Bracket evaluation - expression

Which should be evaluated first, x=1 or x=2?
In this case:
Y=(x*(x=1))/(x+(x=2))
And in this case:
Y=(6+(x-(x=1))/(4+(9-(x*(x=2))))
...for example.
I knocked together a very rough guess at an expression evaluator a while back. I plumped for simple left to right precedence in bracket evaluation (obviously still depth first for each bracket set), but the question of which bracket set ought to be evaluated first puzzles me. The deepest set first or stick with l to r precedence?

It's your choice. From this Wikipedia Article "Order of Operations":
Many programming languages use precedence levels that conform to the order
commonly used in mathematics, though some, such as APL and Smalltalk, have
no operator precedence rules (in APL evaluation is strictly right to left,
in Smalltalk it's strictly left to right).

At the end of the day it completly up to you how to implement it.
But from my experiencece most popular languages are using left to right. Very obvious example would be evaluation of logical expressions like:
if (obj != null && obj.propertyA == "a")
in case of right to left you would have had an exception

Related

Binary Tree with inequalities,AND, and power

I am trying to write an algorithm for presenting the below mathematical expression in a binary tree in order to present the post fixed and prefixed expression.
I know the precedence levels of common used operators, and i know how to deal with normal mathematical expressions, but i am not familiar with the use of inequalities like < >= , add for that the use of AND.
any help will be appreciated
Operator precedence usually goes
arithmetic > equality > logical
so the < and >= would evaluate before the AND.
Treat them like normal arithmetic operators when building the parse tree but give equality operators lower precendence than arithmetic, and logical lower than that.
for example check the java operator precendence

Conceptual issue occurred while converting infix notation to postfix notation

How can I realize/understand what is the preferential order/precedence of operators while converting infix notation to postfix notation :
" * ", " / ", " + ", " - ", " ^ ", " ) ", " ( ".
I understand that one can just look at an algorithm for this and solve this but I don't want to do that. What should be my thought process?
Operator precedence is a convention and property of a formal infix language to indicate which operations should evaluate first. A higher precedence operation means that it should operate before lower precedence operations.
Grouping parentheses are not part of the operator precedence. (Note that other kinds of parentheses such as function call parentheses may be however I am assuming you do not refer to those here) They are used to explicitly indicate the order of operations. Parentheses are only useful to indicate an order of operations in infix notation. The purpose of the operator precedence convention in a given language is to avoid using parentheses in most case. So, for example, if I want to multiply 4 by 5 and then add 7 to the result, I can write:
4*5+7
This is valid under normal arithmetic operator precedence rules because multiplication ('*') has higher precedence than addition ('+'). But if I want to add 3 and 4 and then multiply this result by 8, I need to write:
(3+4)*8
In this case I want the order of operations to be different than the normal order of "higher precedence operations first." In other words, parenthesis are only necessary when we are using infix notation and want operations to execute in an order other than precedence-order.
In standard arithmetic, exponentiation ("^") has highest precedence. Next is multiplication and division (equal precedence) and finally addition and subtraction. Therefore, an infix expression written using these operators without parenthesis will evaluate all exponentiation first, then all multiplications and divisions (in left to right order) and finally all additions and subtractions, again in left to right order.
If you want to infer the operator precedence of an unknown language, you would need to look at the places where parentheses are and are not used. Since it is valid to use parentheses everywhere even when unnecessary, this is only a heuristic. For the examples above, I can write:
((4*5)+7)
And this gives no hint about operator precedence. It is because every binary operator in this case has parentheses, and therefore at least one of the two sets is redundant assuming the precedence of addition and multiplication are not the same.
Similarly, looking at the next example:
(3+4)*8
since parentheses were used around the addition but not the multiplication, we can infer that probably in this language addition has lower precedence than multiplication. Otherwise, the parenthesis would be redundant. So look for the pattern where parentheses are and are not used to try to figure out operator precedence in unknown languages. It is more common to assume a certain precedence level based on the formal specification of the language under consideration. Most formal languages have an operator precedence chart for the infix form to avoid this ambiguity.
We never need parentheses in prefix or postfix languages because the order of terms and operators already makes the order of evaluation explicit. Therefore this issue is really an infix-language-specific problem.
If parentheses are balanced properly you can always find a parenthesis-free subexpression, which reduces the problem to that case.
Now just ask yourself, according to precedence rules, which operation in such an expression should be performed first?

