Related
I found this question on topcoder:
Your friend Lucas gave you a sequence S of positive integers.
For a while, you two played a simple game with S: Lucas would pick a number, and you had to select some elements of S such that the sum of all numbers you selected is the number chosen by Lucas. For example, if S={2,1,2,7} and Lucas chose the number 11, you would answer that 2+2+7 = 11.
Lucas now wants to trick you by choosing a number X such that there will be no valid answer. For example, if S={2,1,2,7}, it is not possible to select elements of S that sum up to 6.
You are given the int[] S. Find the smallest positive integer X that cannot be obtained as the sum of some (possibly all) elements of S.
Constraints: - S will contain between 1 and 20 elements, inclusive. - Each element of S will be between 1 and 100,000, inclusive.
But in the editorial solution it has been written:
How about finding the smallest impossible sum? Well, we can try the following naive algorithm: First try with x = 1, if this is not a valid sum (found using the methods in the previous section), then we can return x, else we increment x and try again, and again until we find the smallest number that is not a valid sum.
Let's find an upper bound for the number of iterations, the number of values of x we will need to try before we find a result. First of all, the maximum sum possible in this problem is 100000 * 20 (All numbers are the maximum 100000), this means that 100000 * 20 + 1 will not be an impossible value. We can be certain to need at most 2000001 steps.
How good is this upper bound? If we had 100000 in each of the 20 numbers, 1 wouldn't be a possible sum. So we actually need one iteration in that case. If we want 1 to be a possible sum, we should have 1 in the initial elements. Then we need a 2 (Else we would only need 2 iterations), then a 4 (3 can be found by adding 1+2), then 8 (Numbers from 5 to 7 can be found by adding some of the first 3 powers of two), then 16, 32, .... It turns out that with the powers of 2, we can easily make inputs that require many iterations. With the first 17 powers of two, we can cover up to the first 262143 integer numbers. That should be a good estimation for the largest number. (We cannot use 2^18 in the input, smaller than 100000).
Up to 262143 times, we need to query if a number x is in the set of possible sums. We can just use a boolean array here. It appears that even O(log(n)) data structures should be fast enough, however.
I did understand the first paragraph. But after that they have explained something about "How good is this upper bound?...". I couldnt understand that paragraph. How did they deduce to the fact that we need to query 262143 times if a number x is in the set of possible sums?
I am a newbie at dynamic programming and so it would be great if somebody could explain this to me.
Thank you.
The idea is as follows:
If the input sequence contains the first k powers of two: 2^0, 2^1, ... 2^(k-1), then the sum can be any integer between 0 and (2^k) - 1. Since the greatest power of two that can appear in the sequence is 2^17, the greatest sum that you can build from 18 numbers is 2^18 - 1=262,143. If a power of two would be missing, there would be a smaller sum that was not possible to achieve.
However, the statement is missing that there may be 2 more numbers in the sequence (at most 20). From these two numbers, you can repeat the same process. Hence, the maximum number to check is actually (2^18) - 1 + (2^2) - 1.
You may wonder why we use powers of two and not any other powers. The reason is the binary selection that we perform on the numbers in the input sequence. Either we add a number to the sum or we don't. So, if we represent this selection for number ni as a selection variable si (either 0 or 1), then the possible sum is:
s = s0 * n0 + s1 * n1 + s2 * n2 + ...
Now, if we choose the ni to be powers of two ni = 2^i, then:
s = s0 * 2^0 + s1 * 2^1 + s2 * 2^2 + ...
= sum si * 2^i
This is equivalent to the binary representations of numbers (see Positional Notation). By definition, different choices for the selection variables will produce different sums. Hence, the number of possible sums is maximal by choosing powers of two in the input sequence.
I need to prepare an algorithm, which will display n-th digit (counting from right) of the biggest number divisible by B-1 where B is the base of specified number system. The number can only consist of digits provided in the input.
So for example: The base of number system is 3, the provided digits are [0, 1, 2] and I'm looking for 2nd digit. So that I need to find 2nd digit of the biggest number consisted of 0, 1, 2 divisible by 2. In this case the result will be 2, because the biggest number was 203.
I've tried to find this algorithm in many ways, but I cannot find any connection between input and output values.
You're asking about algorithm so basically I 'd do:
Generate biggest number from digits (it means sort them in desc order)
check if it is divisible by B-1
If yes sucess just return n-th digit if no go to step 1. but generate next number (by swaping different digits)
Second approach. Not efficient in most cases.
