Choice of pivot in Quick Sort Algorithm - algorithm

I am learning Quick Sort. I know that Quick Sort performs badly when the pivot value does an unbalanced partition , and so first element or last element is not a good choice because if the list is almost sorted the partition would be unbalanced.
As i searched i found 2 options:
One was to choose a pivot randomly between low(lowest index) and up(highest index).It seems a safe option but random number generators are time consuming.
Second would be to take the median of all the elements. This option is costly so the median of first,last and middle element can be used as the pivot element.
Which method proves out to be the most efficient for Quick Sort?.. Is there any other method available for making the choice of pivot element?

Yes, if you're worried about the array being sorted or nearly sorted, you can apply successively more effort to choosing a good pivot, as you suggest, but at the cost of slowing the algorithm down if your data is unsorted. Skienna, in The Algorithm Design Manual, has a good discussion of pivot selection and he suggests you could go as far as to randomize the array before applying quicksort, but my guess is another sorting algorithm would perform better if you're that worried.
Which method proves out to be the most efficient for Quick Sort?
The key point here is to perform performance measurements on your data.

There is no single “most efficient” choice for quicksort. Either you slow down your sort for some (many?) cases by spending extra time selecting each pivot, or you have pathological (O(N2)) behavior for some inputs. Spending more time selecting the pivot slows down sorting for some inputs while speeding up other cases. It's always a trade-off. You choose a trade-off that improves your speed for the kind of inputs you expect.
In the real world, we can prevent the pathological cases fairly cheaply using introsort. One characteristic of a pathological case is deep recursion, so introsort detects deep recursion and switches to a different (but guaranteed O(N log N)) algorithm.

If you are really worried about worse case scenario, randomize the subarray in each recursive call and this should protect you against the worst case.

Related

What are the disadvantages of Dual-Pivot Quicksort?

I know that it has fewer swaps and is faster than the classic Quicksort but I can't seem to see any disadvantages of this algorithm.
Dual-pivot quicksort is more complicated than the original. The extra pivot requires the two pivots to be compared and swapped if needed. There is an extra index into the array, an extra case for moving an element, and an extra swap at the end.
In general more the number of pivots, better is the performance and again the choice of the pivot matters a lot for any quick sort algorithm. Refer: study
Badly chosen pivots for dual-pivot will perform worse than a normal quick sort with good pivot. The choice of pivot is highly dependent on the data set. Again, for complex data sets choosing more pivots properly can become hard.

what is the best algorithm of sorting in speed

There's bubble, insert, selection, quick sorting algorithm.
Which one is the 'fastest' algorithm?
code size is not important.
Bubble sort
insertion sort
quick sort
I tried to check speed. when data is already sorted, bubble, insertion's Big-O is n but the algorithm is too slow on large lists.
Is it good to use only one algorithm?
Or faster to use a different mix?
Quicksort is generally very good, only really falling down when the data is close to being ordered already, or when the data has a lot of similarity (lots of key repeats), in which case it is slower.
If you don't know anything about your data and you don't mind risking the slow case of quick sort (if you think about it you can probably make a determination for your case if it's ever likely you'll get this (from already ordered data)) then quicksort is never going to be a BAD choice.
If you decide your data is or will sometimes (or often enough to be a problem) be sorted (or significantly partially sorted) already, or one way and another you decide you can't risk the worst case of quicksort, then consider timsort.
As noted by the comments on your question though, if it's really important to have the ultimate performance, you should consider implementing several algorithms and trying them on good representative sample data.
HP / Microsoft std::sort is introsort (quick sort switching to heap sort if nesting reaches some limit), and std::stable_sort is a variation of bottom up mergesort.
For sorting an array or vector of mostly random integers, counting / radix sort would normally be fastest.
Most external sorts are some variation of a k-way bottom up merge sort (the initial internal sort phase could use any of the algorithms mentioned above).
For sorting a small (16 or less) fixed number of elements, a sorting network could be used. This seems to be one of the lesser known algorithms. It would mostly be useful if having to repeatedly sort small sets of elements, perhaps implemented in hardware.

Insertion sort better than Bubble sort?

