The Great Tree list recursion program - algorithm

I faced an interesting problem called as the Great Tree-List Problem. The Problem is as follows :
In the ordered binary tree, each node contains a single data element and "small" and "large" pointers to sub-trees .All the nodes in the "small" sub-tree are less than or equal to the data in the parent node. All the nodes in the "large" sub-tree are greater than the parent node. And a circular doubly linked list consist of previous and next pointers.
The problem is to take an ordered binary tree and rearrange the internal pointers to make a circular doubly linked list out of it. The "small" pointer should play the role of "previous" and the "large" pointer should play the role of "next". The list should be arranged so that the nodes are in increasing order. I have to write a recursive function & Return the head pointer to the new list.
The operation should be done in O(n) time.
I understand that recursion will go down the tree, but how to recursively change the small and large sub-trees into lists, also i have to append those lists together with the parent node.
How should i approach the problem?.. I just need a direction to solve the problem!.

The idea is to create a method that converts a tree node containing subtrees (children nodes) into a loop. And given a node that has converted children (e.g. after recursive calls came back), you create a new loop by pointing the large pointer (next) of the largest node to the smallest node, and the small pointer of the smallest node to the largest node.
May not be complete, but it will be close to this:
tree_node {
small
large
}
convert(node){
//base case 1, if leaf node
if node.small == null && node.large == null
return (self, self)
//recursively convert children
if node.small !=null
smallest, larger = convert(node.small)
else
smallest = larger = self
if node.large !=null
smaller, largest = convert(node.large)
else
smaller = largest = self
//wrap the ends of the chain
largest.large = smallest
smallest.small = largest
//wrap the mid part
smaller.small = larger
larger.large = small
//return pointers to the absolute smallest and largest of this subtree
return (smallest, largest)
}
//actually doing it
convert(tree.root)

The key to recursive programming is to imagine you already have the solution.
So, you already have a function recLink(Tree t) which receives a pointer to a tree, turns that tree into a doubly-linked circular list and returns a pointer to the list's head (leftmost) node:
recLink( n={Node: left, elt, right}) = // pattern match tree to a full node
rt := recLink( right); // already
lt := recLink( left); // have it
n.right := rt; n.left := lt.left; // middle node
lt.left.right := n; rt.left.right := lt; // right edges
lt.left := rt.left; rt.left := n;
return lt;
Finish up with the edge cases (empty child branches etc.). :)

assuming you have a simple tree of 3 nodes
B <--- A ---> C
walk down the left and right sides, get the pointers for each node, then have
B -> C
B <- C
Since your tree is binary, it will be composed of 3 node "subtrees" that can recursively use this strategy.

Related

How to transform a binary tree into a heap in place?

