Related
async void CreateScene()
{
Input.SubscribeToTouchEnd(OnTouched);
//want add image view in UrhoSharp Surface for rotatable and 3D image
var imageview = new Xamarin.Forms.Image { Source = "icon.", HeightRequest = 150, WidthRequest = 150 };
scene = new Scene();
octree = scene.CreateComponent<Octree>();
plotNode = scene.CreateChild();
var baseNode = plotNode.CreateChild().CreateChild();
var plane = baseNode.CreateComponent<StaticModel>();
plane.Model = CoreAssets.Models.Plane;
var cameraNode = scene.CreateChild();
camera = cameraNode.CreateComponent<Camera>();
cameraNode.Position = new Vector3(10, 15, 10) / 1.75f;
cameraNode.Rotation = new Quaternion(-0.121f, 0.878f, -0.305f, -0.35f);
Node lightNode = cameraNode.CreateChild();
var light = lightNode.CreateComponent<Light>();
light.LightType = LightType.Point;
light.Range = 100;
light.Brightness = 1.3f;
int size = 3;
baseNode.Scale = new Vector3(size * 1.5f, 1, size * 1.5f);
bars = new List<Bar>(size * size);
for (var i = 0f; i < size * 1.5f; i += 1.5f)
{
for (var j = 0f; j < size * 1.5f; j += 1.5f)
{
var boxNode = plotNode.CreateChild();
boxNode.Position = new Vector3(size / 2f - i, 0, size / 2f - j);
var box = new Bar(new Color(RandomHelper.NextRandom(), RandomHelper.NextRandom(), RandomHelper.NextRandom(), 0.9f));
boxNode.AddComponent(box);
box.SetValueWithAnimation((Math.Abs(i) + Math.Abs(j) + 1) / 2f);
bars.Add(box);
}
}
SelectedBar = bars.First();
SelectedBar.Select();
try
{
await plotNode.RunActionsAsync(new EaseBackOut(new RotateBy(2f, 0, 360, 0)));
}
catch (OperationCanceledException) { }
movementsEnabled = true;
}
I am beginner in Xamarin iOS platform. I want the drag ball over the circle border. Please find below image for more details. Thanks in advance :)
I just convert the Swift to C# , origin code here.
nfloat midViewX;
nfloat midViewY;
UIBezierPath circlePath2;
CAShapeLayer shapeLayer2 = new CAShapeLayer();
public override void ViewDidLoad()
{
base.ViewDidLoad();
midViewX = UIScreen.MainScreen.Bounds.Width / 2;
midViewY = UIScreen.MainScreen.Bounds.Height / 2;
var circlePath = UIBezierPath.FromArc(new CGPoint(midViewX, midViewY), 100, 0, (nfloat)(Math.PI*2), true);
var shapeLayer = new CAShapeLayer();
shapeLayer.Path = circlePath.CGPath;
shapeLayer.FillColor = UIColor.Clear.CGColor;
shapeLayer.StrokeColor = UIColor.Red.CGColor;
shapeLayer.LineWidth = 3;
View.Layer.AddSublayer(shapeLayer);
var angleEarthAfterCalculate = (nfloat)(180 * Math.PI / 180 - Math.PI / 2);
var earthX = midViewX + Math.Cos(angleEarthAfterCalculate) * 100;
var earthY = midViewY + Math.Sin(angleEarthAfterCalculate) * 100;
circlePath2 = UIBezierPath.FromArc(new CGPoint(earthX, earthY), 10, 0, (nfloat)(Math.PI * 2), true);
shapeLayer2.Path = circlePath2.CGPath;
shapeLayer2.FillColor = UIColor.Blue.CGColor;
shapeLayer2.StrokeColor = UIColor.Clear.CGColor;
shapeLayer2.LineWidth = 7;
View.Layer.AddSublayer(shapeLayer2);
var dragBall = new UIPanGestureRecognizer(DragBall);
View.AddGestureRecognizer(dragBall);
}
void DragBall(UIPanGestureRecognizer recognizer)
{
var point = recognizer.LocationInView(View);
var earthX = point.X;
var earthY = point.Y;
var midViewXDouble = midViewX;
var midViewYDouble = midViewY;
var angleX = earthX - midViewXDouble;
var angleY = earthY - midViewYDouble;
var angle = Math.Atan2(angleY, angleX);
var earthX2 = midViewXDouble + Math.Cos(angle) * 100;
var earthY2 = midViewYDouble + Math.Sin(angle) * 100;
circlePath2 = UIBezierPath.FromArc(new CGPoint(earthX2, earthY2), 10, 0, (nfloat)(Math.PI * 2), true);
shapeLayer2.Path = circlePath2.CGPath;
}
I want to practice pixel manipulation with matrix for extract an image from another.
This is what I have done with css transformation matrix :
https://www.noelshack.com/2017-18-1493893008-capture-2.png
With the Left image 'L' I have place 4 points around the image and in the right image 'R' I find the content of the transformation.
For that i use the property transform of the css but i want to do the manipulation manually.
CSS version :
matrix3d(1.5456325781948308,1.6561987730956724,0,0.0012239101773909712,-0.4663849104791486,2.218793881308064,0,0.0009095626603861196,0,0,1,0,12.247969030166722,-17.754955132517754,0,0.9951722722714726)
Matrix 'M':
[[1.5456325781948308, 1.6561987730956724, 0, 0.0012239101773909712],
[-0.4663849104791486, 2.218793881308064, 0, 0.0009095626603861196],
[0, 0, 1, 0],
[12.247969030166722, -17.754955132517754, 0, 0.9951722722714726]]
I want to know for each pixel in the image R what are their pixel related position in the image L.
For example (0,0) in R is (52,203) in R.
For that i do this calculation.
M * P = P'
P is the pixel position in R image
P' is the pixel position in L image
P matrix is define like that:
[[x],
[y],
[0],
[1]]
So for the 0,0 position, I do this :
[[1.5456325781948308, 1.6561987730956724, 0, 0.0012239101773909712],
[-0.4663849104791486, 2.218793881308064, 0, 0.0009095626603861196],
[0, 0, 1, 0],
[12.247969030166722, -17.754955132517754, 0, 0.9951722722714726]]
X
[[0],
[0],
[0],
[1]]
=
[[0.0012239101773909712],
[0.0009095626603861196],
[0],
[0.9951722722714726]]
This is the result, but the 2 first component :
(0.0012239101773909712, 0.0009095626603861196)
is too smaller than expected. can you help me to find the problem.
scincerly,
MatrixCuriosity.
These are homogeneous coordinates. So given some [x1, y1, z1, 1] as input you obtain some [x2, y2, z2, w2] but the actual position they describe is [x2/w2, y2/w2, z2/w2], i.e. you have to divide by the last coordinate.
But this doesn't lead to the result you expected. Nor does replacing the matrix with its adjunct (or equivalently inverse), nor its transpose. Both of these are conventions that are easy to get wrong, so without spending too much thought about which version you actually have and should have, trying all four alternatives (with and without adjunct, with and without transpose) solves a huge number of trivial problems.
But not yours. So my next best bet would be that the coordinates you expect are measured from some corner of the image, while the CSS property transform-origin is at it's initial value of 50% 50% 0 so the origin of the coordinate system is in fact in the center of the object.