I am doing my revision for the exam.
Would like to know under what condition will Insertion sort performs better than bubble sort given same average case complexity of O(N^2).
I did found some related articles, but I can't understand them.
Would anyone mind explaining it in a simple way?
The advantage of bubblesort is in the speed of detecting an already sorted list:
BubbleSort Best Case Scenario: O(n)
However, even in this case insertion sort got better/same performance.
Bubblesort is, more or less, only good for understanding and/or teaching the mechanism of sortalgorithm, but wont find a proper usage in programming these days, because its complexity
O(n²)
means that its efficiency decreases dramatically on lists of more than a small number of elements.
Following things came to my mind:
Bubble sort always takes one more pass over array to determine if it's sorted. On the other hand, insertion sort not need this -- once last element inserted, algorithm guarantees that array is sorted.
Bubble sort does n comparisons on every pass. Insertion sort does less than n comparisons: once the algorithm finds the position where to insert current element it stops making comparisons and takes next element.
Finally, quote from wikipedia article:
Bubble sort also interacts poorly with modern CPU hardware. It
requires at least twice as many writes as insertion sort, twice as
many cache misses, and asymptotically more branch mispredictions.
Experiments by Astrachan sorting strings in Java show bubble sort to
be roughly 5 times slower than insertion sort and 40% slower than
selection sort
You can find link to original research paper there.
I guess the answer you're looking for is here:
Bubble sort may also be efficiently used on a list that is already
sorted except for a very small number of elements. For example, if
only one element is not in order, bubble sort will take only 2n time.
If two elements are not in order, bubble sort will take only at most
3n time...
and
Insertion sort is a simple sorting algorithm that is relatively
efficient for small lists and mostly sorted lists, and often is used
as part of more sophisticated algorithms
Could you provide links to the related articles you don't understand? I'm not sure what aspects they might be addressing. Other than that, there is a theoretical difference which might be that bubble sort is more suited for collections represented as arrays (than it is for those represented as linked lists), while insertion sort is suited for linked lists.
The reasoning would be that bubble sort always swaps two items at a time which is trivial on both, array and linked list (more efficient on arrays), while insertion sort inserts at a place in a given list which is trivial for linked lists but involves moving all subsequent elements in an array to the right.
That being said, take it with a grain of salt. First of all, sorting arrays is, in practice, almost always faster than sorting linked lists. Simply due to the fact that scanning the list once has an enormous difference already. Apart from that, moving n elements of an array to the right, is much faster than performing n (or even n/2) swaps. This is why other answers correctly claim insertion sort to be superior in general, and why I really wonder about the articles you read, because I fail to think of a simple way of saying this is better in cases A, and that is better in cases B.
In the worst case both tend to perform at O(n^2)
In the best case scenario, i.e., when the array is already sorted, Bubble sort can perform at O(n).

Worst case for QuickSort - when can it occur?

When analyzing QS, every one always refers to the "almost sorted" worst case. When can such a scenario occur with natural input?
The only example I came up with is re-indexing.
I think people are confusing Quicksort the partition-based sorting algorithm, and "qsort" the various library implementations.
I prefer to see Quicksort the algorithm as having a pluggable pivot selection algorithm, which is quite essential in analyzing its behavior.
If the first element is always chosen as the pivot, then an already sorted list is the worst-case. Often there's a high probability that the array is already/nearly sorted, so this implementation is rather poor.
Analogously, selecting the last element as the pivot is bad for the same reason.
Some implementations tries to avoid this problem by choosing the middle element as the pivot. This would not perform as badly on already/nearly sorted arrays, but one could still construct an input that would exploit this predictable pivot selection and make it run in quadratic time.
Thus, you get randomized pivot selection algorithms, but even this doesn't guarantee O(N log N).
So other algorithms were developed that would use some information from the sequence before picking a pivot. You can of course scan the whole sequence and find the median, and use that as the pivot. This guarantees O(N log N), but of course slower in practice.