I have thought of the following:
Degenerate the tree into a linked list, and while degenerating, make
a dynamic array with the node object and its index in the linked
list
It would look like this
def treeDegenerator(self):
self.valList = []
currentNode = self
self.totalNodes = 0
self.nodes = 0
while currentNode:
while currentNode.getLeftChild():
currentNode.rotate_root_right()
self.valList.append(currentNode)
currentNode = currentNode.getRightChild()
self.totalNodes += 1
use the dynamic array, dereference all left childs and right childs and transform the degenerated tree into a complete tree by
using (index value)*2+1 to get the left child, add 1 more for the right.
def completeTree():
for node in self.valList:
node.left = None
node.right = None
for i in range(len(self.valList)):
self.valList[i].left = self.valList[(i)*2+1]
self.valList[i].right = a.valList[(i)*2+2]
Turn into heap by shifting values by comparison of the children for each node, level by level,starting at the bottom.
This was a problem for which students had to code without any references on a past exam. The issue with my method is that, its pretty much impossible for me to write all that code down in 30 minutes properly, and maybe could be possible if i memorize some code before hand. I was wondering if theres an easier, more feasible and elegant solution to turn any binary tree into a heap in place?
Conceptually you can break this task down into two steps:
Rebuild the tree into a perfectly-balanced BST with the bottom row filled in from left-to-right. You can do this using a modified version of the Day-Stout-Warren algorithm.
Run the heapify algorithm to convert your tree into a binary heap. This can be done really beautifully recursively; see below for details.
The Day-Stout-Warren algorithm works by rotating the tree into a singly-linked list, then from there applying a series of rotations to turn it into a perfectly-balanced tree. I don't remember off the top of my head whether the DSW algorithm specifically will place all leftover nodes in the bottom layer of the tree on the far left, as needed by a binary heap. If not, you can fix this up by doing a cleanup pass: if the tree doesn't have a number of nodes that's a perfect power of two, remove all nodes from the bottom layer of the tree, then iterate over the tree with an inorder traversal to place them on the far left.
As for the heapify algorithm: the way this is typically done is by visiting the layers of the tree from the bottom toward the top. For each node, you repeatedly swap that node down with its smaller child until it's smaller than all its children. With an explicit tree structure, this can be done with an elegant recursive strategy:
If the tree has no children, stop.
Otherwise, recursively heapify the left and right subtrees, then perform a "bubble-down" pass of repeatedly swapping the root's value with its smaller child's value until it's in the right place.
This overall requires O(n) time and uses only O(log n) auxiliary storage space, which is the space you'd need for the stack frames to implement the two algorithms.
<editorializing> That being said - this seems like a really bad coding question to put on a 30-minute timed exam. You can have a great command of algorithms and how to code them up and yet not remember all the steps involved in the two substeps here. Asking for this in half an hour is essentially testing "have you memorized implementations of various unrelated algorithms in great detail?," which doesn't seem like a good goal. </editorializing>
I would first collapse the tree into an ordered linked list on node.right.
I'm assuming we started with an ordered BST. If not, then sort the list. If you want a max-heap instead of a min-heap, then reverse the list at this point, too.
Count the nodes and calculate the depth of the largest complete tree contained in the solution
Do a recursive preorder traversal of the complete tree, filling in each node from the head of the list as you go.
Do a pre-order traversal of the tree you just built, filling in leaves from list nodes until you run out
Step 4 would be accomplished recursively like this:
root = list
fillChildren(root, list.right, levels-1)
fillChildren(root, list, levels) {
if (levels < 1) {
root.left = root.right = null
return list
}
root.left = list
list = fillChildren(root.left, list.right, levels-1)
root.right = list
list = fillChildren(root.right, list.right, levels-1)
return list
}
The trick to this, of course, is that mapping nodes in order to a pre-order traversal satisfies the heap property.
It's also pretty easy to combine steps 4 and 5 just by keeping track of each node's index in an imaginary array heap.
Just for fun, here's the whole job:
treeToHeap(root) {
if (root == null) {
return null
}
// Convert tree to list
while(root.left != null) {
root = rotateRight(root)
}
for (n = root; n.right != null; n=n.right) {
while (n.right.left != null) {
n.right = rotateRight(n.right)
}
}
// Count nodes
count = 0
for (n = root; n!=null; n=n.right) {
count+=1
}
// Build min-heap
list = root.right
// root's index in imaginary array heap is 0
if (count>1) {
root.left = list
list = fillNodes(root.left, list.right, 1, count)
} else {
root.left = null
}
if (count>2) {
root.right = list
list = fillNodes(root.right, list.right, 2, count)
} else {
root.right = null
}
return root
}
fillNodes(root, list, heapIndex, heapSize) {
heapIndex = heapIndex*2+1
if (heapIndex < heapSize) {
root.left = list
list = fillNodes(root.left, list.right, heapIndex, heapSize)
} else {
root.left = null
}
heapIndex += 1
if (heapIndex < heapSize) {
root.right = list
list = fillNodes(root.right, list.right, heapIndex, heapSize)
} else {
root.right = null
}
return list
}
So that took 15 minutes (and I didn't bother to write out rotateRight), and that's after figuring out how to do it. And I returned a couple times to fix bugs.
For a 30 minute exam, it's quite tough... BUT maybe the exam didn't really require the heap to be perfectly balanced. If it's just a question of implementing an in-place heapify, then it's quite reasonable.

Job Interview Question Using Trees, What data to save?