Actually sharing the HTML and CSS for this might have allowed me to verify this assumption. Now you have to check whether this applies to you. I remember that when I last created a projective image transformation demo to answer a question about finding the transform, I deliberately set transform-origin: 0 0; (and the various vendor-prefixed versions of this) to avoid such problems.
Thanks a lot MvG.
I follow your link and I find what I want [https://math.stackexchange.com/a/339033]
Just one thing, I have to invert the C matrix to find the pixel related L<-R
I share my code for give an idea of what you have to do
You can find my implementation in the function computeMat()
<style>
body {
touch-action: none;
overflow-y: hidden;
}
#canvas_toeic
{
position:absolute;
top:0;
left:0;
}
</style>
<script type="text/javascript" src="http://cdnjs.cloudflare.com/ajax/libs/mathjs/3.12.2/math.min.js"></script>
</head>
<body>
<canvas id="canvas_toeic" width="600" height="400">
</canvas>
<script type="text/javascript">
var image = new Image();
image.src = 'image.jpg';
image.onload = function() {
var c = document.getElementById("canvas_toeic");
var ratio = image.width / image.height;
var canvasWidth = document.body.clientWidth;
var canvasHeight = canvasWidth / ratio;
if(document.body.clientHeight < canvasHeight)
{
canvasHeight = document.body.clientHeight;
canvasWidth = canvasHeight * ratio;
}
var canvasLargeur = canvasWidth;
var canvasLongueur = canvasHeight;
if(canvasLargeur < canvasHeight) {
canvasLargeur = canvasHeight;
canvasLongueur = canvasWidth;
}
var canvasPixelRatio = canvasLargeur / image.width;
c.setAttribute("width", canvasWidth);
c.setAttribute("height", canvasHeight);
var ctx = c.getContext("2d");
var idPoint = -1;
var points = [];
for(var i = 0; i < 4; i++)
points[i] = {x:0, y:0};
var marginImage = Math.round(40 * canvasPixelRatio);
points[0].x = marginImage;
points[0].y = marginImage;
points[1].x = marginImage;
points[1].y = canvasHeight - marginImage;
points[2].x = canvasWidth - marginImage;
points[2].y = canvasHeight - marginImage;
points[3].x = canvasWidth - marginImage;
points[3].y = marginImage;
function draw(points) {
console.log("draw");
// Fond
ctx.fillStyle = "#222";
ctx.fillRect(0, 0, canvasWidth, canvasHeight);
ctx.drawImage(image, marginImage, marginImage, canvasWidth - marginImage * 2, canvasHeight - marginImage * 2); // this fait référence à l'objet courant (=image)
if(idPoint == -1)
ctx.lineWidth = 3 * canvasPixelRatio;
else
ctx.lineWidth = 5 * canvasPixelRatio;
ctx.beginPath(); // Début du chemin
ctx.lineJoin = "round";
ctx.lineCap = "round";
ctx.strokeStyle = "rgba(64, 128, 255, 0.5)";
ctx.moveTo(points[0].x, points[0].y); // Le tracé part du point 50,50
for(var i = 0; i < 4; i++)
ctx.lineTo(points[i].x, points[i].y); // Un segment est ajouté vers 200,200
ctx.closePath(); // Fermeture du chemin (facultative)
ctx.stroke();
for(var i = 0; i < 4; i++)
{
var radius = 30 * canvasPixelRatio;
if(idPoint == i)
radius = 60 * canvasPixelRatio;
ctx.beginPath();
ctx.arc(points[i].x, points[i].y, radius, 0, Math.PI*2, true);
ctx.strokeStyle = "#FF8800";
ctx.fillStyle = "rgba(255, 128, 0, 0.5)";
ctx.fill();
ctx.stroke();
}
if(idPoint != -1)
{
var zoomWidth = canvasWidth / 3;
var zoomHeight = canvasHeight / 3;
var zoomMargin = 5;
var zoomAroundWidth = 50;
var zoomAroundHeight = zoomAroundWidth / ratio;
var positionMouse = points[idPoint];
var imagePositionX = (positionMouse.x - marginImage) / (canvasWidth - marginImage * 2) * image.width;
var imagePositionY = (positionMouse.y - marginImage) / (canvasHeight - marginImage * 2) * image.height;
var zoomX = 0;
var zoomY = 0;
if(imagePositionX < image.width / 2)
zoomX = canvasWidth - zoomWidth;
if(imagePositionY < image.height / 2)
zoomY = canvasHeight - zoomHeight;
ctx.fillStyle = "#F08";
ctx.fillRect(zoomX, zoomY, zoomWidth, zoomHeight);
ctx.drawImage(image, imagePositionX - zoomAroundWidth, imagePositionY - zoomAroundHeight, zoomAroundWidth * 2, zoomAroundHeight * 2, zoomX + zoomMargin, zoomY + zoomMargin, zoomWidth - zoomMargin * 2, zoomHeight - zoomMargin * 2);
ctx.lineWidth = 3 * canvasPixelRatio;
ctx.beginPath();
ctx.lineJoin = "round";
ctx.lineCap = "round";
ctx.strokeStyle = "rgba(255, 0, 0, 0.5)";
ctx.moveTo(zoomX, zoomY + zoomHeight / 2);
ctx.lineTo(zoomX + zoomWidth, zoomY + zoomHeight / 2);
ctx.moveTo(zoomX + zoomWidth / 2, zoomY);
ctx.lineTo(zoomX + zoomWidth / 2, zoomY + zoomHeight);
ctx.closePath();
ctx.stroke();
}
}
function nearPoint(points, x, y)
{
var radiusDetection = 60 * canvasPixelRatio;
var distances = [];
for(i = 0; i < 4; i++) {
var mx = x - points[i].x;
var my = y - points[i].y;
distances[i] = Math.sqrt(mx * mx + my * my);
}
minI = 0;
minD = distances[0];
for(i = 1; i < 4; i++)
{
if(minD > distances[i])
{
minD = distances[i];
minI = i;
}
}
if(minD <= radiusDetection)
return minI;
return -1;
}
function getTouchPosition(e)
{
var target = null;
var mouse = null;
if(e.changedTouches != undefined)
{
var touches = e.changedTouches;
mouse = touches[0];
target = touches[0].target;
}
else if(e.originalTarget != undefined)
{
mouse = e;
target = e.originalTarget;
}
var coordX = 0;
var coordY = 0;
if(mouse.layerX != undefined)
{
coordX = mouse.layerX;
coordY = mouse.layerY;
}
else
{
coordX = mouse.pageX;
coordY = mouse.pageY;
}
var x = coordX - target.offsetLeft;
var y = coordY - target.offsetTop;
if(x < 0) x = 0;
if(y < 0) y = 0;
if(x >= canvasWidth) x = canvasWidth - 1;
if(y >= canvasHeight) y = canvasHeight - 1;
return {'x':x, 'y':y};
}
function mouseDown(e)
{
var position = getTouchPosition(e);
idPoint = nearPoint(points, position.x, position.y);
if(idPoint == -1)
{
if(position.x < marginImage * 3 && position.y < marginImage * 3)
{
computeMat();
}
}
}
function mouseUp(e)
{
if(idPoint != -1)
{
idPoint = -1;
draw(points);