Generate all possible numbers
Sort in desc order
Get first divisible by B - 1 and return n-th digit
From the book Programming Pearls 2nd Edition, quoting the question A from Column 2, section 2.1
Given a sequential file that contains at most four billion integers in
random order, find a 32-bit integer that isn't in the file (and there
must be at least one missing - why ?). How would you solve this
problem with ample quantities of main memory ? How would you solve it
if you could use several external "scratch" files but only a few
hundred bytes of main memory ?
The problem statement says "at most" four billion integers. So one valid input could be in the range 100 - 299 with one missing number. If this understanding of the problem statement is correct then the required inputs for this problem are the file containing the numbers and also the range of the numbers in the file, ie: i to n.
For this problem isn't the following O(n) solution more intuitive than the one given in the book (from Ed Reingold) ? Or am I missing something ?
Assume the given range is i...n
using the forumla (n * (n + 1) / 2)
x = the sum of numbers from 1 to i-1
y = the sum of numbers from 1 to n
walk through the input and get a sum of the numbers (value z)
missing number = (y - x - z)
You are missing something:
The numbers don't said to be unique, the summation approach
assumes unique elements and only one missing in the range
You don't know the range of the numbers, in 32 bit integer can have
much more then 4B elements (to be exact, there are 294967296 more numbers that can be represented by 32 bits then 4B)
Look at the simplified counter example with range = [1,5], array = [5,5,5,4,1].
In this case, you will get x=1, y = 15, z = 20.
However, 20-15-1 = 4, and it is not missing.
You can use radix sort, which runs in O(n) in this case (because 32 bits is constant), and then scan the sorted array to find the first missing element.
EDIT: A more efficient way to do it is yet with a variation of radix sort and selection algorithm:
Let your current number of bits be k. Look at the first bit, and partition the array into two parts, the first with this bit unset, and the second with this bit set.
In at least one of the parts - there must be less then (2^k) / 2 = 2^(k-1) elements.
Reduce the problem to this sub array only and use k' = k-1 (reduce the current number of bits) and return to 1.
Keep doing it until you exhausted your bits, and you will get a number that is not in the original list.
Note that assuming the list is random enough, the complexity of the algorithm is O(n) - for any number of bits (and not O(n*k))
E.g.: Array: 4,3,0,1,5 {Assume all digits are >=0. Also each element in array correspond to a digit. i.e. each element on the array is between 0 and 9. }
In the above array, the largest number is: 5430 {using digits 5, 4, 3 and 0 from the array}
My Approach:
For divisibility by 3, we need the sum of digits to be divisible by 3.
So,
Step-1: Remove all the zeroes from the array.
Step-2: These zeroes will come at the end. {Since they dont affect the sum and we have to find the largest number}
Step-3: Find the subset of the elements of array (excluding zeroes) such that the number of digits is MAXIMUM and also that the sum of digits is MAXIMUM and the sum is divisible by 3.
STEP-4: The required digit consists of the digits in the above found set in decreasing order.
So, the main step is STEP-3 i.e. How to find the subset such that it contains MAXIMUM possible number of elements such that their sum is MAX and is divisible by 3 .
I was thinking, maybe Step-3 could be done by GREEDY CHOICE of taking all the elements and keep on removing the smallest element in the set till the sum is divisible by 3.
But i am not convinced that this GREEDY choice will work.
Please tell if my approach is correct.
If it is, then please suggest as to how to do Step-3 ?
Also, please suggest any other possible/efficient algorithm.
Observation: If you can get a number that is divisible by 3, you need to remove at most 2 numbers, to maintain optimal solution.
A simple O(n^2) solution will be to check all possibilities to remove 1 number, and if none is valid, check all pairs (There are O(n^2) of those).
EDIT:
O(n) solution: Create 3 buckets - bucket1, bucket2, bucket0. Each will denote the modulus 3 value of the numbers. Ignore bucket0 in the next algorithm.
Let the sum of the array be sum.
If sum % 3 ==0: we are done.
else if sum % 3 == 1:
if there is a number in bucket1 - chose the minimal
else: take 2 minimals from bucket 2
else if sum % 3 == 2
if there is a number in bucket2 - chose the minimal
else: take 2 minimals from bucket1
Note: You don't actually need the bucket, to achieve O(1) space - you need only the 2 minimal values from bucket1 and bucket2, since it is the only number we actually used from these buckets.