I was solving the following job interview question and solved most of it but failed at the last requirement.
Q: Build a data structure which supports the following functions:
Init - Initialise Empty DS. O(1) Time complexity.
SetPositiveInDay(d,x) - Add to the DS that in day d exactly x new people were infected with covid-19. O(log n)Time complexity.
WorseBefore(d) - From the days inserted into the DS and smaller than d return the last one which has more newly infected people than d. O(log n)Time complexity.
For example:
Init()
SetPositiveInDay(1,10)
SetPositiveInDay(2,20)
SetPositiveInDay(3,15)
SetPositiveInDay(5,17)
SetPositiveInDay(23,180)
SetPositiveInDay(8,13)
SetPositiveInDay(13,18)
WorstBefore(13) // Returns day #2
SetPositiveInDay(10,19)
WorstBefore(13) // Returns day #10
Important note: you can't suppose that days will be entered by order and can't suppose too that there won't be "gaps" between days. (Some days may not be saved in the DS while those after it may be).
What I did?
I used AVL tree (I could use 2-3 tree too).
For each node I have:
Sick - Number of new infected people in that day.
maxLeftSick - Max number of infected people for left son.
maxRightSick - Max number of infected people for right son.
When inserted a new node I made sure that in rotation data won't get missed plus, for each single node from the new one till the root I did:
But I wasn't successful implementing WorseBefore(d).
Where to search?
First you need to find the node node corresponding to d in the tree ordered by days. Let x = Sick(node). This can be done in O(log n).
If maxLeftSick(node) > x, the solution must be in the left subtree of node. Search for the solution there and return the answer. This can be done in O(log n) - see below.
Otherwise, traverse the tree upwards towards the root, starting from node, until you find the first node nextPredecessor satisfying this property (this takes O(log n)):
nextPredecessor is smaller than node,
and either
Sick(nextPredecessor) > x or
maxLeftSick(nextPredecessor) > x.
If no such node exists, we give up. In case 1, just return nextPredecessor since that is the best solution.
In case 2, we know that the solution must be in the left subtree of nextPredecessor, so search there and return the answer. Again, this takes O(log n) - see below.
Note that there is no need to search in the right subtree of nextPredecessor since the only nodes that are smaller than node in that subtree would be the left subtree of node itself, and we have already excluded that.
Note also that it is not necessary to traverse further up the tree than nextPredecessor since those nodes are even smaller, and we are looking for the largest node satisfying all constraints.
How to search?
OK, so how do we search for the solution in a subtree? Finding the largest day within a subtree rooted in q that is worse than an infection number x is simple using the maxLeftSick and maxRightSick information:
If q has a right child and maxRightSick(q) > x then search in the right subtree of q.
If q has no right child and Sick(q) > x, return Day(q).
If q has a left child and maxLeftSick(q) > x then search in the left subtree of q.
Otherwise there is no solution within the subtree q.
We are effectively using maxLeftSick and maxRightSick to prune the search tree to include only "worse" nodes, and within that pruned tree we get the right most node, i.e. the one with the largest day.
It is easy to see that this algorithm runs in O(log n) where n is the total number of nodes since the number of steps is bounded by the height of the tree.
Pseudocode
Here is the pseudocode (assuming maxLeftSick and maxRightSick return -1 if no corresponding child node exists):
// Returns the largest day smaller than d such that its
// infection number is larger than the infection number on day d.
// Returns -1 if no such day exists.
int WorstBefore(int d) {
node = find(d);
// try to find the solution in the left subtree
if (maxLeftSick(node) > Sick(node)) {
return FindLastWorseThan(node -> left, Sick(node));
}
// move up towards root until we find the first node
// that is smaller than `node` and such that
// Sick(nextPredecessor) > Sick(node) or
// maxLeftSick(nextPredecessor) > Sick(node).
nextPredecessor = findNextPredecessor(node);
if (nextPredecessor == null) return -1;
// Case 1
if (Sick(nextPredecessor) > Sick(node)) return nextPredecessor;
// Case 2: maxLeftSick(nextPredecessor) > Sick(node)
return FindLastWorseThan(nextPredecessor -> left, Sick(node));
}
// Finds the latest day within the given subtree with root "node" where
// the infection number is larger than x. Runs in O(log(size(q)).
int FindLastWorseThan(Node q, int x) {
if ((q -> right) = null and Sick(q) > x) return Day(q);
if (maxRightSick(q) > x) return FindLastWorseThan(q -> right, x);
if (maxLeftSick(q) > x) return FindLastWorseThan(q -> left, x);
return -1;
}
First of all, your chosen data structure looks fine to me. You did not mention it explicitly, but I assume that the "key" you use in the AVL tree is the day number, i.e. an in-order traversal of the tree would list the nodes in their chronological order.
I would just suggest a cosmetic change: store the maximum value of sick in the node itself, so that you don't have two similar informations (maxLeftSick and maxRightSick) stored in one node instance, but move those two informations to the child nodes, so that your node.maxLeftSick is actually stored in node.left.maxSick, and similarly node.maxRightSick is stored in node.right.maxSick. This is of course not done when that child does not exist, but then we don't need that information either. In your structure maxLeftSick would be 0 when left is not defined. In my proposed structure, you would not have that value -- the 0 would follow naturally from the fact that there is no left child. In my proposal, the root node would have an information in maxSick which is not present in yours, and which would be the sum of your root.maxLeftSick and root.maxRightSick. This information would not really be used, but it is just there to make the structure consistent throughout the tree.
So you would just store one maxSick, which considers the current node's sick value also in that maximum. The processing you do during rotations will need to change accordingly, but will not become more complex.
I will assume that your AVL tree is single-threaded, i.e. you don't keep track of parent-pointers. So create a find method which will return the path to the node to be found. For instance, in Python syntax, it could look like this:
def find(self, day):
node = self.root
path = [] # an array of nodes
while node:
path.append(node)
if node.day == day: # bingo
return path
if day < node.day:
node = node.left
else:
node = node.right
Then the worstBefore method could look like this:
def worstBefore(self, day):
path = self.find(day)
if not path:
return # day not found
# get number of sick people on that day:
sick = path[-1].sick
# look for recent day with greater number of sick
while path:
node = path.pop() # walk upward, starting with found node
if node.day < day and node.sick > sick:
return node.day
if node.left and node.left.maxSick > sick:
# we will find the result in this subtree
node = node.left
while True:
if node.right and node.right.maxSick > sick:
node = node.right
elif node.sick > sick: # bingo
return node.day
else:
node = node.left
So the path returned by the find method will be used to get the parents of a node when you need to backtrack upwards in the tree along that path.
If along that path you find a left child whose maxSick is greater, then you know that the targeted node must be in that subtree. It is then a matter to walk down that subtree in a controlled way, choosing the right child when it still has maxSick greater. Otherwise check the current node's sick value and return that one if that value is greater. Otherwise go left, and repeat.
While there is no such left sub tree, go up along the path. If that parent would be a match, then return it (make sure to verify the day number). Keep checking for left sub trees that have a larger maxSick.
This runs in O(logn) because you first will walk zero or more steps upward and then zero or more steps downward (in a left subtree).
You can see your example scenario run on repl.it. There I focussed on this question, and didn't implement the rotations.

