Implementing visitors statistics for many users - ajax

I'm facing a challenge and I need your opinion, let me explain:
I have a database of around 300 000 users, which all have a profile page, and I would like to store the amounts of visitors that visit their profile on a weekly ( or daily?) basis for reporting purpose (graph would be available on their admin page).
I'm thinking about doing so in a dedicated table (let's call it "stat") organised as follows:
id / integer (id of users -- unique)
current_ip / text (serialized array of ip of visitors of the current period)
statistics / text (serialized array of statistics per period)
I'm thinking about an AJAX request on the profile page that would filter only non-robot user, check if the ip exist in the ´current_ip´ table (with a LIKE request) and if it doesn't exist I would unserialize the ´current_ip´, push the ip of the new visitor, serialize the ip and UPDATE the table.
At the end of each period (so every week or every day) I'm thinking about a cron task counting the number of ip un the 'current_ip', push that number (with the date) in the 'statistic' value (using the same method than previously explained), and then delete the ´curent_ip´ value so it´s empty for the next period.
Btw I'm using php5 and PostgreSQL (9.1) with an i5 (4 x 3.2 Ghz) in an ubuntu 12.04LTS dedicated server with SSD and 16g RAM.
Is that the best, easiest or fastest way of doing it? Am I all wrong?! Should I use 1 line per period instead of using a serialized array to store historical values?!
Any suggestion is welcome =)
Cheers
Geoffrey

Use HBase counters instead of postgres. It's much more eficient for that purpose.

Related

Is it better to use txt file to get the current counter value instead of database?

I am working on a website in laravel, wherein I am loading a current counter value from the database. And then the user clicks on the button to increase the score.
But as the website has around 4000 concurrent users at any given time, the Database connection is taking its toll on the server and resulting in timeouts.
If I load the current score from the txt file and then write it back to the same file, will it be better?
Or should I use an Application variable to store the score?
I have tried using the cache, but it doesn't pull the latest value. Database optimization is also not working due to the number of users.
I am looking at best way to show and increment counter without database usage.
A database would do a better job. A NoSQL database is perfect for your use case. You can use Redis, it stores the data in-memory (RAM), which means read and write operations will be much faster than other database that operates in secondary disk (Hard Drive).
Redis itself supports data structure to increment values, using INCR command. INCR increments the number stored at key by one. If the key does not exist, it is set to 0 before performing the operation.
For example your key that holds the value is my_counter. You can play around with redis-cli like so.
redis> SET my_counter "10"
"OK"
redis> INCR my_counter
(integer) 11
redis> GET my_counter
"11"
Fortunately, there is a Redis client for Laravel. You can have a read here:
https://laravel.com/docs/5.8/redis
Good luck :)
Edit 1:
If a high amount of user is causing the server to slow down, you have other server and architectural options that can be set alongside a new database. Such as horizontal and vertical scaling.
References:
https://github.com/phpredis/phpredis

a data structure to query number of events in different time interval

My program receives thousands of events in a second from different types. For example 100k API access in a second from users with millions of different IP addresses. I want to keep statistics and limit number of accesses in 1 minute, 1 hour, 1 day and so on. So I need event counts in last minute, hour or day for every user and I want it to be like a sliding window. In this case, type of event is the user address.
I started using a time series database, InfluxDB; but it failed to insert 100k events per second and aggregate queries to find event counts in a minute or an hour is even worse. I am sure InfluxDB is not capable of inserting 100k events per second and performing 300k aggregate queries at the same time.
I don't want events retrieved from the database because they are just a simple address. I just want to count them as fast as possible in different time intervals. I want to get the number of events of type x in a specific time interval (for example, past 1 hour).
I don't need to store statistics in the hard disk; so maybe a data structure to keep event counts in different time intervals is good for me. On the other hand, I need it to be like a sliding window.
Storing all the events in RAM in a linked-list and iterating over it to answer queries is another solution that comes to my mind but because the number of events is too high, keeping all of the events in RAM could not be a good idea.
Is there any good data structure or even a database for this purpose?
You didn't provide enough details on events input format and how events can be delivered to statistics backend: is it a stream of udp messages, http put/post requests or smth else.
One possible solution would be to use Yandex Clickhouse database.
Rough description of suggested pattern:
Load incoming raw events from your application into memory-based table Events
with Buffer storage engine
Create materialized view with per-minute aggregation in another
memory-based table EventsPerMinute with Buffer engine
Do the same for hourly aggregation of data in EventsPerHour
Optionally, use Grafana with clickhouse datasource plugin to build
dashboards
In Clickhouse DB Buffer storage engine not associated with any on-disk table will be kept entirely in memory and older data will be automatically replaced with fresh. This will give you simple housekeeping for raw data.
Tables (materialized views) EventsPerMinute and EventsPerHour can be also created with MergeTree storage engine if case you want to keep statistics on disk. Clickhouse can easily handle billions of records.
At 100K events/second you may need some kind of shaper/load balancer in front of database.
you can think of a hazelcast cluster instead of simple ram. I also think a graylog or simple elastic seach but with this kind of load you shoud test. You can think about your data structure as well. You can construct a hour map for each address and put the event into the hour bucket. And when the time passes the hour you can calculate the count and cache in this hour's bucket. When you need a minute granularity you go to hours bucket and count the events under the list of this hour.