Recursive procedure explanation

So I have the following working code in Prolog that produces the factorial of a given value of A:
factorial(0,1).
factorial(A,B) :- A>0, C is A-1, factorial(C,D), B is A*D.
I am looking for an explanation as to how this code works. I.e, what exactly happens when you ask the query: factorial(4, Answer).
Firstly,
factorial(0, 1).
I know the above is the "base case" of the recursive definition. What I am not sure of why/how it is the base case. My guess is that factorial(0, 1) inserts some structure containing (0, 1) as a member of "factorial". If so, what does the structure look like? I know if we say something like "rainy(seattle).", this means that Seattle is rainy. But "factorial(0, 1)"... 0, 1 is factorial? I realize it means factorial of 0 is 1, but how is this being used in the long run? (Writing this is helping me understand more as I go along, but I would like some feedback to make sure my thinking is correct.)
factorial(A,B) :- A>0, C is A-1, factorial(C,D), B is A*D.
Now, what exactly does the above code mean. How should I read it?
I am reading it as: factorial of (A, B) is true if A>0, C is A-1, factorial(C, D), B is A*D. That does not sound quite right to me... Is it?
"A > 0". So if A is equal to 0, what happens? It must not return at this point, or else the base case would never be used. So my guess is that A > 0 returns false, but the other functions are executed one last time. Did recursion stop because it reached the base case, or because A was not greater than 0? Or a combination of both? At what point is the base case used?
I guess that boils down to the question: What is the purpose of having both a base case and A > 0?
Sorry for the badly formed questions, thank you.
EDIT: In fact, I removed "A > 0" from the procedure and the code still works. So I guess my questions were not stupid at least. (And that code was taken from a tutorial.)
It is counterproductive to think of Prolog facts and rules in terms of data structures. When you write factorial(0, 1). you assert a fact to the Prolog interpreter that is assumed to be universally true. With this fact alone Prolog can answer questions of three types:
What is the factorial of 0? (i.e. factorial(0, X); the answer is X=1)
A factorial of what number is 1? (i.e. factorial(X,1); the answer is X=0)
Is it true that a factorial of 0 is 1? (i.e. factorial(0,1); the answer is "Yes")
As far as the rest of your Prolog program is concerned, only the first question is important. That is the question that the second clause of your factorial/2 rule will be asking at the end of evaluating a factorial.
The second rule uses comma operator, which is Prolog's way of saying "and". Your interpretation can be rewritten in terms of variables A and B like this:
B is a factorial of A when A>0, and C is set to A-1, and D is set to the factorial of C, and B is set to A times D
This rule covers all As above zero. The reference to factorial(C,D) will use the same rule again and again, until C arrives to zero. This is when this rule stops being applicable, so Prolog would grab the "base case" rule, and use 1 as its output. At this point, the chain of evaluating factorial(C, D) starts unwrapping, until it goes all the way to the initial invocation of the rule. This is when Prolog computes the final answer, and factorial/2 returns "Yes" and produces the desired output value.
In response to your edit, removing the A>0 is not dangerous only for getting the first result. Generally, you can ask Prolog to find you more results. This is when the factorial/2 with A>0 removed would fail spectacularly, because it would start going down the invocation chain of the second clause with negative numbers - a chain of calls that will end in numeric overflow or stack overflow, whichever comes first.
If you come from a procedural language background, the following C++ code might help. It mirrors pretty accurately the way the Prolog code executes (at least for the common case that A is given and B is uninstantiated):
bool fac(int a, int &b)
{
int c,d;
return
a==0 && (b=1,true)
||
a>0 && (c=a-1,true) && fac(c,d) && (b=a*d,true);
}
The Prolog comma operates like the sequential &&, and multiple clauses like a sequential ||.
My mental model for how prolog works is a tree traversal.
The facts and predicates in a prolog database form a forest of trees. When you ask the Prolog engine to evaluate a predicate:
?- factorial(6,N).
the Prolog engine looks for the tree rooted with the specified functor and arity (factorial/2 in this case). The Prolog engine then performs a depth-first traversal of that tree trying to find a solution using unification and pattern matching. Facts are evaluated as they are; For predicates, the right-hand side of the :- operator is evaluated, walking further into the tree, guided by the various logical operators.
Evaluation stops with the first successful evaluation of a leaf node in the tree, with the prolog engine remembering its state in the tree traversal. On backtracking, the tree traversal continues from where it left off. Execution is finally complete when the tree traversal is completed and there are no more paths to follow.
That's why Prolog is a descriptive language rather than an imperative language: you describe what constitutes truth (or falsity) and let the Prolog engine figure out how to get there.