What is the pseudocode for this binary tree

basically i am required to come out with a pseudocode for this. What i currently have is
dictionary = {}
if node.left == none and node.right == none
visit(node)
dictionary[node] = 1
This is only the leaf nodes, how do i get the size for each node(parent and root)?
You can do a post-order traversal to find the size of each node.
The idea is to first handle both left and right trees. Then, after they are processed - you can use this data to process the current node.
This should look something like:
count = 0
if (node.left != none)
count += visit(node.left)
if (node.right != none)
count += visit(node.right)
// self is included.
count += 1
// update the node
node.size = count
return count
The dictionary for visited nodes is not needed since this is a tree, it guarantees to end.
As a side note - the size attribute of each node, is an important one. It basically upgrades your tree to a Order Statistics Tree
well the concept is that each node will know it's subtree size by first knowing the subtree size of all it's child which is maximum two child here as it is a binary tree, so once it knows subtree size of all child it can then add up all of them and atlast add 1 to it's
result and then the same thing will be done by it's parent also and so on upto root node. if we think about leaf node, it
has no child, so result subtree size will be only 1 in which it include itself.
one this idea is clear, it is easy to write code
that while traversing we will first know the subtree size of child nodes of current node then add 1 in it, in case of leaf node it will have subtree size of 1 only, below is the pseudocode of traverse funtion which finds the subtree size of each node and store them in dictionary sizeDictionary and a visited dictionary/array having larger scope has been used to keep track of visited nodes.
traverse(Tree curNode, dictionary subTreeSizeDictionary)
visited[curNode] = true
subtreeSizeDictionary[curNode] = 0
for child of curNode
if(notVisited[child])
traverse(child , sizeDictionary)
subtreeSizeDictionary[curNode] += subtreeSizeDictionary[child]
subtreeSizeDictionary[curNode] += 1;
here it is binary tree, but as you can see from pseudocode this concept can be used for any valid tree, the time complexity is O(n) as we visited each node only once.