Example:
arr = { 3, 4, 0, 1, 5 }
bucket0 = {3,0} ; bucket1 = {4,1} bucket2 = { 5 }
sum = 13 ; sum %3 = 1
bucket1 is not empty - chose minimal from it (1), and remove it from the array.
result array = { 3, 4, 0, 5 }
proceed to STEP 4 "as planned"
Greedy choice definitely doesn't work: consider the set {5, 2, 1}. You'd remove the 1 first, but you should remove the 2.
I think you should work out the sum of the array modulo 3, which is either 0 (you're finished), or 1, or 2. Then you're looking to remove the minimal subset whose sum modulo 3 is 1 or 2.
I think that's fairly straightforward, so no real need for dynamic programming. Do it by removing one number with that modulus if possible, otherwise do it by removing two numbers with the other modulus. Once you know how many to remove, choose the smallest possible. You'll never need to remove three numbers.
You don't need to treat 0 specially, although if you're going to do that then you can further reduce the set under consideration in step 3 if you temporarily remove all 0, 3, 6, 9 from it.
Putting it all together, I would probably:
Sort the digits, descending.
Calculate the modulus. If 0, we're finished.
Try to remove a digit with that modulus, starting from the end. If successful, we're finished.
Remove two digits with negative-that-modulus, starting from the end. This always succeeds, so we're finished.
We might be left with an empty array (e.g. if the input is 1, 1), in which case the problem was impossible. Otherwise, the array contains the digits of our result.
Time complexity is O(n) provided that you do a counting sort in step 1. Which you certainly can since the values are digits.
What do you think about this:
first sort an array elements by value
sum up all numbers
- if sum's remainder after division by 3 is equal to 0, just return the sorted
array
- otherwise
- if sum of remainders after division by 3 of all the numbers is smaller
than the remainder of their sum, there is no solution
- otherwise
- if it's equal to 1, try to return the smallest number with remainder
equal to 1, or if no such, try two smallest with remainder equal to 2,
if no such two (I suppose it can happen), there's no solution
- if it's equal to 2, try to return the smallest number with remainder
equal to 2, or if no such, try two smallest with remainder equal to 1,
if no such two, there's no solution
first sort an array elements by remainder of division by 3 ascending
then each subset of equal remainder sort by value descending
First, this problem reduces to maximizing the number of elements selected such that their sum is divisible by 3.
Trivial: Select all numbers divisible by 3 (0,3,6,9).
Le a be the elements that leave 1 as remainder, b be the elements that leave 2 as remainder. If (|a|-|b|)%3 is 0, then select all elements from both a and b. If (|a|-|b|)%3 is 1, select all elements from b, and |a|-1 highest numbers from a. If the remainder is 2, then select all numbers from a, and |b|-1 highest numbers from b.
Once you have all the numbers, sort them in reverse order and concatenate. that is your answer.
Ultimately if n is the number of elements this algorithm returns a number that is al least n-1 digits long (except corner cases. see below).
NOTE: Take care of corner cases(i.e. what is |a|=0 or |b|=0 etc). (-1)%3 = 2 and (-2)%3 = 1 .
If m is the size of alphabet, and n is the number of elements, this my algorithm is O(m+n)
Sorting the data is unnecessary, since there are only ten different values.
Just count the number of zeroes, ones, twos etc. in O (n) if n digits are given.
Calculate the sum of all digits, check whether the remainder modulo 3 is 0, 1 or 2.
If the remainder is 1: Remove the first of the following which is possible (one of these is guaranteed to be possible): 1, 4, 7, 2+2, 2+5, 5+5, 2+8, 5+8, 8+8.
If the remainder is 2: Remove the first of the following which is possible (one of these is guaranteed to be possible): 2, 5, 8, 1+1, 1+4, 4+4, 1+7, 4+7, 7+7.
If there are no digits left then the problem cannot be solved. Otherwise, the solution is created by concatenating 9's, 8's, 7's, and so on as many as are remaining.
(Sorting n digits would take O (n log n). Unless of course you sort by counting how often each digit occurs and generating the sorted result according to these numbers).
Amit's answer has a tiny thing missing.
If bucket1 is not empty but it has a humongous value, lets say 79 and 97 and b2 is not empty as well and its 2 minimals are, say 2 and 5. Then in this case, when the modulus of the sum of all digits is 1, we should choose to remove 2 and 5 from bucket 2 instead of the minimal in bucket 1 to get the largest concatenated number.
