Cluster / group counting algorithm on live grid - algorithm

I have a circular grid of ~2700 cells that represent the face of a detector. This grid is live, constantly updating, so we need to find clusters of hits with a couple microseconds.
Each cell is either a hit or a miss (0 or 1), and a cluster is a grouping of these hit cells that has a distinct perimeter. I want to count the number of clusters of hit cells very quickly so that we can save the data from events with a certain number of clusters (2) and toss out everything else.
Some algorithms currently in use rely on assigning a value for the number of hit neighbors to the cell. This is too slow because it requires all of the hit crystals to be identified before the clusters may be identified. Another, much prettier algorithm that works in parallel is based on the number of turns around a given perimeter of a cluster. It's really quite clever, so here's the link to the paper: http://www.sciencedirect.com/science/article/pii/0168900295007997 This paper also has an image of an ideal grid with clusters.
Most of the posts / papers I've read take data and apply markov chains or some other offline processing to create clusters of data-- we're looking for the opposite. We want to identify clusters of cells that we already have, and fast.
How might we find these clusters faster? Any tips or ideas to put me in the right (or a) direction?
Thank you!

Related

Storage assignment algorithm

I'm trying to code a storage assignment algorithm but I'm not sure what the best way would be to model the warehouse the algorithm runs on.
The warehouse consists of shelves that can fit one item per storage location, walking ways and measuring points. Items can only be retrieved from the front of the storage locations denoted with broken lines. (The image below is just a basic representation of the warehouse. In the final version it is supposed to be tested with various amounts of storage locations and SKUs.
The idea is to measure the distance from a measuring point to a storage location for each SKU and minimize the overall distances.
The algorithm itself follows a two step approach:
First a simple greedy is used to find a feasible starting solution.
Secondly, the main algorithm is an adapeted version of binary search that runs multiple
binary search iterations through the set of potentially optimal maximum distance combinations obtained from the greedy before and assigns the SKUs to the storage location that minimizes the objective value.
My basic idea was to model the storage locations as a graph from each measuring point to the storage locations with arcs representing the distance but I'm not 100% sure if this would make sense.
So what are your ideas?
Disclaimer: The main idea is based on the paper 'Scattered Storage: How to Distribute Stock Keeping Units All Around a Mixed-Shelves Warehouse' published by Boysen & Weidinger in 2018.
Interesting problem. However, I think you might be looking at the problem from the wrong angle. Rather than searching for where to put it, find the "cost function" from all measuring points to all storage locations. Then have each storage location store it's cost. Then you throw all the (available) storage locations into a priority queue.
If you need a storage location pull the next one from the priority queue. If a location frees up, add it the queue.
Make a grid graph that represents the path that can be traversed. IE: if (0,0) is the top left corner. Then there is no direct connection between (0,1) and (1,1) as that storage isn't accessible from the left side. However, there is connection between (1,0) and (1,1). Once you have this, you can run all shortest paths to find all the distances. You'll likely need to be able to mark squares as either a) Measuring location, b) walkway or c) Storage location.
The cost function and related bits is the real tricky thing to get right in terms of "real world practicality". Here are some things to consider:
In simple terms you are just looking for the distances to all measuring stations from each storage location and the cost is probably the average. In more complex terms, you may need to consider throughput. By this I mean it may not make sense to take something out a storage location, put something back, take it out again, put it back again and so on. That may cause bottlenecks as now everyone is trying to store stuff in the same general area and you might have some traffic issues with too many people in the same area. In this case, you may need to add some "randomness" to the measurements. For example the middle 2 have the same weight, but are on opposite ends of the warehouse (in theory). It would be best if some randomness was used to ensure there is a 50:50 chance of either one being the next place an item goes. Though that alone isn't likely to be enough if this is a real issue.
You may not actually want to minimize distance to a all measuring locations practically speaking. There are likely cases where certain SKU's are more relevant distance wise to certain measuring locations. In which case, you may want to bias the priority value in that direction. IE: An SKU that is almost always going to be moved to M1 should more likely be placed in a storage location closer to that. Of course that requires something more complex than a priority queue to get working right as you need to be able to search the available storage locations for the one closest to M1.
You may need to consider order items can be stored. IE: If a storage location is 2 deep (all the ones you have are 1 deep), you may want to fill the location further back first. Though I suspect this probably isn't the issue.
Vertical storage locations. Once you have a 2D grid working, a 3D grid isn't significantly more complex to implement, useful if storage locations are actually multiple level allowing for items to be placed on different shelves or something (or just stacked). The issue here is just like #3. Do you fill things storage locations up top to bottom? Bottom to top? Or random order? Of course, quite possible your needs are such that vertical storage isn't possible or simply impractical (too tall, too fragile, unstackable, no shelving, etc).
#2 This can be further enhanced by keeping note of which items are being fetched/placed. The system can also track how long it typically takes to fetch/place items and direct placement of SKUs to other areas if others are expected to be in that area around the time the item is being fetched/placed in it's storage location.