Efficiently convert array to cartesian tree

I know how to convert an array to a cartesian tree in O(n) time
http://en.wikipedia.org/wiki/Cartesian_tree#Efficient_construction and
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAncestor#From RMQ to LCA
However, the amount of memory required is too high (constants) since I need to associate a left and right pointer at least with every node in the cartesian tree.
Can anyone link me to work done to reduce these constants (hopefully to 1)?
You do not need to keep the right and left pointers associated with your cartesian tree nodes.
You just need to keep the parent of each node and by the definition of cartesian tree
(A Cartesian Tree of an array A[0, N - 1] is a binary tree C(A) whose root is a minimum element of A, labeled with the position i of this minimum. The left child of the root is the Cartesian Tree of A[0, i - 1] if i > 0, otherwise there's no child. The right child is defined similary for A[i + 1, N - 1].), you can just traverse through this array and if the parent of the node has lower index than the node itself than the node will be the right son of its parent and similarly if the parent of the node has higher index than the node will be left son of its parent.
Hope this helps.
It is possible to construct a Cartesian tree with only extra space for child-to-parent references (by index): so besides the input array, you would need an array of equal size, holding index values that relate to the first array. If we call that extra array parentOf, then array[parentOf[i]] will be the parent of array[i], except when array[i] is the root. In that case parentOf[i] should be like a NIL pointer (or, for example, -1).
The Wikipedia article on Cartesian trees, gives a simple construction method:
One method is to simply process the sequence values in left-to-right order [...] in a structure that allows both upwards and downwards traversal of the tree
This may give the impression that it is necessary for that algorithm to maintain both upwards and downwards links in the tree, but this is not the case. It can be done with only maintaining links from child to parent.
During the construction, a new value is injected into the path that ends in the rightmost node (having the value that was most recently added). Any child in that path is by necessity a right child of its parent.
While walking up that path in the opposite direction, from the leaf, keep track of a parent and its right child (where you came from). Once you find the insertion point, that child will get the new node as parent, and the new child will get the "old" parent as its parent.
At no instance in this process do you need to store pointers to children.
Here is the algorithm written in JavaScript. As example, the tree is populated from the input array [9,3,7,1,8,12,10,20,15,18,5]. For verification only, both the input array and the parent references are printed:
class CartesianTree {
constructor() {
this.values = [];
this.parentOf = [];
}
extend(values) {
for (let value of values) this.push(value);
}
push(value) {
let added = this.values.length; // index of the new value
let parent = added - 1; // index of the most recently added value
let child = -1; // a NIL pointer
this.values.push(value);
while (parent >= 0 && this.values[parent] > value) {
child = parent;
parent = this.parentOf[parent]; // move up
}
// inject the new node between child and parent
this.parentOf[added] = parent;
if (child >= 0) this.parentOf[child] = added;
}
}
let tree = new CartesianTree;
tree.extend([9,3,7,1,8,12,10,20,15,18,5]);
printArray("indexes:", tree.values.keys());
printArray(" values:", tree.values);
printArray("parents:", tree.parentOf);
function printArray(label, arr) {
console.log(label, Array.from(arr, value => (""+value).padStart(3)).join(" "));
}
You can use a heap to store your tree, essentially it is an array where the first element int he array is the root, the second is the left child of the root the third the right, etc.. it is much cheaper but requires a little more care when programming it.
http://en.wikipedia.org/wiki/Binary_heap