Simulating server-side group and sort in Azure table storage

I have a table to which I add records whenever the user views a particular resource. The key fields are
Username
Resource
Date Viewed
On a history page of my app, I want to present a set number (e.g., top 5) of the user's most recently viewed Resources, but I want to group by Resource, so that if some were viewed several times, only the most recent of each one is shown.
To be clear, if the raw data looked like this:
UserA | ResourceA | Jan 1
UserA | ResourceA | Jan 2
UserA | ResourceB | Jan 3
UserA | ResourceA | Jan 4
...
...only the bottom two records would appear in the history page.
I know you can get server-side chronological sorting by using a string derived from the date in the PartitionKey or RowKey fields.
I also see that you could enable a crude grouping mechanism by using Username and Resource as your PartitionKey and RowKey fields, and then using Insert-or-update, to maintain a table in which you kept pointers for the most recent value for each combination. However, those records wouldn't be sorted chronologically.
Is there any way to design a set of tables so that I can get the data I need without retrieving tons of extra entities and sorting on the client? I'm willing to get elaborate with the design if that's what it takes. Thanks in advance!
First, I would strongly recommend that you read this excellent Azure Storage Table Design Guide: Designing Scalable and Performant Tables document from Storage team.
Yes, I would agree that it is somewhat tricky with Azure Table Storage but it is doable :).
What you have to do is keep multiple copies of the same data. Each copy will serve a different purpose.
Considering the scenario where you want to fetch most recent lines for Resource A and B, here's what your entity structure would look like:
PartitionKey: Date/Time (in Ticks) reversed i.e. DateTime.MaxValue.Ticks - LastAccessedDateTime.Ticks. Reverse ticks is required to that most recent entries will show up on the top of the table.
RowKey: Resource name.
AccessDate: Indicates the last access date/time.
User: Name of the user who accessed that resource.
So when you are interested in just finding out most recently used resources, you could start fetching records from the top.
In short, your data storage approach should be primarily governed by how you want to fetch the data. It would even mean you will have to save the same data multiple times.
UPDATE
As discussed in the comments below, Table Service doesn't directly support Server Side Grouping. This is something that you would need to do on your own. What you could do is create a separate table to store the access counts. As and when the resources are accessed, you basically either insert a new record in that table or update the count for that resource in that table.
Assuming you're always interested in finding out resource access count within a date/time range, here's what your entity structure would look like:
PartitionKey: Date/Time (in Ticks). The precision would depend on your reporting requirement. For example, if you want to maintain access counts by day then your precision would be a day.
RowKey: Resource name.
AccessCount: This field will constantly update as and when a resource is accessed.
LastAccessDateTime: This field will denote when a resource was last accessed.
For updating access counts, I would recommend that you make use of a background process. Basically in this approach, as a resource is accessed you add a message in a queue. This message will have resource name and date/time resource was last accessed. Then have a background process poll this queue and fetch messages. As the messages are received, you first get the current count and last access date/time for that resource. If no records are found, you simply insert a record in this table with count as 1. If a record is found then you compare the date/time from the table with the date/time sent in the message. If the date/time from the table is smaller than the date/time sent in the message, you update both count (increase that by 1) and last access date/time. If the date/time from the table is more than the date/time sent in the message, you only update the count.
Now to find most accessed resources in a time span, you simply query this table. Assuming there are limited number of resources (say in 100s), you can get this information from the table with at least 1 request. Since you're dealing with small amount of data, you can simply download this data on the client side and order it anyway you see fit. However to see the access details for a particular resource, you would have to fetch detailed data (1000 entities at a time).
Part of your brain might still be unconsciously trapped in relational-table design paradigms, I'm still getting to grips with that issue myself.
Rather than think of table storage as a database table (with the "query-ability" that goes with it) try visualizing it in more simple (dumb) terms.
A design problem I'm working on now is storing financial transaction data, and I want to know what the total $ amount of these transactions are. Because Azure table storage doesn't (yet?) offer aggregate functions I can't simply go .Sum(). To get around that I'm going to:
Sum the values of the transactions in my app before I pass them to azure.
I'll then pass that the result of the sum into azure as a separate piece of information, called RunningTotal.
Later on I can just return RunningTotal rather than pulling down all the transactions, and I can repeat the process by increment the value of RunningTotal each time i get new transactions.
Of course there are risks to this but the app is a personal one so the risk level is low and manageable, at least as a proof-of-concept.
Perhaps you can use a similar approach for the design of your system: compute useful values in advance. I'll almost be using table storage as a long-term cache rather than a database.

