
}
This gave the 100/100 score.
This solution gets 100/100 on the test:
class Solution {
public int solution(int[] A) {
int x = 0;
while (x < A.length) {
// Keep swapping the values into the matching array positions.
if (A[x] > 0 && A[x] <= A.length && A[A[x]-1] != A[x]) {
swap(A, x, A[x] - 1);
} else {
x++; // Just need to increment when current element and position match.
}
}
for (int y=0; y < A.length; y++) {
// Find first element that doesn't match position.
// Array is 0 based while numbers are 1 based.
if (A[y] != y + 1) {
return y + 1;
}
}
return A.length + 1;
}
private void swap (int[] a, int i, int j) {
int t = a[i];
a[i] = a[j];
a[j] = t;
}
}
100% in PHP https://codility.com/demo/results/trainingKFXWKW-56V/
function solution($A){
$A = array_unique($A);
sort($A);
if (empty($A)) return 1;
if (max($A) <= 0) return 1;
if (max($A) == 1) return 2;
if (in_array(1, $A)) {
$A = array_slice($A, array_search(1, $A)); // from 0 to the end
array_unshift($A, 0); // Explanation 6a
if ( max($A) == array_search(max($A), $A)) return max($A) + 1; // Explanation 6b
for ($i = 1; $i <= count($A); $i++){
if ($A[$i] != $i) return $i; // Explanation 6c
}
} else {
return 1;
}
}
// Explanation
remove all duplicates
sort from min to max
if the array is empty return 1
if max of array is zero or less, return 1
if max of array is 1, return 2 // next positive integer
all other cases:
6a) split the array from value 1 to the end and add 0 before first number
6b) if the value of last element of array is the max of array, then the array is ascending so we return max + 1 // next positive integer
6c) if the array is not ascending, we find a missing number by a function for: if key of element is not as value the element but it should be (A = [0=>0, 1=>1,2=>3,...]), we return the key, because we expect the key and value to be equal.
Here is my solution, it Yields 88% in evaluation- Time is O(n), Correctness 100%, Performance 75%. REMEMBER - it is possible to have an array of all negative numbers, or numbers that exceed 100,000. Most of the above solutions (with actual code) yield much lower scores, or just do not work. Others seem to be irrelevant to the Missing Integer problem presented on Codility.
int compare( const void * arg1, const void * arg2 )
{
return *((int*)arg1) - *((int*)arg2);
}
solution( int A[], int N )
{
// Make a copy of the original array
// So as not to disrupt it's contents.
int * A2 = (int*)malloc( sizeof(int) * N );
memcpy( A2, A1, sizeof(int) * N );
// Quick sort it.
qsort( &A2[0], N, sizeof(int), compare );
// Start out with a minimum of 1 (lowest positive number)
int min = 1;
int i = 0;
// Skip past any negative or 0 numbers.
while( (A2[i] < 0) && (i < N )
{
i++;
}
// A variable to tell if we found the current minimum
int found;
while( i < N )
{
// We have not yet found the current minimum
found = 0;
while( (A2[i] == min) && (i < N) )
{
// We have found the current minimum
found = 1;
// move past all in the array that are that minimum
i++;
}
// If we are at the end of the array
if( i == N )
{
// Increment min once more and get out.
min++;
break;
}
// If we found the current minimum in the array
if( found == 1 )
{
// progress to the next minimum
min++;
}
else
{
// We did not find the current minimum - it is missing
// Get out - the current minimum is the missing one
break;
}
}
// Always free memory.
free( A2 );
return min;
}
My 100/100 solution
public int solution(int[] A) {
Arrays.sort(A);
for (int i = 1; i < 1_000_000; i++) {
if (Arrays.binarySearch(A, i) < 0){
return i;
}
}
return -1;
}
static int spn(int[] array)
{
int returnValue = 1;
int currentCandidate = 2147483647;
foreach (int item in array)
{
if (item > 0)
{
if (item < currentCandidate)
{
currentCandidate = item;
}
if (item <= returnValue)
{
returnValue++;
}
}
}
return returnValue;
}

can any body help me with this code of multiplication matrix by matrix ?