}
}
function mouseMove(e)
{
if(idPoint != -1)
{
var position = getTouchPosition(e);
points[idPoint].x = position.x;
points[idPoint].y = position.y;
draw(points);
}
}
function cancelDefault(e)
{
e.preventDefault();
}
function matStep12(pts)
{
var matP = [
[pts[0].x, pts[1].x, pts[2].x],
[pts[0].y, pts[1].y, pts[2].y],
[1, 1, 1]
];
var vecP = [[pts[3].x], [pts[3].y], [1]];
var matPi = math.inv(matP);
var vecPi = math.multiply(matPi, vecP);
var result = [
[pts[0].x * vecPi[0][0], pts[1].x * vecPi[1][0], pts[2].x * vecPi[2][0]],
[pts[0].y * vecPi[0][0], pts[1].y * vecPi[1][0], pts[2].y * vecPi[2][0]],
[vecPi[0][0], vecPi[1][0], vecPi[2][0]]
];
return result;
}
function distance(a, b)
{
var mx = b.x - a.x;
var my = b.y - a.y;
return Math.sqrt(mx * mx + my * my);
}
function computeMat()
{
var pts = getPointRelativePosition();
var widthT = distance(pts[0], pts[3]);
var widthB = distance(pts[1], pts[2]);
var heightL = distance(pts[0], pts[1]);
var heightR = distance(pts[2], pts[3]);
var maxWidth = (widthT > widthB) ? widthT : widthB;
var maxHeight = (heightL > heightR) ? heightL : heightR;
var imgWidth = Math.round(maxWidth);
var imgHeight = Math.round(maxHeight);
var matA = matStep12(pts);
var matB = matStep12([{x:0,y:0}, {x:0,y:maxHeight}, {x:maxWidth,y:maxHeight}, {x:maxWidth,y:0}]);
var matC = math.multiply(matB, math.inv(matA));
var matCi = math.inv(matC);
console.log('width:' + imgWidth + ', height:' + imgHeight);
printMat(matC);
// construct image with transformation matrice
imageData = ctx.createImageData(imgWidth, imgHeight);
var tempCanvas = document.createElement('canvas');
var tempCtx = tempCanvas.getContext('2d');
tempCanvas.width = image.width;
tempCanvas.height = image.height;
tempCtx.drawImage(image, 0, 0, image.width, image.height);
var imageDataSrc = tempCtx.getImageData(0, 0, image.width, image.height);
var mz = [matCi[0][2], matCi[1][2], matCi[2][2]];
for(var y = 0; y < imgHeight; y++)
{
var my = [matCi[0][1] * y, matCi[1][1] * y, matCi[2][1] * y];
var offsetY = y * imgWidth;
for(var x = 0; x < imgWidth; x++)
{
var mx = [matCi[0][0] * x, matCi[1][0] * x, matCi[2][0] * x];
var cx = mx[0] + my[0] + mz[0];
var cy = mx[1] + my[1] + mz[1];
var cz = mx[2] + my[2] + mz[2];
var px = Math.round(cx / cz);
var py = Math.round(cy / cz);
if(px < 0.0 || py < 0.0 || px >= image.width || py >= image.height)
{
imageData.data[pixelIndex] = 0;
imageData.data[pixelIndex + 1] = 255;
imageData.data[pixelIndex + 2] = 0;
imageData.data[pixelIndex + 3] = 255;
}
else
{
var pixelIndex = (offsetY + x) * 4;
var pixelIndexSrc = (py * image.width + px) * 4;
imageData.data[pixelIndex] = imageDataSrc.data[pixelIndexSrc];
imageData.data[pixelIndex + 1] = imageDataSrc.data[pixelIndexSrc + 1];
imageData.data[pixelIndex + 2] = imageDataSrc.data[pixelIndexSrc + 2];
imageData.data[pixelIndex + 3] = 255;
}
}
}
// here to do, image analysis
}
function getPointRelativePosition()
{
var pointOrigin = [];
for(i = 0; i < 4; i++)
{
pointOrigin[i] = {x:(points[i].x - marginImage) * image.width / (canvasWidth - marginImage * 2), y:(points[i].y - marginImage) * image.height / (canvasHeight - marginImage * 2)};
}
return pointOrigin;
}
function getPointPosition()
{
var pointOrigin = [];
for(i = 0; i < 4; i++)
{
pointOrigin[i] = {x:(points[i].x - marginImage) / (canvasWidth - marginImage * 2), y:(points[i].y - marginImage) / (canvasHeight - marginImage * 2)};
}
return pointOrigin;
}
function printPoint(pts)
{
var result = '';
for(var i = 0; i < 4; i++)
{
result += "{x:" + pts[i].x + ", y:" + pts[i].y + "},\n";
}
console.log(result);
}
function printMat(mat)
{
var result = '';
for(var i = 0; i < mat.length; i++)
{
result += "[";
for(var j = 0; j < mat[i].length; j++)
{
result += mat[i][j] + ", ";
}
result += "],\n";
}
console.log(result);
}
function canvasResize()
{
if(canvasWidth != document.body.clientWidth && canvasHeight != document.body.clientHeight)
{
var transformPoint = getPointPosition();
ratio = image.width / image.height;
canvasWidth = document.body.clientWidth;
canvasHeight = canvasWidth / ratio;
if(document.body.clientHeight < canvasHeight)
{
canvasHeight = document.body.clientHeight;
canvasWidth = canvasHeight * ratio;
}
canvasLargeur = canvasWidth;
canvasLongueur = canvasHeight;
if(canvasLargeur < canvasHeight) {
canvasLargeur = canvasHeight;
canvasLongueur = canvasWidth;
}
canvasPixelRatio = canvasLargeur / image.width;
c.setAttribute("width", canvasWidth);
c.setAttribute("height", canvasHeight);
marginImage = Math.round(40 * canvasPixelRatio);
for(i = 0; i < 4; i++)
{
points[i].x = transformPoint[i].x * (canvasWidth - marginImage * 2) + marginImage;
points[i].y = transformPoint[i].y * (canvasHeight - marginImage * 2) + marginImage;
}
draw(points);
}
}
c.addEventListener("mousedown", mouseDown, false);
c.addEventListener("mouseup", mouseUp, false);
c.addEventListener("mousemove", mouseMove, false);
c.addEventListener("touchstart", mouseDown, false);
c.addEventListener("touchend", mouseUp, false);
c.addEventListener("touchmove", mouseMove, false);
document.addEventListener("touchstart", cancelDefault, true);
document.addEventListener("touchend", cancelDefault, true);
document.addEventListener("touchmove", cancelDefault, true);
setInterval(canvasResize, 30);
draw(points);
};
</script>
For performance reasons I merged geometry. I have tens of thousands of cubes to display. I have that working with reasonable performance.
Now I have to deal with removing some. I almost have it but can't figure out how to make this work, so I cut my code up to make this complete sample.
In the onDocumentMouseDown function when a cube is clicked on I try to remove it. And it sort of does. But instead of removing one cube it removes two. (Then it basically acts worse) It removes the one I pointed at and the next one I added.