Caching expensive SQL query in memory or in the database?

Let me start by describing the scenario. I have an MVC 3 application with SQL Server 2008. In one of the pages we display a list of Products that is returned from the database and is UNIQUE per logged in user.
The SQL query (actually a VIEW) used to return the list of products is VERY expensive.
It is based on very complex business requirements which cannot be changed at this stage.
The database schema cannot be changed or redesigned as it is used by other applications.
There are 50k products and 5k users (each user may have access to 1 up to 50k products).
In order to display the Products page for the logged in user we use:
SELECT TOP X * FROM [VIEW] WHERE UserID = #UserId -- where 'X' is the size of the page
The query above returns a maximum of 50 rows (maximum page size). The WHERE clause restricts the number of rows to a maximum of 50k (products that the user has access to).
The page is taking about 5 to 7 seconds to load and that is exactly the time the SQL query above takes to run in SQL.
Problem:
The user goes to the Products page and very likely uses paging, re-sorts the results, goes to the details page, etc and then goes back to the list. And every time it takes 5-7s to display the results.
That is unacceptable, but at the same time the business team has accepted that the first time the Products page is loaded it can take 5-7s. Therefore, we thought about CACHING.
We now have two options to choose from, the most "obvious" one, at least to me, is using .Net Caching (in memory / in proc). (Please note that Distributed Cache is not allowed at the moment for technical constraints with our provider / hosting partner).
But I'm not very comfortable with this. We could end up with lots of products in memory (when there are 50 or 100 users logged in simultaneously) which could cause other issues on the server, like .Net constantly removing cache items to free up space while our code inserts new items.
The SECOND option:
The main problem here is that it is very EXPENSIVE to generate the User x Product x Access view, so we thought we could create a flat table (or in other words a CACHE of all products x users in the database). This table would be exactly the result of the view.
However the results can change at any time if new products are added, user permissions are changed, etc. So we would need to constantly refresh the table (which could take a few seconds) and this started to get a little bit complex.
Similarly, we though we could implement some sort of Cache Provider and, upon request from a user, we would run the original SQL query and select the products from the view (5-7s, acceptable only once) and save that result in a flat table called ProductUserAccessCache in SQL. Next request, we would get the values from this cached-table (as we could easily identify the results were cached for that particular user) with a fast query without calculations in SQL.
Any time a product was added or a permission changed, we would truncate the cached-table and upon a new request the table would be repopulated for the requested user.
It doesn't seem too complex to me, but what we are doing here basically is creating a NEW cache "provider".
Does any one have any experience with this kind of issue?
Would it be better to use .Net Caching (in proc)?
Any suggestions?
We were facing a similar issue some time ago, and we were thinking of using EF caching in order to avoid the delay on retrieving the information. Our problem was a 1 - 2 secs. delay. Here is some info that might help on how to cache a table extending EF. One of the drawbacks of caching is how fresh you need the information to be, so you set your cache expiration accordingly. Depending on that expiration, users might need to wait to get the fresh info more than they would like to, but if your users can accept that they migth be seing outdated info in order to avoid the delay, then the tradeoff would worth it.
In our scenario, we decided to better have the fresh info than quick, but as I said before, our waiting period wasn't that long.
Hope it helps

(ASP.NET) How would you go about creating a real-time counter which tracks database changes?