Algorithm for detecting clusters in peaks in time series signal data

I have a binary time series data set with on/off data. The on is usually short lived hence looks like a peak. This is how it looks.
I have detected the peaks and extracted time intervals between the peaks and have data for it too (small red 2way arrows at the bottom). The issue is that, as can be seen, the peaks are clustered and I would want to have quantification regarding the burst size (number of peaks in a cluster), interburst interval (distance between the last peak of the first cluster and first peak of the last cluster), no. of bursts, etc.
All this is easy to do once the clusters are identified. This can be easily done by thresholding the interpeak interval to be greater than some value. But all of my data doesn't have such well-defined clusters, and the interburst interval varies largely. Some of the datasets do not even have clusters. So my main issue here would be to identify clusters based on some automated and relative (not fixed) thresholding.
Could someone please help me with an algorithm for the same.
The answer to your question is: No. No one can (yet) help you with an algorithm for what you want.
The problem is that you don't have anything well quantified. You're asking for a reliable algorithm that can identify clusters, when you can't identify what a cluster is.
I wrote a previous answer that recommended you look at the ratio from one peak to the next. If the ratio is above a certain threshold, then it's an inter-cluster gap, otherwise it's an intra-cluster gap. That can work, but it does still have a threshold.
The problem is - you need one. You can't just eyeball each graph and say "Oh, there's a cluster." If you don't define a cluster, you can't identify one. There are ways to make your thresholds more generic; the ratio is one of the simpler ways that lets you avoid scaling issues, and is generally effective. You could look at rolling averages. There are all sorts of ways to play with your data, but somewhere in there, you have to define what you want. Even if you trained some artificial intelligence, you should ideally be doing it with a fixed criteria as to what's a cluster and what isn't. And once you have the fixed criteria, you don't need artificial intelligence.
So, define a cluster. Once you can quantify what a cluster means to you, you can work on making an algorithm for it.
Start by answering these questions:
How many peaks at a minimum are needed to define a cluster?
Is there a minimum or maximum time between peaks that makes it not a cluster? How about a minimum or maximum time that's relative to the entire time of the dataset?
Is there a minimum distance between clusters that makes it two instead of one?
If it helps, look at simplified plots like these to help you come up with your answers. Can you define a cluster for each of these?
..||.|.|.|.||
|.|.|.|.|.|.|
||..||..||..|
||....||....|
|...||||.....