Test case : 8 2 3 5 78 79
If we follow Amits and Steve's suggested method, largest number would be 878532 whereas the largest number possible divisble by 3 in this array is 879783
Solution would be to compare the appropriate bucket's smallest minimal with the concatenation of both the minimals of the other bucket and eliminate the smaller one.
We've got some nonnegative numbers. We want to find the pair with maximum gcd. actually this maximum is more important than the pair!
For example if we have:
2 4 5 15
gcd(2,4)=2
gcd(2,5)=1
gcd(2,15)=1
gcd(4,5)=1
gcd(4,15)=1
gcd(5,15)=5
The answer is 5.
You can use the Euclidean Algorithm to find the GCD of two numbers.
while (b != 0)
{
int m = a % b;
a = b;
b = m;
}
return a;
If you want an alternative to the obvious algorithm, then assuming your numbers are in a bounded range, and you have plenty of memory, you can beat O(N^2) time, N being the number of values:
Create an array of a small integer type, indexes 1 to the max input. O(1)
For each value, increment the count of every element of the index which is a factor of the number (make sure you don't wraparound). O(N).
Starting at the end of the array, scan back until you find a value >= 2. O(1)
That tells you the max gcd, but doesn't tell you which pair produced it. For your example input, the computed array looks like this:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 2 1 1 2 0 0 0 0 0 0 0 0 0 1
I don't know whether this is actually any faster for the inputs you have to handle. The constant factors involved are large: the bound on your values and the time to factorise a value within that bound.
You don't have to factorise each value - you could use memoisation and/or a pregenerated list of primes. Which gives me the idea that if you are memoising the factorisation, you don't need the array:
Create an empty set of int, and a best-so-far value 1.
For each input integer:
if it's less than or equal to best-so-far, continue.
check whether it's in the set. If so, best-so-far = max(best-so-far, this-value), continue. If not:
add it to the set
repeat for all of its factors (larger than best-so-far).
Add/lookup in a set could be O(log N), although it depends what data structure you use. Each value has O(f(k)) factors, where k is the max value and I can't remember what the function f is...
The reason that you're finished with a value as soon as you encounter it in the set is that you've found a number which is a common factor of two input values. If you keep factorising, you'll only find smaller such numbers, which are not interesting.
I'm not quite sure what the best way is to repeat for the larger factors. I think in practice you might have to strike a balance: you don't want to do them quite in decreasing order because it's awkward to generate ordered factors, but you also don't want to actually find all the factors.
Even in the realms of O(N^2), you might be able to beat the use of the Euclidean algorithm:
Fully factorise each number, storing it as a sequence of exponents of primes (so for example 2 is {1}, 4 is {2}, 5 is {0, 0, 1}, 15 is {0, 1, 1}). Then you can calculate gcd(a,b) by taking the min value at each index and multiplying them back out. No idea whether this is faster than Euclid on average, but it might be. Obviously it uses a load more memory.
The optimisations I can think of is
1) start with the two biggest numbers since they are likely to have most prime factors and thus likely to have the most shared prime factors (and thus the highest GCD).
2) When calculating the GCDs of other pairs you can stop your Euclidean algorithm loop if you get below your current greatest GCD.
Off the top of my head I can't think of a way that you can work out the greatest GCD of a pair without trying to work out each pair individually (and optimise a bit as above).
Disclaimer: I've never looked at this problem before and the above is off the top of my head. There may be better ways and I may be wrong. I'm happy to discuss my thoughts in more length if anybody wants. :)
There is no O(n log n) solution to this problem in general. In fact, the worst case is O(n^2) in the number of items in the list. Consider the following set of numbers:
2^20 3^13 5^9 7^2*11^4 7^4*11^3
Only the GCD of the last two is greater than 1, but the only way to know that from looking at the GCDs is to try out every pair and notice that one of them is greater than 1.
So you're stuck with the boring brute-force try-every-pair approach, perhaps with a couple of clever optimizations to avoid doing needless work when you've already found a large GCD (while making sure that you don't miss anything).
With some constraints, e.g the numbers in the array are within a given range, say 1-1e7, it is doable in O(NlogN) / O(MAX * logMAX), where MAX is the maximum possible value in A.
