Scenario: Suppose if I am doing echo 1 > sysfs_entry - It will start doing some I/O operation until I do echo 0 > sysfs_entry.
Here, I wanted to implement timer in sysfs_entry so that it should stop I/O operation after t seconds , even if I do not give echo 0 > sysfs_entry.
PS: I do not want to use busy wait methods.
Preferred: deferred/delayed work
Please somebody help me to resolve this scenario.
You can use add_timer() and del_timer() API for this. Event queue might also work (depends on context). For more details, please read Chapter 7 «Time, Delays, and Deferred Work» of Linux Device Drivers (aka LDD) book that is available free of charge right here. The Timer API is described on page 198.
Add a timer with add_timer() in the write callback of the device driver and make sure to del_timer() or del_timer_sync() in the read callback.
Related
We are trying to migrate from 2.X to 3.X.
https://github.com/reactor/reactor-core/issues/375
We have used the EventBus as event manager in our application(Low latency FX system) and it works very well for us.
After the change we decided to take every module and create his own processor to handle event.
1. Does this use seems to be correct from your point of view? Because lack of document at the current stage and after reviewing everything we could we don't really know what to do here
2. We have tried to use Flux in order to perform action every X interval
For example: Market is arriving 1000 for 1 second but we want to process an update only 4 time in a second. After upgrading we are using:
Processor with buffer and sending to another method.
In this method we have Flux that get list and try to work in parallel in order to complete his task.
We had 2 major problems:
1. Sometimes we received Null event which we cannot find that our system is sending to i suppose maybe we are miss using the processor
//Definition of processor
ReplayProcessor<Event> classAEventProcessor = ReplayProcessor.create();
//Event handler subscribing
public void onMyEventX(Consumer<Event> consumer) {
Flux<Event> handler = classAEventProcessor .filter(event -> event.getType().equals(EVENT_X));
handler.subscribe(consumer);
}
in the example above the event in the handler sometimes get null.. Once he does the stream stop working until we are restating server(Because only on restart we are doing creating processor)
2.We have tried to us parallel but sometimes some of the message were disappeared so maybe we are misusing the framework
//On constructor
tickProcessor.buffer(1024, Duration.of(250, ChronoUnit.MILLIS)).subscribe(markets ->
handleMarkets(markets));
//Handler
Flux.fromIterable(getListToProcess())
.parallel()
.runOn(Schedulers.parallel())
.doOnNext(entryMap -> {
DoBlockingWork(entryMap);
})
.sequential()
.subscribe();
The intention of this is that the processor will wakeup every 250ms and invoke the handler. The handler will work work with Flux parallel in order to make better and faster processing.
*In case that DoBlockingWork takes more than 250ms i couldn't understand what will be the behavior
UPDATE:
The EventBus was wrapped by us and every event subscribed throw the wrapped event manager.
Now we have tried to create event processor for every module but it works very slow. We have used TopicProcessor with ThreadExecutor and still very slow.. EventBus did the same work in high speed
Anyone has any idea? BTW when i tried to use DirectProcessor it seems to work much better that the TopicProcessor
Reactor 3 is built around the concept that you should avoid blocking as much as you can, so in your second snippet DoBlockingWork doesn't look good.
How are the events generated? Do you maybe have an listener-based asynchronous API to get them? If so, you could try using Flux.create.
For your use case of "we have 1000 events in 1 second, but only want to process 4", I'd chain a sample operator. For instance, sample(Duration.ofMillis(250)) will divide each second into 4 windows, from which it will only emit the last element.
The reference guide is being written, as well as a page where you can find links to external articles and learning material.There's a preview of the WIP reference guide here and the learning resources page here.
Is there a special "wait for event" function that can wait for 3 queues at the same time at device side so it doesn't wait for all queues serially from host side?
Is there a checkpoint command to send into a command queue such that it must wait for other command queues to hit same(vertically) barrier/checkpoint to wait and continue from device side so no host-side round-trip is needed?
For now, I tried two different versions:
clWaitForEvents(3, evt_);
and
int evtStatus0 = 0;
clGetEventInfo(evt_[0], CL_EVENT_COMMAND_EXECUTION_STATUS,
sizeof(cl_int), &evtStatus0, NULL);
while (evtStatus0 > 0)
{
clGetEventInfo(evt_[0], CL_EVENT_COMMAND_EXECUTION_STATUS,
sizeof(cl_int), &evtStatus0, NULL);
Sleep(0);
}
int evtStatus1 = 0;
clGetEventInfo(evt_[1], CL_EVENT_COMMAND_EXECUTION_STATUS,
sizeof(cl_int), &evtStatus1, NULL);
while (evtStatus1 > 0)
{
clGetEventInfo(evt_[1], CL_EVENT_COMMAND_EXECUTION_STATUS,
sizeof(cl_int), &evtStatus1, NULL);
Sleep(0);
}
int evtStatus2 = 0;
clGetEventInfo(evt_[2], CL_EVENT_COMMAND_EXECUTION_STATUS,
sizeof(cl_int), &evtStatus2, NULL);
while (evtStatus2 > 0)
{
clGetEventInfo(evt_[2], CL_EVENT_COMMAND_EXECUTION_STATUS,
sizeof(cl_int), &evtStatus2, NULL);
Sleep(0);
}
second one is a bit faster(I saw it from someone else) and both are executed after 3 flush commands.