<!DOCTYPE html>
<html>
<head>
<meta charset=utf-8>
<title>Measurement</title>
<style>
body { margin: 0; }
</style>
</head>
<body>
<div id="canvas_container" style="position: absolute; left:0px; top:0px; touch-action:none;"></div>
<div id="MessageDisplay1" style="position: absolute; top: 50px; left: 50px; background-color: black; opacity: 0.8; color:white; touch-action:none;"></div>
<div id="MessageDisplay" style="position: absolute; top: 50px; left: 200px; background-color: black; opacity: 0.8; color:white; touch-action:none;"></div>
<script src="js/three.js"></script>
<script>
// player motion parameters
var motioncontrol = {
airborne: false,
bumpposition: 5.0,
bumpdegrees: 4.0,
rotationanglezx: 0,
tiltangle: 0,
distancePointZ : 10000.0,
distancePointY: 100.0,
position : new THREE.Vector3(), velocity : new THREE.Vector3(),
rotation: new THREE.Vector3(), spinning: new THREE.Vector2(),
prevposition : new THREE.Vector3(),
prevrotation : new THREE.Vector3()
};
var mouseDown = 0;
var mouse = new THREE.Vector2();
var raycaster = new THREE.Raycaster();
var INTERSECTED;
motioncontrol.position.y = 15;
motioncontrol.position.x = 0;
motioncontrol.position.z = 0;
motioncontrol.rotation.x = 0;
motioncontrol.rotation.z = motioncontrol.distancePointZ * Math.cos(0);
motioncontrol.rotation.x = motioncontrol.distancePointZ * Math.sin(0);
motioncontrol.prevposition.copy(motioncontrol.position);
motioncontrol.prevrotation.copy(motioncontrol.rotation);
// Our Javascript will go here.
var domContainer = null;
domContainer = document.getElementById("canvas_container");
var camera = new THREE.PerspectiveCamera( 50, window.innerWidth/window.innerHeight, 0.1, 5000 );
var aspectratio = window.innerWidth/window.innerHeight;
var renderer = new THREE.WebGLRenderer();
renderer.setSize( window.innerWidth, window.innerHeight );
domContainer.appendChild(renderer.domElement);
var materials = THREE.ImageUtils.loadTexture('texture/sky.jpg');
addEventListener('mousemove', onDocumentMouseMove, false);
domContainer.addEventListener('mousedown', onDocumentMouseDown, false);
domContainer.addEventListener('mouseup', onDocumentMouseUp, false);
var scene = new THREE.Scene();
scene.add(camera);
window.addEventListener('resize', resize, false);
camera.position.x = 0;
camera.position.y = 100;
camera.position.z = -100;
camera.rotation.y = Math.PI / 180.0 * 90;
var directionalLight = new THREE.DirectionalLight(0xffffff, 1.0);
directionalLight.position.set(0, -10, 0);
scene.add(directionalLight);
directionalLight = new THREE.DirectionalLight(0xffffff, 3.0);
directionalLight.position.set(0, -50,-1000);
scene.add(directionalLight);
directionalLight = new THREE.DirectionalLight(0xffffff, 3.0);
directionalLight.position.set(0, -50, 1000);
scene.add(directionalLight);
directionalLight = new THREE.DirectionalLight(0xffffff, 3.0);
directionalLight.position.set(-200, -10, 0);
scene.add(directionalLight);
directionalLight = new THREE.DirectionalLight(0xffffff, 3.0);
directionalLight.position.set(200, -10, 0);
scene.add(directionalLight);
addGround(scene);
// array of unsorted geometries.
var CubeGeometryArray = new Array();
var CubeGeometryTier1 = new THREE.Geometry();
var CubeGeometryTier2 = new THREE.Geometry();
var CubeGeometryTier3 = new THREE.Geometry();
var CubeGeometryTier4 = new THREE.Geometry();
var CubeGeometryTier5 = new THREE.Geometry();
// array of materials
var CubeMaterials = new Array();
// array of meshes used for hit testing.
var CubeArray = new Array();
var cMaterialCount = 0;
var Cube20Mesh;
var Cube40Mesh;
var CubesLoaded = false;
LoadCubeMaterial();
LoadCubeMeshs();
var controls;
function resize()
{
renderer.setSize(window.innerWidth, window.innerHeight);
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
};
function onMouseWheel(event)
{
var delta = 0;
if ( event.wheelDelta !== undefined ) {
// WebKit / Opera / Explorer 9
delta = event.wheelDelta;
} else if ( event.detail !== undefined ) {
// Firefox
delta = - event.detail;
}
if ( delta > 0 ) { // forward
var angle = Math.atan2(motioncontrol.rotation.x, motioncontrol.rotation.z);
motioncontrol.position.z += motioncontrol.bumpposition * Math.cos(angle);
motioncontrol.position.x += motioncontrol.bumpposition * Math.sin(angle);
} else if ( delta < 0 ) {
var angle = Math.atan2(motioncontrol.rotation.x, motioncontrol.rotation.z);
angle += Math.PI;
motioncontrol.position.z += motioncontrol.bumpposition * Math.cos(angle);
motioncontrol.position.x += motioncontrol.bumpposition * Math.sin(angle);
}
};
function onDocumentMouseMove(event)
{
event.preventDefault();
if (mouseDown > 0) {
if (((event.clientX / window.innerWidth) * 2 - 1) > mouse.x) {
motioncontrol.rotationanglezx -= motioncontrol.bumpdegrees;
if (motioncontrol.rotationanglezx < 0)
motioncontrol.rotationanglezx += 360;
var angle = (Math.PI / 180.0) * motioncontrol.rotationanglezx;
motioncontrol.rotation.x = motioncontrol.distancePointZ * Math.cos(angle) - motioncontrol.distancePointZ * Math.sin(angle);
motioncontrol.rotation.z = motioncontrol.distancePointZ * Math.sin(angle) + motioncontrol.distancePointZ * Math.cos(angle);
}
if (((event.clientX / window.innerWidth) * 2 - 1) < mouse.x) {
motioncontrol.rotationanglezx += motioncontrol.bumpdegrees;
if (motioncontrol.rotationanglezx > 360)
motioncontrol.rotationanglezx -= 360;
var angle = (Math.PI / 180.0) * motioncontrol.rotationanglezx;
motioncontrol.rotation.x = motioncontrol.distancePointZ * Math.cos(angle) - motioncontrol.distancePointZ * Math.sin(angle);
motioncontrol.rotation.z = motioncontrol.distancePointZ * Math.sin(angle) + motioncontrol.distancePointZ * Math.cos(angle);
}
}
};
function onDocumentMouseDown(event)
{
++mouseDown;
event.preventDefault();
