Does anyone know how to verify the signature part of a decrypted LTPA token?
I have the keys exported from my WPE8 server, and properly decoded the LTPA token so I see the user data, expiration and signature.
Unfortunately the LTPA token format is an IBM standard. As you probably have noticed there are a few examples on how to decrypt the token (but none of the ones I've seen include verifying the signature) but even that is not very safe as it is an IBM standard and they have not yet published any public APIs to use the LTPA at all.
I did a lot of work trying to achieve SSO between the WP server we had and other non-WebSphere servers and we found that the easiest was to create our own token in Login Filters.
Related
please take this doubt away.
I have a Spring Boot application with spring security using JWT.
One question I always had is: How does Spring store the generated tokens?
Looking at the manager of my tomcat, I saw that this application has some open sessions, but it works exclusively with JWT. There is no point in it where I request to open a session.
So can I assume that Spring creates sessions to store the generated tokens?
you authenticate and then get issued a token from an issuer.
When this token is presented to a spring server, the resource server needs to do multiple validations before it will let you use the api.
A JWT is not encrypted, it is encoded, which means, everyone can see and read its contents. But it is also signed, so that you can not tamper with its contents without breaking the signage.
So the first thing a server does is to verify the signature to be sure it hasn't been temepered with. This can be done in multiple ways, one is to take the token and send it to the issuer and basically ask "hello is this token valid?" and the issuer says "YAY" or "NEY".
This generates a lot of extra network traffic if it needs to send jwts back and fourth for validation.
Since the signage of tokens are done with asymmetric encryption, the resource server can periodically (for instance each 30 mins) ask the issuer for the public key so it can verify the tokens itself without constantly needing to ask if they are valid or not.
This key is usually sent in a format called JWK (Json web key) and this key is then used to validate the integrity. If this validation passes it can trust the jwts content, and start checking the validation date, the scopes, and any extra claims in it etc.
And then if the token is valid has not expired, you can for instance choose to construct a UserDetails object from the data in the jwt.
As mentioned in the comments. If using JWTs you have no need for a session.
you should disable session creation.
You can read a lot more about sessions in this article here Spring Security Session
And here you can read about spring security Session Managment
As JWT tokens are sent over the headers to authenticate uses, a user can just inspect the web call in chrome dev tools and copy paste the token and use it to access the exposed API.
For example, if I am using this token to create a record, a malicious user can use the same token (by using the above mentioned way) to create a new record in Database.
How can I stop this from happening? Is using Token Encryption with public key of server the way to stop this?
Token represents user identity. It is normal, that user can view his own token.
Token is validated on the server. Normally there is is no easy way to fake a token. Use cannot generate a new token on his own.
Communication between browser and server should be done via TLS. Then no third party will be able to see the token.
If your user gives access to his browser to somebody else, then yes, the other person can potentially access the token and used it later on on another computer, it this token is not expired yet. But this is not specific to the token, this is like giving access to your password to smb else.
Several steps can be taken as given below:
You should use https connection instead of http connection. This will encrypt your message which is sent to server or received from server. So if a man in the middle catches your packet, he can't do anything because message is encrypted.
Also add a short time validity for jwt token depending your app behavior.
Add an appropriate key size for your self-signed token validation. AES keys shorter than 128 bits, or RSA keys shorter than 1024 bits for legacy apps.2048 bits encryption now a days popular.
HSM (Hardware Security Module) can be introduce for signing and encryption task while key are not accessible from OS or software level.
You should be digging deep for more here[cheat sheet for jwt token OWASP].
If I use https for my website, is JWT still relevant ?
I mean, why a "simple" key : data (for instance) in the http header would not be enough ? (Ok, it is a little bit harsh, but...)
Because anyone could create fake tokens
Https encrypts the channel, but it does not authenticate the client side except if you are using client certificates
JWT is mainly used for authentication. It includes a signature to ensure that is has been issued by the server and it has not been altered. If you omit the signature, an attacker could easily call your API with a fake user Id, roles or anydata that the server expects in the http header
I have a Web API and AngularJS client. The API is using default authorization provider given by visual studio to generate the token on token request with grant_type 'password'.
The AngularJS client is able to get the bearer token from Web API by calling the token endpoint with credentials and later passes this token to perform authorized requests in the API.
When AngularJS sends the token on any authorized API call, how is Web API able to validate the token? Where does the token get stored?
I checked in Identity tables in SQL server, I could not find any fields to store this token information. I checked in the configuration file, it is not stored there either. Could you please help me in understanding this concept?