So some corners are cut, and people devised the median-of-3 algorithm. Of course, later even this was exploitable by the so-called median-of-3 "killer".
So more attempts are made at coming up with more "intelligent" pivot selection algorithms that guarantees O(N log N) asymptotic behavior that is still fast enough to be practical, with varying degree of success.
So really, unless one specifies a particular implementation of Quicksort, the question of when the worst case scenario occurs is ill-defined. If you use the so-called median-of-medians pivot selection algorithm, there is no quadratic worst-case scenario.
Most library implementations, however, are likely to forfeit O(N log N) guarantee for much faster sorting in the average case. Some of the really old implementations use the first element as the pivot, which is now well-understood as poor and is no longer a practice widely followed.
I believe that the worst case for quicksort depends on the choice of the pivot element at every step. Quicksort has its worst performance, if the pivot is likely to be either the smallest, or the largest element in the list (e.g. the first or last element of an already sorted list).
If, e.g. you choose the middle element of the list, an already sorted list does not have the worst case runtime.
So, if you suspect your scenario is likely to a bad case scenario for quicksort, you can simply change your choice of pivot element to make quicksort perform better.
Note: I know, that this did not give more example of real world occasions for quicksort worst cases. Examples of this depend on the implementation you are working with.
The actual question was: "When can such a scenario (almost sorted) occur with natural input?".
Although all the answers are dealing with "what causes worst case performance", none have covered "what causes data that meets the worst case performance scenario".
So, to answer the actual question
Programmer error: Basically you land up sorting a list twice. Typically this happens because a list is sorted one place in code. And later in another piece of code you know you need the list to be sorted, so you sort it again.
Using almost-chronological data: You have data that is generally received in chronological order, but occasionally some elements are out of position. (Consider a multi-threaded environment adding time-stamped elements to a list. Race conditions can cause elements to be added in a different order to which they were time-stamped.) In this situation, if you need sorted data, you must re-sort. Because the order of the data is not guaranteed.
Adding items to a list: If you have a sorted list and simply append some items (i.e. without using binary insertion). You would need to re-sort an almost-sorted list.
Data from an external source: If you receive data from an external source, there may be no guarantee that it's sorted. So you sort it yourself. However, if the external source is sorted, you will be re-sorting the data.
Natural ordering: This is similar to the chronoloigcal data. Basically, the natural order of the data you receive may be sorted. Consider an insurance company adding car registrations. If the authority assiging car registrations does so in a predictable order, newer cars are likely but not guaranteed to have higher registration numbers. Since you're not guaranteed it's sorted - you have to re-sort.
Interleaved data: If you receive data from multiple sorted sources with overlapping keys, you could get keys resembling the following: 1 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18. Even though half the elements are out-of-sequence with its neighbour, the list is "almost sorted". Certainly using QuickSort that pivots on the first element would exhibit O(n^2) performance.
Conclusion
So, given all the above scenarios, it's actually quite easy to land up sorting almost-sorted data. And this is exactly why QuickSort that pivots on the first element is actually best avoided. polygene has provided some interesting information on alternate pivoting considerations.
As a side-note: One of the usually worst performing sorting algorithms, actually does quite well with "almost-sorted" data. In the interleaved data above, bubble-sort requires only 9 swap operations. It's performance would actually be O(n).
From Quicksort
for quicksort, "worst case"
corresponds to already sorted
A list with all the items the same number is already sorted.
worst case in quick sort:
All elements of array are same
Array is already sorted in same order
Array is already sorted in reverse order.
Quick worst case depends on choosing pivot element . so the problem occure only when
1) Array is already sorted in same order.
2) Array is already sorted in reverse order.
3) All elements are same (special case of case 1 and 2)