var mouse = new THREE.Vector2();
mouse.x = (event.clientX / window.innerWidth) * 2 - 1;
mouse.y = -(event.clientY / window.innerHeight) * 2 + 1;
raycaster.setFromCamera(mouse, camera);
intersects = raycaster.intersectObjects(CubeArray);
if(intersects.length > 0)
{
if(intersects[0].object.name != null)
{
var offset = intersects[0].object.name * 8;
var offsetfaces = intersects[0].object.name * 12;
var index = intersects[0].object.name;
var selectedObject = scene.getObjectByName("Tier1");
scene.remove(selectedObject);
CubeArray.splice(index, 1);
CubeGeometryTier1 = CubeGeometryArray[0];
CubeGeometryTier1.vertices.splice(offset, 8);
CubeGeometryTier1.faces.splice(offsetfaces, 12);
CubeGeometryTier1.faceVertexUvs[0].splice(offsetfaces, 12);
CubeGeometryArray[0] = CubeGeometryTier1.clone();
CubeGeometryTier1.sortFacesByMaterialIndex();
var cmesh = new THREE.Mesh(CubeGeometryTier1, new THREE.MeshFaceMaterial(CubeMaterials));
cmesh.matrixAutoUpdate = false;
cmesh.updateMatrix();
cmesh.name = "Tier1";
scene.add(cmesh);
}
else
INTERSECTED = null;
}
};
function onDocumentMouseUp(event) {
mouseDown = 0;
event.preventDefault();
}
function addGround(scene1)
{
var materialg = new THREE.MeshBasicMaterial( { color: 0x333333 , side: THREE.BackSide } );
var groundmesh = new THREE.Mesh(new THREE.PlaneGeometry(9000, 4500, 1), materialg);
groundmesh.receiveShadow = true;
groundmesh.rotation.x = Math.PI / 180.0 * 90;
groundmesh.position.set(0, 0, 0);
groundmesh.name = "asphalt";
scene1.add(groundmesh);
};
function writeToScreen(message)
{
var pre = document.getElementById("MessageDisplay");
pre.style.wordWrap = "break-word";
pre.innerHTML = message;
}
function writeToScreen2(message)
{
var pre = document.getElementById("MessageDisplay1");
pre.style.wordWrap = "break-word";
pre.innerHTML = message;
}
function addCube20(name, x1,z1,azimuth,height,add)
{
var cube;
if (add)
{
if (height > 5)
height = 5;
cube = Cube20Mesh.clone();
cube.visible = true;
cube.receiveShadow = true;
cube.position.set(x1, ((height - 1) * 8.5) + 4.25, z1);
cube.rotation.y = (Math.PI / 180.0) * azimuth;
cube.name = name;
cube.updateMatrix();
AddCubeGeometry(cube.geometry, cube.matrix, height);
cube.matrixWorld = cube.matrix;
CubeArray.push(cube); // kept for hit test
}
};
function addCube40(name, x1, z1, azimuth,height,add)
{
var cube;
if (add)
{
if (height > 5)
height = 1;
cube = Cube40Mesh.clone();
cube.visible = true;
cube.receiveShadow = true;
cube.position.set(x1, ((height - 1) * 8.5) + 4.25, z1);
cube.rotation.y = (Math.PI / 180.0) * azimuth;
cube.name = name;
cube.updateMatrix();
AddCubeGeometry(cube.geometry, cube.matrix, height + 5);
cube.matrixWorld = cube.matrix;
CubeArray.push(cube); // kept for hit test
}
};
function LoadCubeMeshs()
{
var CubeGeometry20 = new THREE.BoxGeometry(20, 8.5, 9.5);
var CubeGeometry40 = new THREE.BoxGeometry(40, 8.5, 9.5);
Cube20Mesh = new THREE.Mesh(CubeGeometry20);
Cube40Mesh = new THREE.Mesh(CubeGeometry40);
CubesLoaded = true;
};
function LoadCubeMaterial()
{
CubeMaterials[0] = new THREE.MeshBasicMaterial({color:0xff0000 });
cMaterialCount++;
CubeMaterials[1] = new THREE.MeshBasicMaterial({color:0xffff00 });
cMaterialCount++;
CubeMaterials[2] = new THREE.MeshBasicMaterial({color:0xffffff });
cMaterialCount++;
CubeMaterials[3] = new THREE.MeshBasicMaterial({color:0x0000ff });
cMaterialCount++;
CubeMaterials[4] = new THREE.MeshBasicMaterial({color:0x00ffff });
cMaterialCount++;
CubeMaterials[5] = new THREE.MeshBasicMaterial({color:0x772255 });
cMaterialCount++;
CubeMaterials[6] = new THREE.MeshBasicMaterial({color:0x552277 });
cMaterialCount++;
CubeMaterials[7] = new THREE.MeshBasicMaterial({color:0x222299 });
cMaterialCount++;
CubeMaterials[8] = new THREE.MeshBasicMaterial({color:0x992222 });
cMaterialCount++;
CubeMaterials[9] = new THREE.MeshBasicMaterial({color:0x000000 });
cMaterialCount++;
};
function DisplayCubes(scene1)
{
if(CubeGeometryTier1.faces.length > 0)
{
var material = new THREE.MeshNormalMaterial();
// save the unsorted geometry.
CubeGeometryArray.push(CubeGeometryTier1.clone());
CubeGeometryTier1.sortFacesByMaterialIndex();
var Cubemesh = new THREE.Mesh(CubeGeometryTier1, new THREE.MeshFaceMaterial(CubeMaterials));
Cubemesh.matrixAutoUpdate = false;
Cubemesh.updateMatrix();
Cubemesh.name = "Tier1";
scene1.add(Cubemesh);
}
if(CubeGeometryTier2.faces.length > 0)
{
// save the unsorted geometry.
CubeGeometryArray.push(CubeGeometryTier2.clone());
// sorting is a HUGE performance boost
CubeGeometryTier2.sortFacesByMaterialIndex();
var Cubemesh = new THREE.Mesh(CubeGeometryTier2, CubeMaterials);
Cubemesh.matrixAutoUpdate = false;
Cubemesh.updateMatrix();
Cubemesh.name = "Tier2";
scene1.add(Cubemesh);
}
if(CubeGeometryTier3.faces.length > 0)
{
CubeGeometryArray.push(CubeGeometryTier3.clone());
CubeGeometryTier3.sortFacesByMaterialIndex();
var Cubemesh = new THREE.Mesh(CubeGeometryTier3, CubeMaterials);
Cubemesh.matrixAutoUpdate = false;
Cubemesh.updateMatrix();
Cubemesh.name = "Tier3";
scene1.add(Cubemesh);
}
if(CubeGeometryTier4.faces.length > 0)
{
CubeGeometryArray.push(CubeGeometryTier4.clone());
CubeGeometryTier4.sortFacesByMaterialIndex();
var Cubemesh = new THREE.Mesh(CubeGeometryTier4, CubeMaterials);
Cubemesh.matrixAutoUpdate = false;
Cubemesh.updateMatrix();
Cubemesh.name = "Tier4";
scene1.add(Cubemesh);
}
if(CubeGeometryTier5.faces.length > 0)
{
CubeGeometryArray.push(CubeGeometryTier5.clone());
CubeGeometryTier5.sortFacesByMaterialIndex();
var Cubemesh = new THREE.Mesh(CubeGeometryTier5, CubeMaterials);
Cubemesh.matrixAutoUpdate = false;
Cubemesh.updateMatrix();
Cubemesh.name = "Tier5";
scene1.add(Cubemesh);
}
};
// merging geometry for improved performance.