Dividing the world in a thousand or so locations

Background: I want to create a weather service, and since most available APIs limit the number of daily calls, I want to divide the planet in a thousand or so areas.
Obviously, internet users are not uniformly distributed, so the sampling should be finer around densely populated regions.
How should I go about implementing this?
Where can I find data regarding geographical internet user density?
The algorithm will probably be something similar to k-means. However, implementing it on a sphere with oceans may be a bit tricky. Any insight?
Finally, maybe there is a way I can avoid doing all of this?
Very similar to k-mean is the centroidal Voronoi diagram (it is the continuous version of k-means). However, this would produce a uniform tesselation of your sphere that does not account for user density as you wish.
So a similar solution is the same technique but used with a Power Diagram : a Power Diagram is a Voronoi Diagram that accounts for a density (by assigning a weight to each Voronoi seed). Such diagram can be computed using an embedding in a 3D space (instead of 2D) that consists of the first two (x,y) coordinates plus a third one which is the square root of [any large positive constant minus the weight for the given point].
Using that, you can obtain a tesselation of your domain accounting for a user density.
You don't care about internet user density in general. You care about the density of users using your service - and you don't care where those users are, you care where they ask about. So once your site has been going for more than a day you can use the locations people ask about the previous day to work out what the areas should be for the next day.
Dynamic programming on a tree is easy. What I would do for an algorithm is to build a tree of successively more finely divided cells. More cells mean a smaller error, because people get predictions for points closer to them, and you can work out the error, or at least the relative error between more cells and fewer cells. Starting from the bottom up work out the smallest possible total error contributed by each subtree, allowing it to be divided in up to 1,2,3,..N. ways. You can work out the best possible division and smallest possible error for each k=1..N for a node by looking at the smallest possible error you have already calculated for each of its descendants, and working out how best to share out the available k divisions between them.
I would try to avoid doing this by thinking of a different idea. Depending on the way you look at life, there are at least two disadvantages of this:
1) You don't seem to be adding anything to the party. It looks like you are interposing yourself between organizations that actually make weather forecasts and their clients. Organizations lose direct contact with their clients, which might for instance lose them advertising revenue. Customers get a poorer weather forecast.
2) Most sites have legal terms of service, which must clients can ignore without worrying. My guess is that you would be breaking those terms of service, and if your service gets popular enough to be noticed they will be enforced against you.

Efficient data structure for quality threshold clustering algorithm

I'm trying to implement the quality threshold clustering algorithm. The outline of it (taken from here) is listed below:
Initialize the threshold distance allowed for clusters and the minimum cluster size
Build a candidate cluster for each data point by including the closest point, the next closest, and so on, until the distance of the cluster surpasses the threshold
Save the candidate cluster with the most points as the first true cluster, and remove all points in the cluster from further consideration
Repeat with the reduced set of points until no more cluster can be formed having the minimum cluster size
I've been reading up on some nearest neighbor search algorithms and space partitioning data structures, as they seem to be the kind of thing I need, but I cannot determine which one to use or if I'm supposed to be looking at something else.
I want to implement the data structure myself for educational purposes, and I need one that can successively return the nearest points for some point. However, since I don't know the number of times I need to query (i.e. until the threshold is exceeded), I can't use k-nearest neighbor algorithms. I've been looking mostly at quadtrees and k-d trees.
Additionally, since the algorithm constantly builds new candidate clusters, it would be interesting to use a modified data structure that uses cached information to speed up subsequent queries (but also taking point removal into account).
This algorithm sounds like a predecessor of DBSCAN (Wikipedia), which is known to work very well with R*-Tree indexes (Wikipedia). But of course, kd-trees are also an option. The main difference between these two is that R*-trees are meant for database use - they support online insertions and deletions very well, and are block oriented - while kd-trees are more of an in-memory data structure based on binary splits. R*-trees perform rebalancing, while kd-trees will slowly become unbalanced and will need to be rebuilt.
I find nearest neighbor search in R*-trees much more understandable than in k-d-trees, because you have the bounding rectangles are very intuitive.
DBSCAN also "removes" points from further consideration, but simply by marking them as already assigned. That way you don't need to update the index; and it's sufficient to bulk-load it once in the beginning. You should be able to do this for QT, too. So unless I'm mistaken, you can get the QT clustering efficiently by running DBSCAN with epsilon set to the QT clustering and minPts=2 (although one would prefer higher values in proper DBSCAN).
There are a number of DBSCAN implementations around. The one in Weka is exceptionally crappy, so stay away from it. The fpc implementation in R is okay, but could still be a lot faster. ELKI seems to be the only one with full index support, and the speed difference is massive. Their Benchmark shows a 12x speed gain by using an index on this data set, allowing them to cluster in 50 seconds instead of 603 (without index). Weka took incredible 37917 seconds, R fpc 4339 there. That aligns with my experiences, Weka has the reputation of being quite slow, and R only kicks ass at vectorized operations, once the R interpreter has to work, it is significantly slower than anything native. But it is a good example about how different the same algorithm can perform when it is implemented by different people. I would have expected this to be 2x-5x, but apparently the differences can easily be 50x from one programmer implementing the same algorithm to another.