Why is quicksort better than mergesort?

I was asked this question during an interview. They're both O(nlogn) and yet most people use Quicksort instead of Mergesort. Why is that?
Quicksort has O(n2) worst-case runtime and O(nlogn) average case runtime. However, it’s superior to merge sort in many scenarios because many factors influence an algorithm’s runtime, and, when taking them all together, quicksort wins out.
In particular, the often-quoted runtime of sorting algorithms refers to the number of comparisons or the number of swaps necessary to perform to sort the data. This is indeed a good measure of performance, especially since it’s independent of the underlying hardware design. However, other things – such as locality of reference (i.e. do we read lots of elements which are probably in cache?) – also play an important role on current hardware. Quicksort in particular requires little additional space and exhibits good cache locality, and this makes it faster than merge sort in many cases.
In addition, it’s very easy to avoid quicksort’s worst-case run time of O(n2) almost entirely by using an appropriate choice of the pivot – such as picking it at random (this is an excellent strategy).
In practice, many modern implementations of quicksort (in particular libstdc++’s std::sort) are actually introsort, whose theoretical worst-case is O(nlogn), same as merge sort. It achieves this by limiting the recursion depth, and switching to a different algorithm (heapsort) once it exceeds logn.
As many people have noted, the average case performance for quicksort is faster than mergesort. But this is only true if you are assuming constant time to access any piece of memory on demand.
In RAM this assumption is generally not too bad (it is not always true because of caches, but it is not too bad). However if your data structure is big enough to live on disk, then quicksort gets killed by the fact that your average disk does something like 200 random seeks per second. But that same disk has no trouble reading or writing megabytes per second of data sequentially. Which is exactly what mergesort does.
Therefore if data has to be sorted on disk, you really, really want to use some variation on mergesort. (Generally you quicksort sublists, then start merging them together above some size threshold.)
Furthermore if you have to do anything with datasets of that size, think hard about how to avoid seeks to disk. For instance this is why it is standard advice that you drop indexes before doing large data loads in databases, and then rebuild the index later. Maintaining the index during the load means constantly seeking to disk. By contrast if you drop the indexes, then the database can rebuild the index by first sorting the information to be dealt with (using a mergesort of course!) and then loading it into a BTREE datastructure for the index. (BTREEs are naturally kept in order, so you can load one from a sorted dataset with few seeks to disk.)
There have been a number of occasions where understanding how to avoid disk seeks has let me make data processing jobs take hours rather than days or weeks.
Actually, QuickSort is O(n2). Its average case running time is O(nlog(n)), but its worst-case is O(n2), which occurs when you run it on a list that contains few unique items. Randomization takes O(n). Of course, this doesn't change its worst case, it just prevents a malicious user from making your sort take a long time.
QuickSort is more popular because it:
Is in-place (MergeSort requires extra memory linear to number of elements to be sorted).
Has a small hidden constant.
"and yet most people use Quicksort instead of Mergesort. Why is that?"
One psychological reason that has not been given is simply that Quicksort is more cleverly named. ie good marketing.
Yes, Quicksort with triple partioning is probably one of the best general purpose sort algorithms, but theres no getting over the fact that "Quick" sort sounds much more powerful than "Merge" sort.
As others have noted, worst case of Quicksort is O(n^2), while mergesort and heapsort stay at O(nlogn). On the average case, however, all three are O(nlogn); so they're for the vast majority of cases comparable.
What makes Quicksort better on average is that the inner loop implies comparing several values with a single one, while on the other two both terms are different for each comparison. In other words, Quicksort does half as many reads as the other two algorithms. On modern CPUs performance is heavily dominated by access times, so in the end Quicksort ends up being a great first choice.
I'd like to add that of the three algoritms mentioned so far (mergesort, quicksort and heap sort) only mergesort is stable. That is, the order does not change for those values which have the same key. In some cases this is desirable.
But, truth be told, in practical situations most people need only good average performance and quicksort is... quick =)
All sort algorithms have their ups and downs. See Wikipedia article for sorting algorithms for a good overview.
From the Wikipedia entry on Quicksort:
Quicksort also competes with
mergesort, another recursive sort
algorithm but with the benefit of
worst-case Θ(nlogn) running time.
Mergesort is a stable sort, unlike
quicksort and heapsort, and can be
easily adapted to operate on linked
lists and very large lists stored on
slow-to-access media such as disk
storage or network attached storage.
Although quicksort can be written to
operate on linked lists, it will often
suffer from poor pivot choices without
random access. The main disadvantage
of mergesort is that, when operating
on arrays, it requires Θ(n) auxiliary
space in the best case, whereas the
variant of quicksort with in-place
partitioning and tail recursion uses
only Θ(logn) space. (Note that when
operating on linked lists, mergesort
only requires a small, constant amount
of auxiliary storage.)
Mu!
Quicksort is not better, it is well suited for a different kind of application, than mergesort.
Mergesort is worth considering if speed is of the essence, bad worst-case performance cannot be tolerated, and extra space is available.1