function AddCubeGeometry(geom, matrix,tier)
{
switch(tier)
{
case 1:
//CubeGeometryTier1.merge(geom, matrix, tier - 1);
CubeGeometryTier1.merge(geom, matrix);
break;
case 2:
CubeGeometryTier2.merge(geom, matrix,tier - 1);
break;
case 3:
CubeGeometryTier3.merge(geom, matrix,tier - 1);
break;
case 4:
CubeGeometryTier4.merge(geom, matrix,tier - 1);
break;
case 5:
CubeGeometryTier5.merge(geom, matrix,tier - 1);
break;
// forty footers
case 6:
// CubeGeometryTier1.merge(geom, matrix,tier - 1);
CubeGeometryTier1.merge(geom, matrix);
break;
case 7:
CubeGeometryTier2.merge(geom, matrix,tier - 1);
break;
case 8:
CubeGeometryTier3.merge(geom, matrix,tier - 1);
break;
case 9:
CubeGeometryTier4.merge(geom, matrix,tier - 1);
break;
case 10:
CubeGeometryTier5.merge(geom, matrix,tier - 1);
break;
default:
CubeGeometryTier1.merge(geom, matrix,0);
break;
}
};
motioncontrol.position.y = 10;
motioncontrol.position.x = -50;
motioncontrol.position.z = 0;
motioncontrol.rotation.x = 0;
motioncontrol.rotation.z = motioncontrol.distancePointZ * Math.cos(0);
motioncontrol.rotation.x = motioncontrol.distancePointZ * Math.sin(0);
function LoadCubes()
{
var cnt = 0;
for(var x = 0; x < 5; x++)
{
addCube20(cnt, 0, x * 23.0, 90, 1, true);
cnt++;
addCube40(cnt, 10, x * 43, 90, 1, true);
cnt++;
}
};
// game systems code
var keyboardControls = (function() {
var keys = { SP : 32, Q:81, E:69, W : 87, A : 65, S : 83, D : 68, UP : 38, LT : 37, DN : 40, RT : 39 };
var keysPressed = {};
(function( watchedKeyCodes ) {
var handler = function( down ) {
return function( e ) {
var index = watchedKeyCodes.indexOf( e.keyCode );
if( index >= 0 ) {
keysPressed[watchedKeyCodes[index]] = down; e.preventDefault();
}
};
};
window.addEventListener( "keydown", handler( true ), false );
window.addEventListener( "keyup", handler( false ), false );
})([
keys.SP, keys.Q, keys.E, keys.W, keys.A, keys.S, keys.D, keys.UP, keys.LT, keys.DN, keys.RT
]);
return function() {
// look around
if (keysPressed[keys.Q])
{
motioncontrol.tiltangle += motioncontrol.bumpdegrees;
if (motioncontrol.tiltangle < 0)
motioncontrol.tiltangle += 360;
var angle = (Math.PI / 180.0) * motioncontrol.tiltangle;
motioncontrol.rotation.y = motioncontrol.distancePointZ * Math.sin(angle);
}
if (keysPressed[keys.E])
{
motioncontrol.tiltangle -= motioncontrol.bumpdegrees;
if (motioncontrol.tiltangle < 0)
motioncontrol.tiltangle += 360;
var angle = (Math.PI / 180.0) * motioncontrol.tiltangle;
motioncontrol.rotation.y = motioncontrol.distancePointZ * Math.sin(angle);
}
if (keysPressed[keys.W])
{
motioncontrol.position.y += motioncontrol.bumpposition;
if (motioncontrol.position.y > 1000.0)
motioncontrol.position.y = 1000.0;
}
if (keysPressed[keys.S])
{
motioncontrol.position.y += -motioncontrol.bumpposition;
if (motioncontrol.position.y < 1.0)
motioncontrol.position.y = 1;
}
if(keysPressed[keys.A])
{
var angle = Math.atan2(motioncontrol.rotation.x, motioncontrol.rotation.z);
angle += Math.PI / 180.0 * 90;
var message = "Angle " + angle * 180/Math.PI;
motioncontrol.position.z += motioncontrol.bumpposition * Math.cos(angle);
motioncontrol.position.x += motioncontrol.bumpposition * Math.sin(angle);
}
if(keysPressed[keys.D])
{
var angle = Math.atan2(motioncontrol.rotation.x, motioncontrol.rotation.z);
angle += Math.PI / 180.0 * -90;
var message = "Angle " + angle * 180/Math.PI;
motioncontrol.position.z += motioncontrol.bumpposition * Math.cos(angle);
motioncontrol.position.x += motioncontrol.bumpposition * Math.sin(angle);
}
// forward
if (keysPressed[keys.UP])
{
var angle = Math.atan2(motioncontrol.rotation.x, motioncontrol.rotation.z);
var message = "Angle " + angle * 180/Math.PI;
motioncontrol.position.z += motioncontrol.bumpposition * Math.cos(angle);
motioncontrol.position.x += motioncontrol.bumpposition * Math.sin(angle);
}
// backward
if(keysPressed[keys.DN])
{
var deltaX = motioncontrol.rotation.z - motioncontrol.position.z;
var deltaY = motioncontrol.rotation.x - motioncontrol.position.x;
// var angle = Math.atan2(deltaY, deltaX);
var angle = Math.atan2(motioncontrol.rotation.x, motioncontrol.rotation.z);
angle += Math.PI;
var message = "Angle " + angle * 180/Math.PI;
motioncontrol.position.z += motioncontrol.bumpposition * Math.cos(angle);
motioncontrol.position.x += motioncontrol.bumpposition * Math.sin(angle);
}
if(keysPressed[keys.LT])
{
motioncontrol.rotationanglezx -= motioncontrol.bumpdegrees;
if (motioncontrol.rotationanglezx < 0)
motioncontrol.rotationanglezx += 360;
var angle = (Math.PI / 180.0) * motioncontrol.rotationanglezx;
motioncontrol.rotation.x = motioncontrol.distancePointZ * Math.cos(angle) - motioncontrol.distancePointZ * Math.sin(angle);
motioncontrol.rotation.z = motioncontrol.distancePointZ * Math.sin(angle) + motioncontrol.distancePointZ * Math.cos(angle);
}
if(keysPressed[keys.RT])
{
motioncontrol.rotationanglezx += motioncontrol.bumpdegrees;
if (motioncontrol.rotationanglezx > 360)
motioncontrol.rotationanglezx -= 360;
var angle = (Math.PI / 180.0) * motioncontrol.rotationanglezx;
motioncontrol.rotation.x = motioncontrol.distancePointZ * Math.cos(angle) - motioncontrol.distancePointZ * Math.sin(angle);
motioncontrol.rotation.z = motioncontrol.distancePointZ * Math.sin(angle) + motioncontrol.distancePointZ * Math.cos(angle);
}
};
})();
var updateCamera = (function() {
return function() {
camera.position.copy(motioncontrol.position);
camera.lookAt(motioncontrol.rotation);
var message = "Rotation " + motioncontrol.rotationanglezx + "<BR>";
message += "X " + motioncontrol.position.x + "<BR>";
message += "Y " + motioncontrol.position.y + "<BR>";
message += "Z " + motioncontrol.position.z + "<BR>";
message += "X " + motioncontrol.rotation.x + "<BR>";
message += "Y " + motioncontrol.rotation.y + "<BR>";
message += "Z " + motioncontrol.rotation.z + "<BR>";
var angle = Math.atan2(motioncontrol.rotation.x, motioncontrol.rotation.z);
message += "Angle " + angle * 180 / Math.PI + "<BR>";
message += "Use Arrows w,s,e,d,q,a to navigate<BR>";
writeToScreen2(message);
};
})();
function render() {
if(cMaterialCount > 9 && cMaterialCount < 200 && CubesLoaded)
{
cMaterialCount = 200;
LoadCubes();
DisplayCubes(scene);
}
keyboardControls();
updateCamera();
renderer.render( scene, camera );
requestAnimationFrame( render );
};
render();
</script>
</body>
</html>
TLDR Array Mutation and Static Offsets are a dangerous mix
First, I recommend you post fiddles of some sort of your code. I made one here of your example. Second, you could really use some DRYing to shorten and clarify your code. Third, in code of this size, I recommend separating and grouping your code somehow (files, tasks, even comment blocks). Last, in a demo like this, I see no reason to roll your own controls. Check out Orbit Camera or the like that THREE.js offers.