Clustering Algorithm for Paper Boys

I need help selecting or creating a clustering algorithm according to certain criteria.
Imagine you are managing newspaper delivery persons.
You have a set of street addresses, each of which is geocoded.
You want to cluster the addresses so that each cluster is assigned to a delivery person.
The number of delivery persons, or clusters, is not fixed. If needed, I can always hire more delivery persons, or lay them off.
Each cluster should have about the same number of addresses. However, a cluster may have less addresses if a cluster's addresses are more spread out. (Worded another way: minimum number of clusters where each cluster contains a maximum number of addresses, and any address within cluster must be separated by a maximum distance.)
For bonus points, when the data set is altered (address added or removed), and the algorithm is re-run, it would be nice if the clusters remained as unchanged as possible (ie. this rules out simple k-means clustering which is random in nature). Otherwise the delivery persons will go crazy.
So... ideas?
UPDATE
The street network graph, as described in Arachnid's answer, is not available.
I've written an inefficient but simple algorithm in Java to see how close I could get to doing some basic clustering on a set of points, more or less as described in the question.
The algorithm works on a list if (x,y) coords ps that are specified as ints. It takes three other parameters as well:
radius (r): given a point, what is the radius for scanning for nearby points
max addresses (maxA): what are the maximum number of addresses (points) per cluster?
min addresses (minA): minimum addresses per cluster
Set limitA=maxA.
Main iteration:
Initialize empty list possibleSolutions.
Outer iteration: for every point p in ps.
Initialize empty list pclusters.
A worklist of points wps=copy(ps) is defined.
Workpoint wp=p.
Inner iteration: while wps is not empty.
Remove the point wp in wps. Determine all the points wpsInRadius in wps that are at a distance < r from wp. Sort wpsInRadius ascendingly according to the distance from wp. Keep the first min(limitA, sizeOf(wpsInRadius)) points in wpsInRadius. These points form a new cluster (list of points) pcluster. Add pcluster to pclusters. Remove points in pcluster from wps. If wps is not empty, wp=wps[0] and continue inner iteration.
End inner iteration.
A list of clusters pclusters is obtained. Add this to possibleSolutions.
End outer iteration.
We have for each p in ps a list of clusters pclusters in possibleSolutions. Every pclusters is then weighted. If avgPC is the average number of points per cluster in possibleSolutions (global) and avgCSize is the average number of clusters per pclusters (global), then this is the function that uses both these variables to determine the weight:
private static WeightedPClusters weigh(List<Cluster> pclusters, double avgPC, double avgCSize)
{
double weight = 0;
for (Cluster cluster : pclusters)
{
int ps = cluster.getPoints().size();
double psAvgPC = ps - avgPC;
weight += psAvgPC * psAvgPC / avgCSize;
weight += cluster.getSurface() / ps;
}
return new WeightedPClusters(pclusters, weight);
}
The best solution is now the pclusters with the least weight. We repeat the main iteration as long as we can find a better solution (less weight) than the previous best one with limitA=max(minA,(int)avgPC). End main iteration.
Note that for the same input data this algorithm will always produce the same results. Lists are used to preserve order and there is no random involved.
To see how this algorithm behaves, this is an image of the result on a test pattern of 32 points. If maxA=minA=16, then we find 2 clusters of 16 addresses.
(source: paperboyalgorithm at sites.google.com)
Next, if we decrease the minimum number of addresses per cluster by setting minA=12, we find 3 clusters of 12/12/8 points.
(source: paperboyalgorithm at sites.google.com)
And to demonstrate that the algorithm is far from perfect, here is the output with maxA=7, yet we get 6 clusters, some of them small. So you still have to guess too much when determining the parameters. Note that r here is only 5.
(source: paperboyalgorithm at sites.google.com)
Just out of curiosity, I tried the algorithm on a larger set of randomly chosen points. I added the images below.
Conclusion? This took me half a day, it is inefficient, the code looks ugly, and it is relatively slow. But it shows that it is possible to produce some result in a short period of time. Of course, this was just for fun; turning this into something that is actually useful is the hard part.
(source: paperboyalgorithm at sites.google.com)
(source: paperboyalgorithm at sites.google.com)