Looking at CodeXL profiler results, first one waits longer between finish points and some operations don't even seem to be overlapping. Second one shows 3 finish points are all within 3 milliseconds so it is faster and longer parts are overlapped(read+write+compute at the same time).
If there is a way to achieve this with only 1 wait command from host side, there must a "flush" version of it too but I couldn't find.
Is there any way to achieve below picture instead of adding flushes between each pipeline step?
queue1 write checkpoint write checkpoint write
queue2 - compute checkpoint compute checkpoint compute
queue3 - checkpoint read checkpoint read
all checkpoints have to be vertically synchronized and all these actions must not start until a signal is given. Such as:
queue1.ndwrite(...);
queue1.ndcheckpoint(...);
queue1.ndwrite(...);
queue1.ndcheckpoint(...);
queue1.ndwrite(...);
queue2.ndrangekernel(...);
queue2.ndcheckpoint(...);
queue2.ndrangekernel(...);
queue2.ndcheckpoint(...);
queue2.ndrangekernel(...);
queue3.ndread(...);
queue3.ndcheckpoint(...);
queue3.ndread(...);
queue3.ndcheckpoint(...);
queue3.ndread(...);
queue1.flush()
queue2.flush()
queue3.flush()
queue1.finish()
queue2.finish()
queue3.finish()
checkpoints are all handled in device side and only 3 finish commands are needed from host side(even better,only 1 finish for all queues?)
How I bind 3 queues to 3 events with "clWaitForEvents(3, evt_);" for now is:
hCommandQueue->commandQueue.enqueueBarrierWithWaitList(NULL, &evt[0]);
hCommandQueue2->commandQueue.enqueueBarrierWithWaitList(NULL, &evt[1]);
hCommandQueue3->commandQueue.enqueueBarrierWithWaitList(NULL, &evt[2]);
if this "enqueue barrier" can talk with other queues, how could I achieve that? Do I need to keep host-side events alive until all queues are finished or can I delete them or re-use them later? From the documentation, it seems like first barrier's event can be put to second queue and second one's barrier event can be put to third one along with first one's event so maybe it is like:
hCommandQueue->commandQueue.enqueueBarrierWithWaitList(NULL, &evt[0]);
hCommandQueue2->commandQueue.enqueueBarrierWithWaitList(evt_0, &evt[1]);
hCommandQueue3->commandQueue.enqueueBarrierWithWaitList(evt_0_and_1, &evt[2]);
in the end wait for only evt[2] maybe or using only 1 same event for all:
hCommandQueue->commandQueue.enqueueBarrierWithWaitList(sameEvt, &evt[0]);
hCommandQueue2->commandQueue.enqueueBarrierWithWaitList(sameEvt, &evt[1]);
hCommandQueue3->commandQueue.enqueueBarrierWithWaitList(sameEvt, &evt[2]);
where to get sameEvt object?
anyone tried this? Should I start all queues with a barrier so they dont start until I raise some event from host side or lazy-executions of "enqueue" is %100 trustable to "not to start until I flush/finish" them? How do I raise an event from host to device(sameEvt doesn't have a "raise" function, is it clCreateUserEvent?)?
All 3 queues are in-order type and are in same context. Out-of-order type is not supported by all graphics cards. C++ bindings are being used.
Also there are enqueueWaitList(is this deprecated?) and clEnqueueMarker but I don't know how to use them and documentation doesn't have any example in Khronos' website.
You asked too many questions and expressed too many variants to provide you with the only solution, so I will try to answer in general that you can figure out the most suitable solution.
If the queues are bind to the same context (possibly to different devices within the same context) than it is possible to synchronize them through the events. I.e. you can obtain an event from a command submitted to one queue and use this event to synchronize a command submitted to another queue, e.g.
queue1.enqueue(comm1, /*dependency*/ NULL, /*result event*/ &e1);
queue2.enqueue(comm2, /*dependency*/ &e1, /*result event*/ NULL);
In this example, comm2 will wait for comm1 completion.
If you need to enqueue commands first but no to allow them to be executed you can create user event (clCreateUserEvent) and signal it manually (clSetUserEventStatus). The implementation is allowed to process command as soon as they enqueued (the driver is not required to wait for the flush).
The barrier seems overkill for your purpose because it waits for all commands previously submitted to the queue. You can really use clEnqueueMarker that can be used to wait for all events and provide one event to be used for other commands.