Algorithm for testing for equivalence of two algebraic expressions

I have to write a program that tests whether two algebraic expressions are equivalent. It should follow MDAS precedence and parenthesis grouping. To solve the problem about precedence, I'm thinking I should implement a Infix to Postfix Notation converter for these expressions. But by doing this, I could not conclude their equivalence.
The program should look like this:
User Input: a*(a+b) = a*a + a*b
Output : Equivalent
For this problem I'm not allowed to use Computer Algebraic Systems or any external libraries. Please don't post the actual code if you have one, I just need an idea to work this problem out.
If you are not allowed to evaluate the expressions, you will have to parse them out into expression trees.
After that, I would get rid of all parenthesis by multiplying/dividing all members so a(b - c) becomes a*b - a*c.
Then convert all expressions back to strings, making sure you have all members alphabetically sorted (a*b, not b*a) ,remove all spaces and compare strings.
That's an idea:
You need to implement building expression tree first because it's a very natural representation of expression.
Then maybe you'll need to simplify it by open brackets and etc. using associative or distributive algebraic properties.
Then you'll have to compare trees. It's not obvious because you need to take care of all branch permutations in commutative operations and etc. E.g. you can sort them (I mean branches) and then compare for equality. Also you need to keep in mind possible renaming of parameters, i.e. a + b need to be equal x + y.

Operator priority in Prolog

I am studying on Ivan Bratko book: "Programming for artificial intelligence"
Now I am studying the operators and I have some doubts about it, on the book I can read the following thing:
So the precedence of the operators decides what is the correct interpretation of expressions. For example, the expression a + b*c can be, in principle, understood either as:
1. +(a, *(b,c))
or as:
2. *(+(a,b), c)
And now I havde the first doubt: "what it means this thing? it seems me very strage because these two expressions give different three and different result !!!
For example if I have: a=2, b=3, c=4
The result of the first one is 14 and the result of the second one is 20 so there are different: different thress means different order of operator execution that means different result !!!
So I think that (using the usual priority of arithmetic operator: execute first the multiplications and after the sums) the correct expression is the first one and the second one is wrong.
Is it correct?
Continuing to read the book I can read also:
The general rule is that operator with the highest precedence is the principal functor of the term. If expression containing + and * are to be understood according to our normal convention, then + have a higher precedence then * operator
and now I have the second doubt: as I said, in normal convention of arithmetic I execute first the multiplications and after the sums,so in my opinion is the * operator that have the precedence and not +
What I am missing about it? Why on the book say that + has higher precedence then *?
"The principal functor of the term" means the last operation to be executed, or the outermost one in prefix notation. This definition is the inverse of yours, thus the contradiction.
So the precendence of the operators decides what is the correct interpretation of expressions. For example, the expression a + b*c can be, in principle, understood either as:
+(a, *(b,c))
or as:
*(+(a,b), c)
It says that without precedence, those are 2 possible ways to interpret the expression (and different way of parsing the expression will give different result). You only know to group a + (b * c) when you know that * should be executed before +. (I avoid explaining with precedence here, since it is confusing as pointed out below).
+ and * are just symbols, and it just happens that they are used as operator with some defined precedence. Generally speaking, you can define anything to be an operator, and give it a precedence.
The general rule is that operator with the highest precedence is the principal functor of the term. If expression containing + and * are to be understood according to our normal convention, then + have a higher precedence than * operator
The definition of precedence in English is "The condition of being considered more important than someone or something else; priority in importance, order, or rank". As long as something has to happen before some other thing, we have a precedence.
In C, operator precedence is the order of binding in an expression. Higher precedence operator in C will get executed before lower precedence operators.
In Prolog, the precedence is the order of getting the functor, which is the reverse of the case of C operator's order of binding. Higher precedence operator will appear earlier when we analyze the expression with =...

Resources