Create Balanced Binary Search Tree from Sorted linked list

What's the best way to create a balanced binary search tree from a sorted singly linked list?
How about creating nodes bottom-up?
This solution's time complexity is O(N). Detailed explanation in my blog post:
http://www.leetcode.com/2010/11/convert-sorted-list-to-balanced-binary.html
Two traversal of the linked list is all we need. First traversal to get the length of the list (which is then passed in as the parameter n into the function), then create nodes by the list's order.
BinaryTree* sortedListToBST(ListNode *& list, int start, int end) {
if (start > end) return NULL;
// same as (start+end)/2, avoids overflow
int mid = start + (end - start) / 2;
BinaryTree *leftChild = sortedListToBST(list, start, mid-1);
BinaryTree *parent = new BinaryTree(list->data);
parent->left = leftChild;
list = list->next;
parent->right = sortedListToBST(list, mid+1, end);
return parent;
}
BinaryTree* sortedListToBST(ListNode *head, int n) {
return sortedListToBST(head, 0, n-1);
}
You can't do better than linear time, since you have to at least read all the elements of the list, so you might as well copy the list into an array (linear time) and then construct the tree efficiently in the usual way, i.e. if you had the list [9,12,18,23,24,51,84], then you'd start by making 23 the root, with children 12 and 51, then 9 and 18 become children of 12, and 24 and 84 become children of 51. Overall, should be O(n) if you do it right.
The actual algorithm, for what it's worth, is "take the middle element of the list as the root, and recursively build BSTs for the sub-lists to the left and right of the middle element and attach them below the root".
Best isn't only about asynmptopic run time. The sorted linked list has all the information needed to create the binary tree directly, and I think this is probably what they are looking for
Note that the first and third entries become children of the second, then the fourth node has chidren of the second and sixth (which has children the fifth and seventh) and so on...
in psuedo code
read three elements, make a node from them, mark as level 1, push on stack
loop
read three elemeents and make a node of them
mark as level 1
push on stack
loop while top two enties on stack have same level (n)
make node of top two entries, mark as level n + 1, push on stack
while elements remain in list
(with a bit of adjustment for when there's less than three elements left or an unbalanced tree at any point)
EDIT:
At any point, there is a left node of height N on the stack. Next step is to read one element, then read and construct another node of height N on the stack. To construct a node of height N, make and push a node of height N -1 on the stack, then read an element, make another node of height N-1 on the stack -- which is a recursive call.
Actually, this means the algorithm (even as modified) won't produce a balanced tree. If there are 2N+1 nodes, it will produce a tree with 2N-1 values on the left, and 1 on the right.
So I think #sgolodetz's answer is better, unless I can think of a way of rebalancing the tree as it's built.
Trick question!
The best way is to use the STL, and advantage yourself of the fact that the sorted associative container ADT, of which set is an implementation, demands insertion of sorted ranges have amortized linear time. Any passable set of core data structures for any language should offer a similar guarantee. For a real answer, see the quite clever solutions others have provided.
What's that? I should offer something useful?
Hum...
How about this?
The smallest possible meaningful tree in a balanced binary tree is 3 nodes.
A parent, and two children. The very first instance of such a tree is the first three elements. Child-parent-Child. Let's now imagine this as a single node. Okay, well, we no longer have a tree. But we know that the shape we want is Child-parent-Child.
Done for a moment with our imaginings, we want to keep a pointer to the parent in that initial triumvirate. But it's singly linked!
We'll want to have four pointers, which I'll call A, B, C, and D. So, we move A to 1, set B equal to A and advance it one. Set C equal to B, and advance it two. The node under B already points to its right-child-to-be. We build our initial tree. We leave B at the parent of Tree one. C is sitting at the node that will have our two minimal trees as children. Set A equal to C, and advance it one. Set D equal to A, and advance it one. We can now build our next minimal tree. D points to the root of that tree, B points to the root of the other, and C points to the... the new root from which we will hang our two minimal trees.
How about some pictures?
[A][B][-][C]
With our image of a minimal tree as a node...
[B = Tree][C][A][D][-]
And then
[Tree A][C][Tree B]
Except we have a problem. The node two after D is our next root.
[B = Tree A][C][A][D][-][Roooooot?!]
It would be a lot easier on us if we could simply maintain a pointer to it instead of to it and C. Turns out, since we know it will point to C, we can go ahead and start constructing the node in the binary tree that will hold it, and as part of this we can enter C into it as a left-node. How can we do this elegantly?