You stated that they «They're both O(nlogn) […]». This is wrong. «Quicksort uses about n^2/2 comparisons in the worst case.»1.
However the most important property according to my experience is the easy implementation of sequential access you can use while sorting when using programming languages with the imperative paradigm.
1 Sedgewick, Algorithms
I would like to add to the existing great answers some math about how QuickSort performs when diverging from best case and how likely that is, which I hope will help people understand a little better why the O(n^2) case is not of real concern in the more sophisticated implementations of QuickSort.
Outside of random access issues, there are two main factors that can impact the performance of QuickSort and they are both related to how the pivot compares to the data being sorted.
1) A small number of keys in the data. A dataset of all the same value will sort in n^2 time on a vanilla 2-partition QuickSort because all of the values except the pivot location are placed on one side each time. Modern implementations address this by methods such as using a 3-partition sort. These methods execute on a dataset of all the same value in O(n) time. So using such an implementation means that an input with a small number of keys actually improves performance time and is no longer a concern.
2) Extremely bad pivot selection can cause worst case performance. In an ideal case, the pivot will always be such that 50% the data is smaller and 50% the data is larger, so that the input will be broken in half during each iteration. This gives us n comparisons and swaps times log-2(n) recursions for O(n*logn) time.
How much does non-ideal pivot selection affect execution time?
Let's consider a case where the pivot is consistently chosen such that 75% of the data is on one side of the pivot. It's still O(n*logn) but now the base of the log has changed to 1/0.75 or 1.33. The relationship in performance when changing base is always a constant represented by log(2)/log(newBase). In this case, that constant is 2.4. So this quality of pivot choice takes 2.4 times longer than the ideal.
How fast does this get worse?
Not very fast until the pivot choice gets (consistently) very bad:
50% on one side: (ideal case)
75% on one side: 2.4 times as long
90% on one side: 6.6 times as long
95% on one side: 13.5 times as long
99% on one side: 69 times as long
As we approach 100% on one side the log portion of the execution approaches n and the whole execution asymptotically approaches O(n^2).
In a naive implementation of QuickSort, cases such as a sorted array (for 1st element pivot) or a reverse-sorted array (for last element pivot) will reliably produce a worst-case O(n^2) execution time. Additionally, implementations with a predictable pivot selection can be subjected to DoS attack by data that is designed to produce worst case execution. Modern implementations avoid this by a variety of methods, such as randomizing the data before sort, choosing the median of 3 randomly chosen indexes, etc. With this randomization in the mix, we have 2 cases:
Small data set. Worst case is reasonably possible but O(n^2) is not catastrophic because n is small enough that n^2 is also small.
Large data set. Worst case is possible in theory but not in practice.
How likely are we to see terrible performance?
The chances are vanishingly small. Let's consider a sort of 5,000 values:
Our hypothetical implementation will choose a pivot using a median of 3 randomly chosen indexes. We will consider pivots that are in the 25%-75% range to be "good" and pivots that are in the 0%-25% or 75%-100% range to be "bad". If you look at the probability distribution using the median of 3 random indexes, each recursion has an 11/16 chance of ending up with a good pivot. Let us make 2 conservative (and false) assumptions to simplify the math:
Good pivots are always exactly at a 25%/75% split and operate at 2.4*ideal case. We never get an ideal split or any split better than 25/75.
Bad pivots are always worst case and essentially contribute nothing to the solution.
Our QuickSort implementation will stop at n=10 and switch to an insertion sort, so we require 22 25%/75% pivot partitions to break the 5,000 value input down that far. (10*1.333333^22 > 5000) Or, we require 4990 worst case pivots. Keep in mind that if we accumulate 22 good pivots at any point then the sort will complete, so worst case or anything near it requires extremely bad luck. If it took us 88 recursions to actually achieve the 22 good pivots required to sort down to n=10, that would be 4*2.4*ideal case or about 10 times the execution time of the ideal case. How likely is it that we would not achieve the required 22 good pivots after 88 recursions?
Binomial probability distributions can answer that, and the answer is about 10^-18. (n is 88, k is 21, p is 0.6875) Your user is about a thousand times more likely to be struck by lightning in the 1 second it takes to click [SORT] than they are to see that 5,000 item sort run any worse than 10*ideal case. This chance gets smaller as the dataset gets larger. Here are some array sizes and their corresponding chances to run longer than 10*ideal:
Array of 640 items: 10^-13 (requires 15 good pivot points out of 60 tries)
Array of 5,000 items: 10^-18 (requires 22 good pivots out of 88 tries)
Array of 40,000 items:10^-23 (requires 29 good pivots out of 116)
Remember that this is with 2 conservative assumptions that are worse than reality. So actual performance is better yet, and the balance of the remaining probability is closer to ideal than not.
Finally, as others have mentioned, even these absurdly unlikely cases can be eliminated by switching to a heap sort if the recursion stack goes too deep. So the TLDR is that, for good implementations of QuickSort, the worst case does not really exist because it has been engineered out and execution completes in O(n*logn) time.
This is a common question asked in the interviews that despite of better worst case performance of merge sort, quicksort is considered better than merge sort, especially for a large input. There are certain reasons due to which quicksort is better:
1- Auxiliary Space: Quick sort is an in-place sorting algorithm. In-place sorting means no additional storage space is needed to perform sorting. Merge sort on the other hand requires a temporary array to merge the sorted arrays and hence it is not in-place.
2- Worst case: The worst case of quicksort O(n^2) can be avoided by using randomized quicksort. It can be easily avoided with high probability by choosing the right pivot. Obtaining an average case behavior by choosing right pivot element makes it improvise the performance and becoming as efficient as Merge sort.
3- Locality of reference: Quicksort in particular exhibits good cache locality and this makes it faster than merge sort in many cases like in virtual memory environment.
4- Tail recursion: QuickSort is tail recursive while Merge sort is not. A tail recursive function is a function where recursive call is the last thing executed by the function. The tail recursive functions are considered better than non tail recursive functions as tail-recursion can be optimized by compiler.
Quicksort is the fastest sorting algorithm in practice but has a number of pathological cases that can make it perform as badly as O(n2).
Heapsort is guaranteed to run in O(n*ln(n)) and requires only finite additional storage. But there are many citations of real world tests which show that heapsort is significantly slower than quicksort on average.
Quicksort is NOT better than mergesort. With O(n^2) (worst case that rarely happens), quicksort is potentially far slower than the O(nlogn) of the merge sort. Quicksort has less overhead, so with small n and slow computers, it is better. But computers are so fast today that the additional overhead of a mergesort is negligible, and the risk of a very slow quicksort far outweighs the insignificant overhead of a mergesort in most cases.
In addition, a mergesort leaves items with identical keys in their original order, a useful attribute.
Wikipedia's explanation is:
Typically, quicksort is significantly faster in practice than other Θ(nlogn) algorithms, because its inner loop can be efficiently implemented on most architectures, and in most real-world data it is possible to make design choices which minimize the probability of requiring quadratic time.
Quicksort
Mergesort
I think there are also issues with the amount of storage needed for Mergesort (which is Ω(n)) that quicksort implementations don't have. In the worst case, they are the same amount of algorithmic time, but mergesort requires more storage.
Why Quicksort is good?
QuickSort takes N^2 in worst case and NlogN average case. The worst case occurs when data is sorted.
This can be mitigated by random shuffle before sorting is started.
QuickSort doesn't takes extra memory that is taken by merge sort.
If the dataset is large and there are identical items, complexity of Quicksort reduces by using 3 way partition. More the no of identical items better the sort. If all items are identical, it sorts in linear time. [This is default implementation in most libraries]
Is Quicksort always better than Mergesort?
Not really.
Mergesort is stable but Quicksort is not. So if you need stability in output, you would use Mergesort. Stability is required in many practical applications.
Memory is cheap nowadays. So if extra memory used by Mergesort is not critical to your application, there is no harm in using Mergesort.
Note: In java, Arrays.sort() function uses Quicksort for primitive data types and Mergesort for object data types. Because objects consume memory overhead, so added a little overhead for Mergesort may not be any issue for performance point of view.
Reference: Watch the QuickSort videos of Week 3, Princeton Algorithms Course at Coursera
Unlike Merge Sort Quick Sort doesn't uses an auxilary space. Whereas Merge Sort uses an auxilary space O(n).
But Merge Sort has the worst case time complexity of O(nlogn) whereas the worst case complexity of Quick Sort is O(n^2) which happens when the array is already is sorted.
The answer would slightly tilt towards quicksort w.r.t to changes brought with DualPivotQuickSort for primitive values . It is used in JAVA 7 to sort in java.util.Arrays
It is proved that for the Dual-Pivot Quicksort the average number of
comparisons is 2*n*ln(n), the average number of swaps is 0.8*n*ln(n),
whereas classical Quicksort algorithm has 2*n*ln(n) and 1*n*ln(n)
respectively. Full mathematical proof see in attached proof.txt
and proof_add.txt files. Theoretical results are also confirmed
by experimental counting of the operations.
You can find the JAVA7 implmentation here - http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/util/Arrays.java
Further Awesome Reading on DualPivotQuickSort - http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628
In merge-sort, the general algorithm is:
Sort the left sub-array
Sort the right sub-array
Merge the 2 sorted sub-arrays
At the top level, merging the 2 sorted sub-arrays involves dealing with N elements.
One level below that, each iteration of step 3 involves dealing with N/2 elements, but you have to repeat this process twice. So you're still dealing with 2 * N/2 == N elements.
One level below that, you're merging 4 * N/4 == N elements, and so on. Every depth in the recursive stack involves merging the same number of elements, across all calls for that depth.
Consider the quick-sort algorithm instead:
Pick a pivot point
Place the pivot point at the correct place in the array, with all smaller elements to the left, and larger elements to the right
Sort the left-subarray
Sort the right-subarray
At the top level, you're dealing with an array of size N. You then pick one pivot point, put it in its correct position, and can then ignore it completely for the rest of the algorithm.
One level below that, you're dealing with 2 sub-arrays that have a combined size of N-1 (ie, subtract the earlier pivot point). You pick a pivot point for each sub-array, which comes up to 2 additional pivot points.
One level below that, you're dealing with 4 sub-arrays with combined size N-3, for the same reasons as above.
Then N-7... Then N-15... Then N-32...