What you are describing is a (Multi)-Vehicle-Routing-Problem (VRP). There's quite a lot of academic literature on different variants of this problem, using a large variety of techniques (heuristics, off-the-shelf solvers etc.). Usually the authors try to find good or optimal solutions for a concrete instance, which then also implies a clustering of the sites (all sites on the route of one vehicle).
However, the clusters may be subject to major changes with only slightly different instances, which is what you want to avoid. Still, something in the VRP-Papers may inspire you...
If you decide to stick with the explicit clustering step, don't forget to include your distribution in all clusters, as it is part of each route.
For evaluating the clusters using a graph representation of the street grid will probably yield more realistic results than connecting the dots on a white map (although both are TSP-variants). If a graph model is not available, you can use the taxicab-metric (|x_1 - x_2| + |y_1 - y_2|) as an approximation for the distances.
I think you want a hierarchical agglomeration technique rather than k-means. If you get your algorithm right you can stop it when you have the right number of clusters. As someone else mentioned you can seed subsequent clusterings with previous solutions which may give you a siginificant performance improvement.
You may want to look closely at the distance function you use, especially if your problem has high dimension. Euclidean distance is the easiest to understand but may not be the best, look at alternatives such as Mahalanobis.
I'm presuming that your real problem has nothing to do with delivering newspapers...
Have you thought about using an economic/market based solution? Divide the set up by an arbitrary (but constant to avoid randomness effects) split into even subsets (as determined by the number of delivery persons).
Assign a cost function to each point by how much it adds to the graph, and give each extra point an economic value.
Iterate allowing each person in turn to auction their worst point, and give each person a maximum budget.
This probably matches fairly well how the delivery people would think in real life, as people will find swaps, or will say "my life would be so much easier if I didn't do this one or two. It is also pretty flexible (for example, would allow one point miles away from any others to be given a premium fairly easily).
I would approach it differently: Considering the street network as a graph, with an edge for each side of each street, find a partitioning of the graph into n segments, each no more than a given length, such that each paperboy can ride a single continuous path from the start to the end of their route. This way, you avoid giving people routes that require them to ride the same segments repeatedly (eg, when asked to cover both sides of a street without covering all the surrounding streets).
This is a very quick and dirty method of discovering where your "clusters" lie. This was inspired by the game "Minesweeper."
Divide your entire delivery space up into a grid of squares. Note - it will take some tweaking of the size of the grid before this will work nicely. My intuition tells me that a square size roughly the size of a physical neighbourhood block will be a good starting point.
Loop through each square and store the number of delivery locations (houses) within each block. Use a second loop (or some clever method on the first pass) to store the number of delivery points for each neighbouring block.
Now you can operate on this grid in a similar way to photo manipulation software. You can detect the edges of clusters by finding blocks where some neighbouring blocks have no delivery points in them.
Finally you need a system that combines number of deliveries made as well as total distance travelled to create and assign routes. There may be some isolated clusters with just a few deliveries to be made, and one or two super clusters with many homes very close to each other, requiring multiple delivery people in the same cluster. Every home must be visited, so that is your first constraint.
Derive a maximum allowable distance to be travelled by any one delivery person on a single run. Next do the same for the number of deliveries made per person.
The first ever run of the routing algorithm would assign a single delivery person, send them to any random cluster with not all deliveries completed, let them deliver until they hit their delivery limit or they have delivered to all the homes in the cluster. If they have hit the delivery limit, end the route by sending them back to home base. If they could safely travel to the nearest cluster and then home without hitting their max travel distance, do so and repeat as above.