Anyway, I gathered you collect a large number of cubes into 10 'tiers' of THREE.Geometry for rendering purposes. Then on click (~line 180), raycast out, and try to remove just that cube from the geometry. Here's your relevant code:
intersects = raycaster.intersectObjects(CubeArray);
if(intersects.length > 0)
{
if(intersects[0].object.name != null)
{
var offset = intersects[0].object.name * 8;
var offsetfaces = intersects[0].object.name * 12;
var index = intersects[0].object.name;
var selectedObject = scene.getObjectByName("Tier1");
scene.remove(selectedObject);
CubeArray.splice(index, 1);
CubeGeometryTier1 = CubeGeometryArray[0];
CubeGeometryTier1.vertices.splice(offset, 8);
CubeGeometryTier1.faces.splice(offsetfaces, 12);
CubeGeometryTier1.faceVertexUvs[0].splice(offsetfaces, 12);
CubeGeometryArray[0] = CubeGeometryTier1.clone();
CubeGeometryTier1.sortFacesByMaterialIndex();
var cmesh = new THREE.Mesh(CubeGeometryTier1, new THREE.MeshFaceMaterial(CubeMaterials));
cmesh.matrixAutoUpdate = false;
cmesh.updateMatrix();
cmesh.name = "Tier1";
scene.add(cmesh);
}
else
INTERSECTED = null;
}
Here's how I read this snippet:
Cast out against the CubeArray
Without a hit something or if it lacks a name, return
Implict cast some string names (!) to numbers to compute location in Tier
Remove an object from the scene by the name "Tier1", regardless of any other input
Set CubeGeometryTier1 to the first index of CubeGeometryArray, regardless of raycast
Fiddle with now overwritten CubeGeometryTier1 to remove geometry
Reassign CubeGeometryArray[0] with the changed object of CubeGeometryTier1
Build a new mesh based on CubeGeometryTier1, call it "Tier1" and dump it back into the scene
I'll admit I haven't entirely traced the hundreds of line where you build your cubes, but this makes little sense to me. Assuming your use of CubeGeometry[Tier|Array] and hard coded names and indices are correct, what really grabs me is the use of static offsets when you mutate the array.
You splice CubeArray to remove that 'ghost' cube from getting picked again, but none of the other 'ghost' cubes changed, notably their offsets names, while the geometry that you rebuilt into Tier1 did. Past the spliced cube, all of them index names will be wrong.
Here's an example in simpler form:
//set up
var baseArray = [0, 1, 2, 3, 4, 5].map(i => '' + i);
const getRandomInt = (min, max) => {
return Math.floor(Math.random() * (max - min)) + min;
};
const pickRandomElementFrombaseArray = () => {
const pickedIndex = getRandomInt(0, baseArray.length);
return baseArray[pickedIndex];
};
// operationally equivilent to splicing your Tiers of their geometry
const yankIndex = (value) => {
//value is a string in this case
const index = +value;
if (index < 0 || index > baseArray.length - 1) {
throw `Unable to remove invalid index ${index}`
} else {
baseArray.splice(index, 1);
}
};
// Run the test until empty or failure
var messages = [`Starting with ${baseArray}`];
while (baseArray.length > 0) {
const pickedValue = pickRandomElementFrombaseArray();
messages.push(`Picked element ${pickedValue} to remove`);
try {
yankIndex(pickedValue);
messages.push(`Now array is ${baseArray}`);
} catch (e) {
messages.push(`ALERT: ${e}`);
break;
}
}
messages.push('Test complete');
const div = $('#div');
messages.map(msg => `<p>${msg}</p>`).forEach(msg => div.append(msg))
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">
<title></title>
</head>
<body>
<h2>Results</h2>
<div id="div"></div>
</body>
</html>
Try it a few times. There's only a 0.8% chance the array will be exhausted before an error.
Sneaky errors can creep into code when you are dealing with mutation of arrays. Ignoring restructuring the code entirely, options that spring to mind:
Maintain an offset map on each removal. Essentially, rebuild each cube's offset on every action. You could do this in the CubeArray or, if creating/mutating 10k heavy THREE.js objects is not to your liking, yet another level of indirection that maps each cube id to an offset in the Tiers
Invisible Objects Never really remove the geometry (ie, don't splice the Tier array), just hide it. Scale the faces to 0, invisible mat, whatever. This means all the offsets you pre-generate will hold. Downsides are invisible geo isn't free, this won't help if you need to change the scene in other ways, and you'll have to scan the other hits from thee.raycast
I have this little test script which I'll try to include below. It works fine in Chrome but not in IE10. IE10 gives me a nice white screen. I tried putting in the meta-equiv thing to help IE10 get the hint, but that did not change anything (in either browser). Please help.