Raj,
By default the token is not stored by the server. Only your client has it and is sending it through the authorization header to the server.
If you used the default template provided by Visual Studio, in the Startup ConfigureAuth method the following IAppBuilder extension is called: app.UseOAuthBearerTokens(OAuthOptions).
This extension coming from the Microsoft.AspNet.Identity.Owin package makes it easy for you to generate and consume tokens, but it is confusing as it is an all in one.
Behind the scene it's using two Owin middlewares:
OAuthAuthorizationServerMiddleware: authorize and deliver tokens
OAuthBearerAuthenticationMiddleware: occurs at the PipelineStage.Authenticate, read the authorization header, check if the token is valid and authenticate the user.
To answer you questions WebAPI is able to validate the token thanks to the OAuthBearerAuthenticationMiddleware, it will ensure that the token sent through the authorization header is valid and not expired. And the token is stored only by your client, if the client loose it, it will have to request a new one.
I advise you to get deeper in the OAuth protocol, and instead of using the extension UseOAuthBearerTokens, take a look at UseOAuthAuthorizationServer and UseOAuthBearerAuthentication, it will help you to better understand how it works.
The generated token will most likely be a JWT (Get Started with JSON Web Tokens), which means it's a self-contained token that is signed with a secret/key that only the server or other trusted parties know.
JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and self-contained way for securely transmitting information between parties as a JSON object. This information can be verified and trusted because it is digitally signed.
(emphasis is mine)
This means that when receiving the token the server can ensure that:
the token was originally issued by a trusted party by checking that the signature is valid.
the token is associated with a user that has permissions to perform the following request because the token itself contains information that uniquely identifier that user.
This type of approach has the side-benefit that the server does not need to keep track or store the generated tokens in order to validate them at a later time. Since no one else has the secret/key you can't modify the token without making the signature component invalid, which would then mean a faked token would end up being rejected by the server.
This is a simplified description of what happens, there are much more details around how to issue and validate tokens correctly. You should read the OAuth2 and OpenID Connect specification to learn more on the subject of token-based authentication.
Also note that I assumed a JWT token because it's the format that currently has the most widespread adoption to accomplish scenarios like these ones and it's also the token format to use in conjunction with OAuth2 and OpenID Connect. However, it's still possible to achieve the same with other token formats.
I am implementing an app that connects to an OAuth2 server and it gets back a Json Web Token (JWT). I am passing the token along and I want to independently validate that the token came from the issuing source.
I can do this, no problem, with the public key from the issuing source. I have it available to me for now. Everything works.
But what if the OAuth server changes the signing key? How does the validating app get the new key? Is there a "best practices" convention for sharing the public key from an OAuth2 server? Do we just expose it from an endpoint on the auth server?
There's no solution that is standardized as part of the OAuth 2.0 protocol suite (today).
It was considered to be a single-domain problem that would be solved in various ways that were considered to be out of scope for the core OAuth specifications (much like the API between Resource Server and Authorization Server is/was), and much like any PKI based mechanism in general works today.
But OpenID Connect is a cross-domain SSO protocol that was built on top of OAuth 2.0, which also defined a more standardized option of dealing with key distribution in the form of JWKs URIs as part of the Discover, see the jwks_uri entry at:
REQUIRED. URL of the OP's JSON Web Key Set [JWK] document. This
contains the signing key(s) the RP uses to validate signatures from
the OP. The JWK Set MAY also contain the Server's encryption key(s),
which are used by RPs to encrypt requests to the Server. When both
signing and encryption keys are made available, a use (Key Use)
parameter value is REQUIRED for all keys in the referenced JWK Set to
indicate each key's intended usage. Although some algorithms allow the
same key to be used for both signatures and encryption, doing so is
NOT RECOMMENDED, as it is less secure. The JWK x5c parameter MAY be
used to provide X.509 representations of keys provided. When used, the
bare key values MUST still be present and MUST match those in the
certificate.
This would expose the key material over HTTPs protected channel, effectively leveraging the SSL CA for publishing and rollover of JWT signing key material.
At some point the jwks_uri definition may be part of the standardized OAuth 2.0 protocol extensions as well, but for now you'd have to rely on a custom agreement between Client and Authorization Server to do so. That may not be too hard to implement yourself though.
You may get lucky if your Authorization Server happens to be an OpenID Connect provider as well and uses the same key material for signing ID tokens as well as JWT access tokens.
Updated 4/22/2019: the Authorization Server metadata document is now also standardized it its own OAuth 2.0 extension OAuth 2.0 Authorization Server Metadata RFC8414