Once the route is finished for the current delivery person, check if there are homes that have not yet had a delivery. If so, assign another delivery person, and repeat the above algorithm.
This will generate initial routes. I would store all the info - the location and dimensions of each square, the number of homes within a square and all of its direct neighbours, the cluster to which each square belongs, the delivery people and their routes - I would store all of these in a database.
I'll leave the recalc procedure up to you - but having all the current routes, clusters, etc in a database will enable you to keep all historic routes, and also try various scenarios to see how to best to adapt to changes creating the least possible changes to existing routes.
This is a classic example of a problem that deserves an optimized solution rather than trying to solve for "The OPTIMUM". It's similar in some ways to the "Travelling Salesman Problem", but you also need to segment the locations during the optimization.
I've used three different optimization algorithms to good effect on problems like this:
Simulated Annealing
Great Deluge Algorithm
Genetic Algoritms
Using an optimization algorithm, I think you've described the following "goals":
The geographic area for each paper
boy should be minimized.
The number of subscribers served by
each should be approximately equal.
The distance travelled by each
should be about equal.
(And one you didn't state, but might
matter) The route should end where
it began.
Hope this gets you started!
* Edit *
If you don't care about the routes themselves, that eliminates goals 3 and 4 above, and perhaps allows the problem to be more tailored to your bonus requirements.
If you take demographic information into account (such as population density, subscription adoption rate and subscription cancellation rate) you could probably use the optimization techniques above to eliminate the need to rerun the algorithm at all as subscribers adopted or dropped your service. Once the clusters were optimized, they would stay in balance because the rates of each for an individual cluster matched the rates for the other clusters.
The only time you'd have to rerun the algorithm was when and external factor (such as a recession/depression) caused changes in the behavior of a demographic group.
Rather than a clustering model, I think you really want some variant of the Set Covering location model, with an additional constraint to cover the number of addresses covered by each facility. I can't really find a good explanation of it online. You can take a look at this page, but they're solving it using areal units and you probably want to solve it in either euclidean or network space. If you're willing to dig up something in dead tree format, check out chapter 4 of Network and Discrete Location by Daskin.
Good survey of simple clustering algos. There is more though:
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/index.html
Perhaps a minimum spanning tree of the customers, broken into set based on locality to the paper boy. Prims or Kruskal to get the MST with the distance between houses for the weight.
I know of a pretty novel approach to this problem that I have seen applied to Bioinformatics, though it is valid for any sort of clustering problem. It's certainly not the simplest solution but one that I think is very interesting. The basic premise is that clustering involves multiple objectives. For one you want to minimise the number of clusters, the trival solution being a single cluster with all the data. The second standard objective is to minimise the amount of variance within a cluster, the trivial solution being many clusters each with only a single data point. The interesting solutions come about when you try to include both of these objectives and optimise the trade-off.
At the core of the proposed approach is something called a memetic algorithm that is a little like a genetic algorithm, which steve mentioned, however it not only explores the solution space well but also has the ability to focus in on interesting regions, i.e. solutions. At the very least I recommend reading some of the papers on this subject as memetic algorithms are an unusual approach, though a word of warning; it may lead you to read The Selfish Gene and I still haven't decided whether that was a good thing... If algorithms don't interest you then maybe you can just try and express your problem as the format requires and use the source code provided. Related papers and code can be found here: Multi Objective Clustering
This is not directly related to the problem, but something I've heard and which should be considered if this is truly a route-planning problem you have. This would affect the ordering of the addresses within the set assigned to each driver.