<!-- language: lang-js -->
<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<style>
body {
margin: 0px;
padding: 0px;
}
</style>
</head>
<body>
<div id="container"></div>
<script src="three.min.js"></script>
<script defer="defer">
// http://www.aerotwist.com/tutorials/getting-started-with-three-js/
var cubes = [];
var renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);
// camera
var camera = new THREE.PerspectiveCamera(45, window.innerWidth / window.innerHeight, 1, 5000);
camera.position.z = 800;
// scene
var scene = new THREE.Scene();
// material
var phongMaterial = new THREE.MeshPhongMaterial({ambient: 0x555555,
color: 0x555555,
specular: 0xffffff,
shininess: 50,
side: THREE.FrontSide,
shading: THREE.SmoothShading});
var phongBack = new THREE.MeshPhongMaterial({ambient: 0x555555,
color: 0x995555,
specular: 0xffffff,
shininess: 50,
side: THREE.BackSide,
shading: THREE.SmoothShading});
var materials = [phongMaterial, phongBack];
// cube
//var cube = new THREE.Mesh(new THREE.CubeGeometry(200, 200, 200), material);
var geom = new THREE.Geometry();
var a = 100;
var b = 100;
var c = 300;
var geom = new THREE.Geometry();
var halfPi = (Math.PI / 2.0);
var u = -halfPi;
var uInc = Math.PI / 200.0;
var v = - Math.PI;
var vInc = uInc * 2.0;
var vertexNdx = 0;
var vs = [];
var on = true;
while (u < halfPi) {
var oneLine = [];
vs.push(oneLine);
while (v < Math.PI) {
var x = a * Math.cos(u) * Math.cos(v);
var y = b * Math.cos(u) * Math.sin(v);
var z = c * Math.sin(v) * Math.sin(u);
x += Math.random();
y += Math.random();
z += Math.random();
var v1 = new THREE.Vector3(x, y, z);
geom.vertices.push(v1);
oneLine.push(vertexNdx++);
if (on)
{
if (vs.length > 1 && oneLine.length > 1)
{
var uNdx = vs.length - 1;
var vNdx = oneLine.length - 1;
geom.faces.push(new THREE.Face3(vs[uNdx - 1][vNdx - 1],
vs[uNdx - 1][vNdx],
vs[uNdx][vNdx - 1]));
geom.faces.push(new THREE.Face3(vs[uNdx][vNdx - 1],
vs[uNdx - 1][vNdx],
vs[uNdx][vNdx]));
}
//on = false;
}
else
{
on = true;
}
v += vInc;
}
v = -Math.PI;
u += uInc;
}
var oneLine = vs[0];
var uNdx = vs.length - 1;
for (var vNdx = 1; vNdx < oneLine.length; vNdx++)
{
geom.faces.push(new THREE.Face3(vs[0][vNdx - 1],
vs[0][vNdx],
vs[uNdx][vNdx - 1]));
geom.faces.push(new THREE.Face3(vs[uNdx][vNdx - 1],
vs[0][vNdx],
vs[uNdx][vNdx]));
}
geom.computeFaceNormals();
var cube = new THREE.SceneUtils.createMultiMaterialObject(geom, materials);
cube.overdraw = true;
cube.rotation.x = Math.PI * 0.1;
scene.add(cube);
cubes.push(cube);
var geom = new THREE.Geometry();
var a = 100;
var b = 100;
var c = 300;
var geom = new THREE.Geometry();
var halfPi = (Math.PI / 2.0);
var u = -halfPi;
var uInc = Math.PI / 200.0;
var v = - Math.PI;
var vInc = uInc * 2.0;
var vertexNdx = 0;
var vs = [];
var on = true;
while (u < halfPi) {
var oneLine = [];
vs.push(oneLine);
var xRand = Math.random();
while (v < Math.PI) {
var x = a * Math.cos(u) * Math.cos(v);
var y = b * Math.cos(u) * Math.sin(v);
var z = c * Math.sin(v) * Math.sin(u);
x += xRand;
y += Math.random();
z += Math.random();
var v1 = new THREE.Vector3(x, y, z);
geom.vertices.push(v1);
oneLine.push(vertexNdx++);
if (on)
{
if (vs.length > 1 && oneLine.length > 1)
{
var uNdx = vs.length - 1;
var vNdx = oneLine.length - 1;
geom.faces.push(new THREE.Face3(vs[uNdx - 1][vNdx - 1],
vs[uNdx - 1][vNdx],
vs[uNdx][vNdx - 1]));
geom.faces.push(new THREE.Face3(vs[uNdx][vNdx - 1],
vs[uNdx - 1][vNdx],
vs[uNdx][vNdx]));
}
//on = false;
}
else
{
on = true;
}
v += vInc;
}
v = -Math.PI;
u += uInc;
}
var oneLine = vs[0];
var uNdx = vs.length - 1;
for (var vNdx = 1; vNdx < oneLine.length; vNdx++)
{
geom.faces.push(new THREE.Face3(vs[0][vNdx - 1],
vs[0][vNdx],
vs[uNdx][vNdx - 1]));
geom.faces.push(new THREE.Face3(vs[uNdx][vNdx - 1],
vs[0][vNdx],
vs[uNdx][vNdx]));
}
geom.applyMatrix(new THREE.Matrix4().translate(new THREE.Vector3(200, 0, 0)));
geom.computeFaceNormals();
var cube = new THREE.SceneUtils.createMultiMaterialObject(geom, materials);
cube.overdraw = true;
cube.rotation.x = Math.PI * 0.1;
scene.add(cube);
cubes.push(cube);
var geom = new THREE.Geometry();
var a = 100;
var b = 100;
var c = 300;
var geom = new THREE.Geometry();
var halfPi = (Math.PI / 2.0);
var u = -halfPi;
var uInc = Math.PI / 200.0;
var v = - Math.PI;
var vInc = uInc * 2.0;
var vertexNdx = 0;
var vs = [];
var on = true;
while (u < halfPi) {
var oneLine = [];
vs.push(oneLine);
var yRand = Math.random();
while (v < Math.PI) {
var x = a * Math.cos(u) * Math.cos(v);
var y = b * Math.cos(u) * Math.sin(v);
var z = c * Math.sin(v) * Math.sin(u);
x += Math.random();
y += yRand;
z += Math.random();
var v1 = new THREE.Vector3(x, y, z);
geom.vertices.push(v1);
oneLine.push(vertexNdx++);
if (on)
{
if (vs.length > 1 && oneLine.length > 1)
{
var uNdx = vs.length - 1;
var vNdx = oneLine.length - 1;
geom.faces.push(new THREE.Face3(vs[uNdx - 1][vNdx - 1],
vs[uNdx - 1][vNdx],
vs[uNdx][vNdx - 1]));
geom.faces.push(new THREE.Face3(vs[uNdx][vNdx - 1],
vs[uNdx - 1][vNdx],
vs[uNdx][vNdx]));
}
//on = false;
}
else
{
on = true;
}
v += vInc;
}
v = -Math.PI;
u += uInc;
}
var oneLine = vs[0];
var uNdx = vs.length - 1;
for (var vNdx = 1; vNdx < oneLine.length; vNdx++)
{
geom.faces.push(new THREE.Face3(vs[0][vNdx - 1],
vs[0][vNdx],
vs[uNdx][vNdx - 1]));
geom.faces.push(new THREE.Face3(vs[uNdx][vNdx - 1],
vs[0][vNdx],
vs[uNdx][vNdx]));
}
geom.applyMatrix(new THREE.Matrix4().translate(new THREE.Vector3(-200, 0, 0)));
geom.computeFaceNormals();
var cube = new THREE.SceneUtils.createMultiMaterialObject(geom, materials);
cube.overdraw = true;
cube.rotation.x = Math.PI * 0.1;
scene.add(cube);
cubes.push(cube);
// add subtle ambient lighting
var ambientLight = new THREE.AmbientLight(0xdddddd);
scene.add(ambientLight);
// directional lighting
var directionalLight = new THREE.DirectionalLight(0xffffff);
directionalLight.position.set(1, 1, 1).normalize();
scene.add(directionalLight);
var screenW = window.innerWidth;
var screenH = window.innerHeight;
var spdx = 0, spdy = 0, mouseX = 0, mouseY = 0, mouseDown = false;
document.addEventListener('mousemove', function(event) {
mouseX = event.clientX;
mouseY = event.clientY;
}, false);
document.body.addEventListener('mousedown', function(event) {
mouseDown = true;
}, false);
document.body.addEventListener('mouseup', function(event) {
mouseDown = false;
}, false);
function animate() {
spdy = (screenH / 2 - mouseY) / 40;
spdx = (screenW / 2 - mouseX) / 40;
if (mouseDown) {
for (var loop = 0; loop < cubes.length; loop++) {
var cube = cubes[loop];
cube.rotation.x = spdy;
cube.rotation.y = spdx;
}
}
renderer.render(scene, camera);
requestAnimationFrame(function(){
animate();
});
};
// start animation
animate();
</script>
</body>
</html>
And feel free to steal my little play test code if you like it. If you make something that looks cool, let me see it! I'm looking for organic-looking shapes that are made mathematically.
IE10 does not support WebGL. I think your code will work if you just switch from WebGLRenderer to CanvasRenderer, but the lighting won't be as accurate.