Inspired from the sieve algorithm, and came across it in a Hackerrank Challenge -- there it is done for two arrays. Check their editorial.
find min(A) and max(A) - O(N)
create a binary mask, to mark which elements of A appear in the given range, for O(1) lookup; O(N) to build; O(MAX_RANGE) storage.
for every number a in the range (min(A), max(A)):
for aa = a; aa < max(A); aa += a:
if aa in A, increment a counter for aa, and compare it to current max_gcd, if counter >= 2 (i.e, you have two numbers divisible by aa);
store top two candidates for each GCD candidate.
could also ignore elements which are less than current max_gcd;
Previous answer:
Still O(N^2) -- sort the array; should eliminate some of the unnecessary comparisons;
max_gcd = 1
# assuming you want pairs of distinct elements.
sort(a) # assume in place
for ii = n - 1: -1 : 0 do
if a[ii] <= max_gcd
break
for jj = ii - 1 : -1 :0 do
if a[jj] <= max_gcd
break
current_gcd = GCD(a[ii], a[jj])
if current_gcd > max_gcd:
max_gcd = current_gcd
This should save some unnecessary computation.
There is a solution that would take O(n):
Let our numbers be a_i. First, calculate m=a_0*a_1*a_2*.... For each number a_i, calculate gcd(m/a_i, a_i). The number you are looking for is the maximum of these values.
I haven't proved that this is always true, but in your example, it works:
m=2*4*5*15=600,
max(gcd(m/2,2), gcd(m/4,4), gcd(m/5,5), gcd(m/15,15))=max(2, 2, 5, 5)=5
NOTE: This is not correct. If the number a_i has a factor p_j repeated twice, and if two other numbers also contain this factor, p_j, then you get the incorrect result p_j^2 insted of p_j. For example, for the set 3, 5, 15, 25, you get 25 as the answer instead of 5.
However, you can still use this to quickly filter out numbers. For example, in the above case, once you determine the 25, you can first do the exhaustive search for a_3=25 with gcd(a_3, a_i) to find the real maximum, 5, then filter out gcd(m/a_i, a_i), i!=3 which are less than or equal to 5 (in the example above, this filters out all others).
Added for clarification and justification:
To see why this should work, note that gcd(a_i, a_j) divides gcd(m/a_i, a_i) for all j!=i.
Let's call gcd(m/a_i, a_i) as g_i, and max(gcd(a_i, a_j),j=1..n, j!=i) as r_i. What I say above is g_i=x_i*r_i, and x_i is an integer. It is obvious that r_i <= g_i, so in n gcd operations, we get an upper bound for r_i for all i.
The above claim is not very obvious. Let's examine it a bit deeper to see why it is true: the gcd of a_i and a_j is the product of all prime factors that appear in both a_i and a_j (by definition). Now, multiply a_j with another number, b. The gcd of a_i and b*a_j is either equal to gcd(a_i, a_j), or is a multiple of it, because b*a_j contains all prime factors of a_j, and some more prime factors contributed by b, which may also be included in the factorization of a_i. In fact, gcd(a_i, b*a_j)=gcd(a_i/gcd(a_i, a_j), b)*gcd(a_i, a_j), I think. But I can't see a way to make use of this. :)
Anyhow, in our construction, m/a_i is simply a shortcut to calculate the product of all a_j, where j=1..1, j!=i. As a result, gcd(m/a_i, a_i) contains all gcd(a_i, a_j) as a factor. So, obviously, the maximum of these individual gcd results will divide g_i.
Now, the largest g_i is of particular interest to us: it is either the maximum gcd itself (if x_i is 1), or a good candidate for being one. To do that, we do another n-1 gcd operations, and calculate r_i explicitly. Then, we drop all g_j less than or equal to r_i as candidates. If we don't have any other candidate left, we are done. If not, we pick up the next largest g_k, and calculate r_k. If r_k <= r_i, we drop g_k, and repeat with another g_k'. If r_k > r_i, we filter out remaining g_j <= r_k, and repeat.
I think it is possible to construct a number set that will make this algorithm run in O(n^2) (if we fail to filter out anything), but on random number sets, I think it will quickly get rid of large chunks of candidates.
pseudocode
function getGcdMax(array[])
arrayUB=upperbound(array)
if (arrayUB<1)
error
pointerA=0
pointerB=1
gcdMax=0
do
gcdMax=MAX(gcdMax,gcd(array[pointera],array[pointerb]))
pointerB++
if (pointerB>arrayUB)
pointerA++
pointerB=pointerA+1
until (pointerB>arrayUB)
return gcdMax