this is the code that i write i tried it but it just work for same length matrix and its should work for the two matrix that the columns of the first one as the the rows of the Second ..
void msklret(int matrixA[M][N],int matrixB[M][N],int matrixC[M][N],int r1,intc2,int r2)
{
int i , j,k,sum;
for(i=0; i<r1; i++)
{
for(j=0; j<c2; j++)
{
sum = 0;
for(k=0; k<r2; k++)
{
sum += matrixA[i][k] * matrixB[k][j];
}
matrixC[i][j]=sum;
sum=0;`
}
}
So assuming you are looking for the naive algorithm:
This is written in c#
public float[,] MatrixMultiply(float[,] leftMat, float[,] rightMat)
{
// get the required row and column ranks for both matrices
int leftRowNum = leftMat.GetLength(0);
int rightRowNum = rightMat.GetLength(0);
int leftColNum = leftMat.GetLength(1);
int rightColNum = rightMat.GetLength(1);
// Check that the inner dimensions are the same
if(leftColNum != rightRowNum)
return null;
int innerLen = leftColNum;
// now define resulting matrix dimensions
float[,] result = new float[leftRowNum,rightColNum];
// perform the multiplication using 3 nested for loops
for(int i = 0; i < leftRowNum; i++)
{
for(int j = 0; j < rightColNum; j++)
{
for(int inner = 0; inner < innerLen; inner++)
{
result[i,j]+= leftMat[i,inner]*rightMat[inner,j];
}
}
}
return result;
}
Now your code would be:
void msklret(int matrixA[M][N],int matrixB[M][N],int matrixC[M][N],int r1,intc2,int r2)
float[,] result = MatrixMultiply(MatrixMultiply(matrixA,matrixB),matrixC);
Which can also be written:
float[,] result = MatrixMultiply(matrixA,MatrixMultiply(matrixB,matrixC));
Given the associative property of matrix multiplication.

Expression must be a list type error?

I have the following code:
public class Testcode {
private static final Long[] P = new Long[18];
public void setKey( string key )
{
integer i, j, k;
long data;
integer N = 16;
string[] keytemp = new string[]{};
keytemp.add(key);
// Initialize P and S.
for ( i = 0; i < N + 2; ++i ){
P[i] = Pinit[i];
}
// XOR the key into P.
j = 0;
for ( i = 0; i < N + 2; ++i )
{
data = 0;
for ( k = 0; k < 4; ++k )
{
data = ( data << 8 ) | keytemp[j];
++j;
}
P[i] ^= data;
}
}
private static final long[] Pinit = new Long[] {
604135516L, 2242044355L, 320440478L , 57401183L,
2732047618L, 698298832L, 137296536L , 3964563569L,
1163258022L, 954160567L, 3193502383L, 887688400L,
3234508543L, 3380367581L, 1065660069L, 3041631479L,
2420952273L, 2306437331L
};
}
im getting the following error:
Error: Compile Error: OR operator can only be applied to Boolean expressions or to Integer or Long expressions at line 36 column 18
which is in this line:
data = ( data << 8 ) | keytemp[j];
Is there another way to write this line of code?
Thanks
You're trying to access the j-th bit in key variable? I don't think Apex supports syntax like that (with indexes). [] operator is reserved for arrays so that's the error you get.
In fact it's not even an operator I think (http://www.salesforce.com/us/developer/docs/apexcode/Content/langCon_apex_expressions_operators_understanding.htm), just a shortcut to write myList.get(index).
Try the shifting trick again?
Long key = 255;
System.debug(key & (1 << 7)); // 128
System.debug(key & (1 << 8)); // 0