Set the pointer of the Node under C to the node Under B.
It's cheating in every sense of the word, but by using this trick, we free up B.
Alternatively, you can be sane, and actually start building out the node structure. After all, you really can't reuse the nodes from the SLL, they're probably POD structs.
So now...
[TreeA]<-[C][A][D][-][B]
[TreeA]<-[C]->[TreeB][B]
And... Wait a sec. We can use this same trick to free up C, if we just let ourselves think of it as a single node instead of a tree. Because after all, it really is just a single node.
[TreeC]<-[B][A][D][-][C]
We can further generalize our tricks.
[TreeC]<-[B][TreeD]<-[C][-]<-[D][-][A]
[TreeC]<-[B][TreeD]<-[C]->[TreeE][A]
[TreeC]<-[B]->[TreeF][A]
[TreeG]<-[A][B][C][-][D]
[TreeG]<-[A][-]<-[C][-][D]
[TreeG]<-[A][TreeH]<-[D][B][C][-]
[TreeG]<-[A][TreeH]<-[D][-]<-[C][-][B]
[TreeG]<-[A][TreeJ]<-[B][-]<-[C][-][D]
[TreeG]<-[A][TreeJ]<-[B][TreeK]<-[D][-]<-[C][-]
[TreeG]<-[A][TreeJ]<-[B][TreeK]<-[D][-]<-[C][-]
We are missing a critical step!
[TreeG]<-[A]->([TreeJ]<-[B]->([TreeK]<-[D][-]<-[C][-]))
Becomes :
[TreeG]<-[A]->[TreeL->([TreeK]<-[D][-]<-[C][-])][B]
[TreeG]<-[A]->[TreeL->([TreeK]<-[D]->[TreeM])][B]
[TreeG]<-[A]->[TreeL->[TreeN]][B]
[TreeG]<-[A]->[TreeO][B]
[TreeP]<-[B]
Obviously, the algorithm can be cleaned up considerably, but I thought it would be interesting to demonstrate how one can optimize as you go by iteratively designing your algorithm. I think this kind of process is what a good employer should be looking for more than anything.
The trick, basically, is that each time we reach the next midpoint, which we know is a parent-to-be, we know that its left subtree is already finished. The other trick is that we are done with a node once it has two children and something pointing to it, even if all of the sub-trees aren't finished. Using this, we can get what I am pretty sure is a linear time solution, as each element is touched only 4 times at most. The problem is that this relies on being given a list that will form a truly balanced binary search tree. There are, in other words, some hidden constraints that may make this solution either much harder to apply, or impossible. For example, if you have an odd number of elements, or if there are a lot of non-unique values, this starts to produce a fairly silly tree.
Considerations:
Render the element unique.
Insert a dummy element at the end if the number of nodes is odd.
Sing longingly for a more naive implementation.
Use a deque to keep the roots of completed subtrees and the midpoints in, instead of mucking around with my second trick.
This is a python implementation:
def sll_to_bbst(sll, start, end):
"""Build a balanced binary search tree from sorted linked list.
This assumes that you have a class BinarySearchTree, with properties
'l_child' and 'r_child'.
Params:
sll: sorted linked list, any data structure with 'popleft()' method,
which removes and returns the leftmost element of the list. The
easiest thing to do is to use 'collections.deque' for the sorted
list.
start: int, start index, on initial call set to 0
end: int, on initial call should be set to len(sll)
Returns:
A balanced instance of BinarySearchTree
This is a python implementation of solution found here:
http://leetcode.com/2010/11/convert-sorted-list-to-balanced-binary.html
"""
if start >= end:
return None
middle = (start + end) // 2
l_child = sll_to_bbst(sll, start, middle)
root = BinarySearchTree(sll.popleft())
root.l_child = l_child
root.r_child = sll_to_bbst(sll, middle+1, end)
return root
Instead of the sorted linked list i was asked on a sorted array (doesn't matter though logically, but yes run-time varies) to create a BST of minimal height, following is the code i could get out:
typedef struct Node{
struct Node *left;
int info;
struct Node *right;
}Node_t;
Node_t* Bin(int low, int high) {
Node_t* node = NULL;
int mid = 0;
if(low <= high) {
mid = (low+high)/2;
node = CreateNode(a[mid]);
printf("DEBUG: creating node for %d\n", a[mid]);
if(node->left == NULL) {
node->left = Bin(low, mid-1);
}
if(node->right == NULL) {
node->right = Bin(mid+1, high);
}
return node;
}//if(low <=high)
else {
return NULL;
}
}//Bin(low,high)
Node_t* CreateNode(int info) {
Node_t* node = malloc(sizeof(Node_t));
memset(node, 0, sizeof(Node_t));
node->info = info;
node->left = NULL;
node->right = NULL;
return node;
}//CreateNode(info)
// call function for an array example: 6 7 8 9 10 11 12, it gets you desired
// result
Bin(0,6);
HTH Somebody..
This is the pseudo recursive algorithm that I will suggest.
createTree(treenode *root, linknode *start, linknode *end)
{
if(start == end or start = end->next)
{
return;
}
ptrsingle=start;
ptrdouble=start;
while(ptrdouble != end and ptrdouble->next !=end)
{
ptrsignle=ptrsingle->next;
ptrdouble=ptrdouble->next->next;
}
//ptrsignle will now be at the middle element.
treenode cur_node=Allocatememory;
cur_node->data = ptrsingle->data;
if(root = null)
{
root = cur_node;
}
else
{
if(cur_node->data (less than) root->data)
root->left=cur_node
else
root->right=cur_node
}
createTree(cur_node, start, ptrSingle);
createTree(cur_node, ptrSingle, End);
}
Root = null;
The inital call will be createtree(Root, list, null);