Here is the issue.
On a site I've recently taken over it tracks "miles" you ran in a day. So a user can log into the site, add that they ran 5 miles. This is then added to the database.
At the end of the day, around 1am, a service runs which calculates all the miles, all the users ran in the day and outputs a text file to App_Data. That text file is then displayed in flash on the home page.
I think this is kind of ridiculous. I was told they had to do this due to massive performance issues. They won't tell me exactly how they were doing it before or what the major performance issue was.
So what approach would you guys take? The first thing that popped into my mind was a web service which gets the data via an AJAX call. Perhaps every time a new "mile" entry is added, a trigger is fired and updates the "GlobalMiles" table.
I'd appreciate any info or tips on this.
Thanks so much!
Answering this question is a bit difficult since there we don't know all of your requirements and something didn't work before. So here are some different ideas.
First, revisit your assumptions. Generating a static report once a day is a perfectly valid solution if all you need is daily reports. Why hit the database multiple times throghout the day if all that's needed is a snapshot (for instance, lots of blog software used to write html files when a blog was posted rather than serving up the entry from the database each time -- many still do as an optimization). Is the "real-time" feature something you are adding?
I wouldn't jump to AJAX right away. Use the same input method, just move the report from static to dynamic. Doing too much at once is a good way to get yourself buried. When changing existing code I try to find areas that I can change in isolation wih the least amount of impact to the rest of the application. Then once you have the dynamic report then you can add AJAX (and please use progressive enhancement).
As for the dynamic report itself you have a few options.
Of course you can just SELECT SUM(), but it sounds like that would cause the performance problems if each user has a large number of entries.
If your database supports it, I would look at using an indexed view (sometimes called a materialized view). It should support allows fast updates to the real-time sum data:
CREATE VIEW vw_Miles WITH SCHEMABINDING AS
SELECT SUM([Count]) AS TotalMiles,
COUNT_BIG(*) AS [EntryCount],
UserId
FROM Miles
GROUP BY UserID
GO
CREATE UNIQUE CLUSTERED INDEX ix_Miles ON vw_Miles(UserId)
If the overhead of that is too much, #jn29098's solution is a good once. Roll it up using a scheduled task. If there are a lot of entries for each user, you could only add the delta from the last time the task was run.
UPDATE GlobalMiles SET [TotalMiles] = [TotalMiles] +
(SELECT SUM([Count])
FROM Miles
WHERE UserId = #id
AND EntryDate > #lastTaskRun
GROUP BY UserId)
WHERE UserId = #id
If you don't care about storing the individual entries but only the total you can update the count on the fly:
UPDATE Miles SET [Count] = [Count] + #newCount WHERE UserId = #id
You could use this method in conjunction with the SPROC that adds the entry and have both worlds.
Finally, your trigger method would work as well. It's an alternative to the indexed view where you do the update yourself on a table instad of SQL doing it automatically. It's also similar to the previous option where you move the global update out of the sproc and into a trigger.
The last three options make it more difficult to handle the situation when an entry is removed, although if that's not a feature of your application then you may not need to worry about that.
Now that you've got materialized, real-time data in your database now you can dynamically generate your report. Then you can add fancy with AJAX.
If they are truely having performance issues due to to many hits on the database then I suggest that you take all the input and cram it into a message queue (MSMQ). Then you can have a service on the other end that picks up the messages and does a bulk insert of the data. This way you have fewer db hits. Then you can output to the text file on the update too.
I would create a summary table that's rolled up once/hour or nightly which calculates total miles run. For individual requests you could pull from the nightly summary table plus any additional logged miles for the period between the last rollup calculation and when the user views the page to get the total for that user.
How many users are you talking about and how many log records per day?

Resources