The depth of your recursive stack remains approximately the same (logN). With merge-sort, you're always dealing with a N-element merge, across each level of the recursive stack. With quick-sort though, the number of elements that you're dealing with diminishes as you go down the stack. For example, if you look at the depth midway through the recursive stack, the number of elements you're dealing with is N - 2^((logN)/2)) == N - sqrt(N).
Disclaimer: On merge-sort, because you divide the array into 2 exactly equal chunks each time, the recursive depth is exactly logN. On quick-sort, because your pivot point is unlikely to be exactly in the middle of the array, the depth of your recursive stack may be slightly greater than logN. I haven't done the math to see how big a role this factor and the factor described above, actually play in the algorithm's complexity.
This is a pretty old question, but since I've dealt with both recently here are my 2c:
Merge sort needs on average ~ N log N comparisons. For already (almost) sorted sorted arrays this gets down to 1/2 N log N, since while merging we (almost) always select "left" part 1/2 N of times and then just copy right 1/2 N elements. Additionally I can speculate that already sorted input makes processor's branch predictor shine but guessing almost all branches correctly, thus preventing pipeline stalls.
Quick sort on average requires ~ 1.38 N log N comparisons. It does not benefit greatly from already sorted array in terms of comparisons (however it does in terms of swaps and probably in terms of branch predictions inside CPU).
My benchmarks on fairly modern processor shows the following:
When comparison function is a callback function (like in qsort() libc implementation) quicksort is slower than mergesort by 15% on random input and 30% for already sorted array for 64 bit integers.
On the other hand if comparison is not a callback, my experience is that quicksort outperforms mergesort by up to 25%.
However if your (large) array has a very few unique values, merge sort starts gaining over quicksort in any case.
So maybe the bottom line is: if comparison is expensive (e.g. callback function, comparing strings, comparing many parts of a structure mostly getting to a second-third-forth "if" to make difference) - the chances are that you will be better with merge sort. For simpler tasks quicksort will be faster.
That said all previously said is true:
- Quicksort can be N^2, but Sedgewick claims that a good randomized implementation has more chances of a computer performing sort to be struck by a lightning than to go N^2
- Mergesort requires extra space
Quicksort has a better average case complexity but in some applications it is the wrong choice. Quicksort is vulnerable to denial of service attacks. If an attacker can choose the input to be sorted, he can easily construct a set that takes the worst case time complexity of o(n^2).
Mergesort's average case complexity and worst case complexity are the same, and as such doesn't suffer the same problem. This property of merge-sort also makes it the superior choice for real-time systems - precisely because there aren't pathological cases that cause it to run much, much slower.
I'm a bigger fan of Mergesort than I am of Quicksort, for these reasons.
That's hard to say.The worst of MergeSort is n(log2n)-n+1,which is accurate if n equals 2^k(I have already proved this).And for any n,it's between (n lg n - n + 1) and (n lg n + n + O(lg n)).But for quickSort,its best is nlog2n(also n equals 2^k).If you divide Mergesort by quickSort,it equals one when n is infinite.So it's as if the worst case of MergeSort is better than the best case of QuickSort,why do we use quicksort?But remember,MergeSort is not in place,it require 2n memeroy space.And MergeSort also need to do many array copies,which we don't include in the analysis of algorithm.In a word,MergeSort is really faseter than quicksort in theroy,but in reality you need to consider memeory space,the cost of array copy,merger is slower than quick sort.I once made an experiment where I was given 1000000 digits in java by Random class,and it took 2610ms by mergesort,1370ms by quicksort.
Quick sort is worst case O(n^2), however, the average case consistently out performs merge sort. Each algorithm is O(nlogn), but you need to remember that when talking about Big O we leave off the lower complexity factors. Quick sort has significant improvements over merge sort when it comes to constant factors.
Merge sort also requires O(2n) memory, while quick sort can be done in place (requiring only O(n)). This is another reason that quick sort is generally preferred over merge sort.
Extra info:
The worst case of quick sort occurs when the pivot is poorly chosen. Consider the following example:
[5, 4, 3, 2, 1]
If the pivot is chosen as the smallest or largest number in the group then quick sort will run in O(n^2). The probability of choosing the element that is in the largest or smallest 25% of the list is 0.5. That gives the algorithm a 0.5 chance of being a good pivot. If we employ a typical pivot choosing algorithm (say choosing a random element), we have 0.5 chance of choosing a good pivot for every choice of a pivot. For collections of a large size the probability of always choosing a poor pivot is 0.5 * n. Based on this probability quick sort is efficient for the average (and typical) case.
When I experimented with both sorting algorithms, by counting the number of recursive calls,
quicksort consistently has less recursive calls than mergesort.
It is because quicksort has pivots, and pivots are not included in the next recursive calls. That way quicksort can reach recursive base case more quicker than mergesort.
While they're both in the same complexity class, that doesn't mean they both have the same runtime. Quicksort is usually faster than mergesort, just because it's easier to code a tight implementation and the operations it does can go faster. It's because that quicksort is generally faster that people use it instead of mergesort.
However! I personally often will use mergesort or a quicksort variant that degrades to mergesort when quicksort does poorly. Remember. Quicksort is only O(n log n) on average. It's worst case is O(n^2)! Mergesort is always O(n log n). In cases where realtime performance or responsiveness is a must and your input data could be coming from a malicious source, you should not use plain quicksort.