UPS has software which generates optimum routes for their delivery people to follow. The software tries to maximize the number of right turns that are taken during the route. This saves them a lot of time on deliveries.
For people that don't live in the USA the reason for doing this may not be immediately obvious. In the US people drive on the right side of the road, so when making a right turn you don't have to wait for oncoming traffic if the light is green. Also, in the US, when turning right at a red light you (usually) don't have to wait for green before you can go. If you're always turning right then you never have to wait for lights.
There's an article about it here:
http://abcnews.go.com/wnt/story?id=3005890
You can have K means or expected maximization remain as unchanged as possible by using the previous cluster as a clustering feature. Getting each cluster to have the same amount of items seems bit trickier. I can think of how to do it as a post clustering step by doing k means and then shuffling some points until things balance but that doesn't seem very efficient.
A trivial answer which does not get any bonus points:
One delivery person for each address.
You have a set of street
addresses, each of which is geocoded.
You want to cluster the addresses so that each cluster is
assigned to a delivery person.
The number of delivery persons, or clusters, is not fixed. If needed,
I can always hire more delivery
persons, or lay them off.
Each cluster should have about the same number of addresses. However,
a cluster may have less addresses if a
cluster's addresses are more spread
out. (Worded another way: minimum
number of clusters where each cluster
contains a maximum number of
addresses, and any address within
cluster must be separated by a maximum
distance.)
For bonus points, when the data set is altered (address added or
removed), and the algorithm is re-run,
it would be nice if the clusters
remained as unchanged as possible (ie.
this rules out simple k-means
clustering which is random in nature).
Otherwise the delivery persons will go
crazy.
As has been mentioned a Vehicle Routing Problem is probably better suited... Although strictly isn't designed with clustering in mind, it will optimize to assign based on the nearest addresses. Therefore you're clusters will actually be the recommended routes.
If you provide a maximum number of deliverers then and try to reach the optimal solution this should tell you the min that you require. This deals with point 2.
The same number of addresses can be obtained by providing a limit on the number of addresses to be visited, basically assigning a stock value (now its a capcitated vehicle routing problem).
Adding time windows or hours that the delivery persons work helps reduce the load if addresses are more spread out (now a capcitated vehicle routing problem with time windows).
If you use a nearest neighbour algorithm then you can get identical results each time, removing a single address shouldn't have too much impact on your final result so should deal with the last point.
I'm actually working on a C# class library to achieve something like this, and think its probably the best route to go down, although not neccesairly easy to impelement.
I acknowledge that this will not necessarily provide clusters of roughly equal size:
One of the best current techniques in data clustering is Evidence Accumulation. (Fred and Jain, 2005)
What you do is:
Given a data set with n patterns.
Use an algorithm like k-means over a range of k. Or use a set of different algorithms, the goal is to produce an ensemble of partitions.
Create a co-association matrix C of size n x n.
For each partition p in the ensemble:
3.1 Update the co-association matrix: for each pattern pair (i, j) that belongs to the same cluster in p, set C(i, j) = C(i, j) + 1/N.
Use a clustering algorihm such as Single Link and apply the matrix C as the proximity measure. Single Link gives a dendrogram as result in which we choose the clustering with the longest lifetime.
I'll provide descriptions of SL and k-means if you're interested.
I would use a basic algorithm to create a first set of paperboy routes according to where they live, and current locations of subscribers, then:
when paperboys are:
Added: They take locations from one or more paperboys working in the same general area from where the new guy lives.
Removed: His locations are given to the other paperboys, using the closest locations to their routes.
when locations are:
Added : Same thing, the location is added to the closest route.
Removed: just removed from that boy's route.
Once a quarter, you could re-calculate the whole thing and change all the routes.

Resources