We are doing the recursive building of the tree, but without using the intermediate array.
To get to the middle element every time we are advancing two pointers, one by one element, other by two elements. By the time the second pointer is at the end, the first pointer will be at the middle.
The running time will be o(nlogn). The extra space will be o(logn). Not an efficient solution for a real situation where you can have R-B tree which guarantees nlogn insertion. But good enough for interview.
Similar to #Stuart Golodetz and #Jake Kurzer the important thing is that the list is already sorted.
In #Stuart's answer, the array he presented is the backing data structure for the BST. The find operation for example would just need to perform index array calculations to traverse the tree. Growing the array and removing elements would be the trickier part, so I'd prefer a vector or other constant time lookup data structure.
#Jake's answer also uses this fact but unfortunately requires you to traverse the list to find each time to do a get(index) operation. But requires no additional memory usage.
Unless it was specifically mentioned by the interviewer that they wanted an object structure representation of the tree, I would use #Stuart's answer.
In a question like this you'd be given extra points for discussing the tradeoffs and all the options that you have.
Hope the detailed explanation on this post helps:
http://preparefortechinterview.blogspot.com/2013/10/planting-trees_1.html
A slightly improved implementation from #1337c0d3r in my blog.
// create a balanced BST using #len elements starting from #head & move #head forward by #len
TreeNode *sortedListToBSTHelper(ListNode *&head, int len) {
if (0 == len) return NULL;
auto left = sortedListToBSTHelper(head, len / 2);
auto root = new TreeNode(head->val);
root->left = left;
head = head->next;
root->right = sortedListToBSTHelper(head, (len - 1) / 2);
return root;
}
TreeNode *sortedListToBST(ListNode *head) {
int n = length(head);
return sortedListToBSTHelper(head, n);
}
If you know how many nodes are in the linked list, you can do it like this:
// Gives path to subtree being built. If branch[N] is false, branch
// less from the node at depth N, if true branch greater.
bool branch[max depth];
// If rem[N] is true, then for the current subtree at depth N, it's
// greater subtree has one more node than it's less subtree.
bool rem[max depth];
// Depth of root node of current subtree.
unsigned depth = 0;
// Number of nodes in current subtree.
unsigned num_sub = Number of nodes in linked list;
// The algorithm relies on a stack of nodes whose less subtree has
// been built, but whose right subtree has not yet been built. The
// stack is implemented as linked list. The nodes are linked
// together by having the "greater" handle of a node set to the
// next node in the list. "less_parent" is the handle of the first
// node in the list.
Node *less_parent = nullptr;
// h is root of current subtree, child is one of its children.
Node *h, *child;
Node *p = head of the sorted linked list of nodes;
LOOP // loop unconditionally
LOOP WHILE (num_sub > 2)
// Subtract one for root of subtree.
num_sub = num_sub - 1;
rem[depth] = !!(num_sub & 1); // true if num_sub is an odd number
branch[depth] = false;
depth = depth + 1;
num_sub = num_sub / 2;
END LOOP
IF (num_sub == 2)
// Build a subtree with two nodes, slanting to greater.
// I arbitrarily chose to always have the extra node in the
// greater subtree when there is an odd number of nodes to
// split between the two subtrees.
h = p;
p = the node after p in the linked list;
child = p;
p = the node after p in the linked list;
make h and p into a two-element AVL tree;
ELSE // num_sub == 1
// Build a subtree with one node.
h = p;
p = the next node in the linked list;
make h into a leaf node;
END IF
LOOP WHILE (depth > 0)
depth = depth - 1;
IF (not branch[depth])
// We've completed a less subtree, exit while loop.
EXIT LOOP;
END IF
// We've completed a greater subtree, so attach it to
// its parent (that is less than it). We pop the parent
// off the stack of less parents.
child = h;
h = less_parent;
less_parent = h->greater_child;
h->greater_child = child;
num_sub = 2 * (num_sub - rem[depth]) + rem[depth] + 1;
IF (num_sub & (num_sub - 1))
// num_sub is not a power of 2
h->balance_factor = 0;
ELSE
// num_sub is a power of 2
h->balance_factor = 1;
END IF
END LOOP
IF (num_sub == number of node in original linked list)
// We've completed the full tree, exit outer unconditional loop
EXIT LOOP;
END IF
// The subtree we've completed is the less subtree of the
// next node in the sequence.
child = h;
h = p;
p = the next node in the linked list;
h->less_child = child;
// Put h onto the stack of less parents.
h->greater_child = less_parent;
less_parent = h;
// Proceed to creating greater than subtree of h.
branch[depth] = true;
num_sub = num_sub + rem[depth];
depth = depth + 1;
END LOOP
// h now points to the root of the completed AVL tree.
For an encoding of this in C++, see the build member function (currently at line 361) in https://github.com/wkaras/C-plus-plus-intrusive-container-templates/blob/master/avl_tree.h . It's actually more general, a template using any forward iterator rather than specifically a linked list.

Resources