All things being equal, I'd expect most people to use whatever is most conveniently available, and that tends to be qsort(3). Other than that quicksort is known to be very fast on arrays, just like mergesort is the common choice for lists.
What I'm wondering is why it's so rare to see radix or bucket sort. They're O(n), at least on linked lists and all it takes is some method of converting the key to an ordinal number. (strings and floats work just fine.)
I'm thinking the reason has to do with how computer science is taught. I even had to demonstrate to my lecturer in Algorithm analysis that it was indeed possible to sort faster than O(n log(n)). (He had the proof that you can't comparison sort faster than O(n log(n)), which is true.)
In other news, floats can be sorted as integers, but you have to turn the negative numbers around afterwards.
Edit:
Actually, here's an even more vicious way to sort floats-as-integers: http://www.stereopsis.com/radix.html. Note that the bit-flipping trick can be used regardless of what sorting algorithm you actually use...
Small additions to quick vs merge sorts.
Also it can depend on kind of sorting items. If access to items, swap and comparisons is not simple operations, like comparing integers in plane memory, then merge sort can be preferable algorithm.
For example , we sort items using network protocol on remote server.
Also, in custom containers like "linked list", the are no benefit of quick sort.
1. Merge sort on linked list, don't need additional memory.
2. Access to elements in quick sort is not sequential (in memory)
Quick sort is an in-place sorting algorithm, so its better suited for arrays. Merge sort on the other hand requires extra storage of O(N), and is more suitable for linked lists.
Unlike arrays, in liked list we can insert items in the middle with O(1) space and O(1) time, therefore the merge operation in merge sort can be implemented without any extra space. However, allocating and de-allocating extra space for arrays have an adverse effect on the run time of merge sort. Merge sort also favors linked list as data is accessed sequentially, without much random memory access.
Quick sort on the other hand requires a lot of random memory access and with an array we can directly access the memory without any traversing as required by linked lists. Also quick sort when used for arrays have a good locality of reference as arrays are stored contiguously in memory.
Even though both sorting algorithms average complexity is O(NlogN), usually people for ordinary tasks uses an array for storage, and for that reason quick sort should be the algorithm of choice.
EDIT: I just found out that merge sort worst/best/avg case is always nlogn, but quick sort can vary from n2(worst case when elements are already sorted) to nlogn(avg/best case when pivot always divides the array in two halves).
Consider time and space complexity both.
For Merge sort :
Time complexity : O(nlogn) ,
Space complexity : O(nlogn)
For Quick sort :
Time complexity : O(n^2) ,
Space complexity : O(n)
Now, they both win in one scenerio each.
But, using a random pivot you can almost always reduce Time complexity of Quick sort to O(nlogn).
Thus, Quick sort is preferred in many applications instead of Merge sort.
In c/c++ land, when not using stl containers, I tend to use quicksort, because it is built
into the run time, while mergesort is not.
So I believe that in many cases, it is simply the path of least resistance.
In addition performance can be much higher with quick sort, for cases where the entire dataset does not fit into the working set.
One of the reason is more philosophical. Quicksort is Top->Down philosophy. With n elements to sort, there are n! possibilities. With 2 partitions of m & n-m which are mutually exclusive, the number of possibilities go down in several orders of magnitude. m! * (n-m)! is smaller by several orders than n! alone. imagine 5! vs 3! *2!. 5! has 10 times more possibilities than 2 partitions of 2 & 3 each . and extrapolate to 1 million factorial vs 900K!*100K! vs. So instead of worrying about establishing any order within a range or a partition,just establish order at a broader level in partitions and reduce the possibilities within a partition. Any order established earlier within a range will be disturbed later if the partitions themselves are not mutually exclusive.
Any bottom up order approach like merge sort or heap sort is like a workers or employee's approach where one starts comparing at a microscopic level early. But this order is bound to be lost as soon as an element in between them is found later on. These approaches are very stable & extremely predictable but do a certain amount of extra work.
Quick Sort is like Managerial approach where one is not initially concerned about any order , only about meeting a broad criterion with No regard for order. Then the partitions are narrowed until you get a sorted set. The real challenge in Quicksort is in finding a partition or criterion in the dark when you know nothing about the elements to sort. That is why we either need to spend some effort to find a median value or pick 1 at random or some arbitrary "Managerial" approach . To find a perfect median can take significant amount of effort and leads to a stupid bottom up approach again. So Quicksort says just a pick a random pivot and hope that it will be somewhere in the middle or do some work to find median of 3 , 5 or something more to find a better median but do not plan to be perfect & don't waste any time in initially ordering. That seems to do well if you are lucky or sometimes degrades to n^2 when you don't get a median but just take a chance. Any way data is random. right.
So I agree more with the top ->down logical approach of quicksort & it turns out that the chance it takes about pivot selection & comparisons that it saves earlier seems to work better more times than any meticulous & thorough stable bottom ->up approach like merge sort. But

Resources