interviewstreet Triplet challenge

There is an integer array d which does not contain more than two elements of the same value. How many distinct ascending triples (d[i] < d[j] < d[k], i < j < k) are present?
Input format:
The first line contains an integer N denoting the number of elements in the array. This is followed by a single line containing N integers separated by a single space with no leading/trailing spaces
Output format:
A single integer that denotes the number of distinct ascending triples present in the array
Constraints:
N <= 10^5
Every value in the array is present at most twice
Every value in the array is a 32-bit positive integer
Sample input:
6
1 1 2 2 3 4
Sample output:
4
Explanation:
The distinct triplets are
(1,2,3)
(1,2,4)
(1,3,4)
(2,3,4)
Another test case:
Input:
10
1 1 5 4 3 6 6 5 9 10
Output:
28
I tried to solve using DP. But out of 15 test cases only 7 test cases passed.
Please help solve this problem.
You should note that you only need to know the number of elements that are smaller/larger than a particular element to know how many triples it serves as the middle point for. Using this you can calculate the number of triples quite easily, the only remaining problem is to get rid of duplicates, but given that you are limited to at most 2 of the same element, this is trivial.
I solved using a Binary Index Tree http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=binaryIndexedTrees.
I also did a small write up, http://www.kesannmcclean.com/?p=223.
package com.jai;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.HashMap;
public class Triplets {
int[] lSmaller, rLarger, treeArray, dscArray, lFlags, rFlags;
int size, count = 0;
Triplets(int aSize, int[] inputArray) {
size = aSize;
lSmaller = new int[size];
rLarger = new int[size];
dscArray = new int[size];
int[] tmpArray = Arrays.copyOf(inputArray, inputArray.length);
Arrays.sort(tmpArray);
HashMap<Integer, Integer> tmpMap = new HashMap<Integer, Integer>(size);
for (int i = 0; i < size; i++) {
if (!tmpMap.containsKey(tmpArray[i])) {
count++;
tmpMap.put(tmpArray[i], count);
}
}
count++;
treeArray = new int[count];
lFlags = new int[count];
rFlags = new int[count];
for (int i = 0; i < size; i++) {
dscArray[i] = tmpMap.get(inputArray[i]);
}
}
void update(int idx) {
while (idx < count) {
treeArray[idx]++;
idx += (idx & -idx);
}
}
int read(int index) {
int sum = 0;
while (index > 0) {
sum += treeArray[index];
index -= (index & -index);
}
return sum;
}
void countLeftSmaller() {
Arrays.fill(treeArray, 0);
Arrays.fill(lSmaller, 0);
Arrays.fill(lFlags, 0);
for (int i = 0; i < size; i++) {
int val = dscArray[i];
lSmaller[i] = read(val - 1);
if (lFlags[val] == 0) {
update(val);
lFlags[val] = i + 1;
} else {
lSmaller[i] -= lSmaller[lFlags[val] - 1];
}
}
}
void countRightLarger() {
Arrays.fill(treeArray, 0);
Arrays.fill(rLarger, 0);
Arrays.fill(rFlags, 0);
for (int i = size - 1; i >= 0; i--) {
int val = dscArray[i];
rLarger[i] = read(count - 1) - read(val);
if (rFlags[val] == 0) {
update(val);
rFlags[val] = i + 1;
}
}
}
long countTriplets() {
long sum = 0;
for (int i = 0; i < size; i++) {
sum += lSmaller[i] * rLarger[i];
}
return sum;
}
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int N = Integer.parseInt(br.readLine());
int[] a = new int[N];
String[] strs = br.readLine().split(" ");
for (int i = 0; i < N; i++)
a[i] = Integer.parseInt(strs[i]);
Triplets sol = new Triplets(N, a);
sol.countLeftSmaller();
sol.countRightLarger();
System.out.println(sol.countTriplets());
}
}
For tentative algorithm that I came up with, it should be:
(K-1)!^2
where K is number of unique elements.
EDIT
After more thinking about this:
SUM[i=1,K-2] SUM[j=i+1,K-1] SUM[m=j+1,K] 1
=> SUM[i=1,K-2] (SUM[j=i+1,K-1] (K-j))
if the input is not sorted (the question is not clear about this): sort it
remove the duplicated items (this step could be conbined with the first step)
now pick 3 items. Since the items are already sorted, the three chosen items are ordered as well
IIRC there are (n!) / ((n-3)! * 3!) ways to pick the three items; with n := the number of unique items
#hadron: exactly, I couldn get my head around on why it should be 28 and not 35 for a set of 7 distinct numbers *
[Since the ques is about ascending triplets, repeated numbers can be discarded].
btw, here's a very bad Java solution(N^3):
I have also printed out the possible triplets:
I'm also thinking about some function that dictates the no: of triplets possible for input 'N'
4 4
5 10
6 20
7 35
8 56
9 84
package org.HackerRank.AlgoChallenges;
import java.util.Iterator;
import java.util.Scanner;
import java.util.TreeSet;
public class Triplets {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int result = 0;
int n = scanner.nextInt();
Object[] array = new Object[n];
TreeSet<Integer> treeSet = new TreeSet<Integer>();
/*
* for (int i = 0; i < n; i++) { array[i] = scanner.nextInt(); }
*/
while (n>0) {
treeSet.add(scanner.nextInt());
n--;
}
scanner.close();
Iterator<Integer> iterator = treeSet.iterator();
int i =0;
while (iterator.hasNext()) {
//System.out.println("TreeSet["+i+"] : "+iterator.next());
array[i] = iterator.next();
//System.out.println("Array["+i+"] : "+array[i]);
i++;
}
for (int j = 0; j < (array.length-2); j++) {
for (int j2 = (j+1); j2 < array.length-1; j2++) {
for (int k = (j2+1); k < array.length; k++) {
if(array[j]!=null && array[j2]!=null && array[k]!=null){
System.out.println("{ "+array[j]+", "+array[j2]+", "+array[k]+" }");
result++;
}
}
}
}
System.out.println(result);
}
One of solution in python:
from itertools import combinations as comb
def triplet(lis):
done = dict()
result = set()
for ind, num in enumerate(lis):
if num not in done:
index = ind+1
for elm in comb(lis[index:], 2):
s,t = elm[0], elm[1]
if (num < s < t):
done.setdefault(num, None)
fin = (num,s,t)
if fin not in result:
result.add(fin)
return len(result)
test = int(raw_input())
lis = [int(_) for _ in raw_input().split()]
print triplet(lis)
Do you care about complexity?
Is the input array sorted?
if you don't mind about complexity you can solve it in complexity of N^3.
The solution with complexity N^3:
If it not sorted, then sorted the array.
Use 3 for loops one inside the other and go threw the array 3 times for each number.
Use hash map to count all the triples. The key will be the triple it self and the value will be the number of occurences.
It should be something like this:
for (i1=0; i1<N; i1++) {
for (i2=i1; i2<N; i2++) {
for (i3=i2; i3<N; i3++) {
if (N[i1] < N[i2] < N[i3]) {
/* if the triple exists in the hash then
add 1 to its value
else
put new triple to the hash with
value 1
*/
}
}
}
}
Result = number of triples in the hash;
I didn't try it but I think it should work.

Resources