As far as I know you can retain the event at any moment if you do not need it more. The implementation should prolong the event life-time if it is required for internal purposes.
I do not know what is enqueueWaitList.
Off-topic: if you need non-trivial dependencies between calculations you may want to consider TBB flow graph and opencl_node. The opencl_node uses events for syncronization and avoids "host-device" synchronizations if possible. However, it can be tricky to use multiple queues for the same device.
As far as I know, Intel HD Graphics 530 supports out-of-order queues (at least host-side).
You are making it much harder than it needs to be. On the write queue take an event. Use that as a condition for the compute on the compute queue, and take another event. Use that as a condition on the read on the read queue. There is no reason to force any other synchronization. Note: My interpretation of the spec is that you must clFlush on a queue that you took an event from before using that event as a condition on another queue.
We have a long standing bug report in Boost.Thread where apparently thread sleeps will wake the computer from sleep on timer elapse (https://svn.boost.org/trac/boost/ticket/11368). This is apparently due to the new use of SetWaitableTimerEx() to implement coalescing timer support which we call with a REASON_CONTEXT like this:
REASON_CONTEXT default_reason_context={0/*POWER_REQUEST_CONTEXT_VERSION*/, 0x00000001/*POWER_REQUEST_CONTEXT_SIMPLE_STRING*/, (LPWSTR)L"generic"};
If timer firing is causing the PC to wake from sleep, it surely must have something to do with this REASON_CONTEXT value.
Can anyone here tell us what the appropriate value to use to not have the PC wake from sleep on timer expiry?
According to this document from Microsoft: Windows Timer Coalescing, page 8-9:
SetWaitableTimerEx has two new parameters: WakeContext and TolerableDelay. You use the WakeContext parameter only when you set a timer that can wake the system from a sleep state.
It looks like passing NULL for the WakeContext parameter is fine and it's the only way SetWaitableTimerEx will not wake the system. Timer coalescing should still work.
I tried it in Windows 10 and it seems to work correctly. It doesn't wake the system and also doesn't look like it's just calling SetWaitableTimer. It could be different in older versions of Windows though, I haven't tested.
I have an Internet Transfer Control on a form called "inetFTP". After I call
inetFTP.Execute , "Get " & "test.zip" & " " & "C:/test.zip"
I want to pause the code execution until the download is finished, so there wouldn't be any other code operating on the file afterwards that could encounter problems. Is there a way to do that?
Normally you'd use the control's StateChanged event and monitor for at least the icError and icResponseCompleted states.
But in real programs it is often necessary to use this along with a Timer control and an elapsed time counter and cancellation flag. You'll want to be sure you don't miss any state changes (some don't seem to fire the event if they occur in quick succession), to handle timeouts, to cancel long running operations, etc.
I suspect there are some long standing bugs in the control that have never been ironed out, which is why StateChanged isn't as reliable as one might hope. Some of this may relate to inherent quirks or race conditions in the session-oriented FTP protocol. HTTP operations seem quite a bit more deterministic.
From there you'd need to change your program flow to properly fit the model of a Windows program.
A long running async operation can be started, but then there is only so much more "worth doing" in most cases until you get a completion signal (or an abort, etc.).
So you do that Execute and then exit the event handler you are running in. Once completion is signaled you resume processing in that completion event handler.
VB6 is not QBasic, and Windows is not DOS.
You can use a Timer (VBA.DateTime.Timer), see below:
Dim PauseTime As Single, start As Single
PauseTime = 2 ' pause the execution of code for two (2) seconds:
start = Timer
Do While Timer < start + PauseTime
DoEvents
Loop
I found the answer. I should insert
Do While inetFTP.StillExecuting
DoEvents
Loop
and this loops until the Internet Transfer Control finishes it job.
I am writing a cross-platform library which, among other things, provides a socket interface, and while running my unit-test suite, I noticed something strange with regard to timeouts set via setsockopt(): On Windows, a blocking recv() call seems to consistently return about half a second (500 ms) later than specified via the SO_RCVTIMEO option.
Is there any explanation for this in the docs I missed? Searching the web, I was only able to find a single other reference to the problem – could somebody who owns »Windows Sockets
Network Programming« by Bob Quinn and Dave Shute look up page 466 for me? Unfortunately, I can only run my test Windows Server 2008 R2 right now, does the same strange behavior exist on other Windows versions as well?
From Networking Programming for Microsoft Windows by Jones and Ohlund:
SO_RCVTIMEO optval
Type: int
Get/Set: Both
Winsock Version: 1+
Description : Gets or sets the timeout value (in milliseconds)
associated with receiving data on the
socket
The SO_RCVTIMEO option sets the
receive timeout value on a blocking
socket. The timeout value is an
integer in milliseconds that indicates
how long a Winsock receive function
should block when attempting to
receive data. If you need to use the
SO_RCVTIMEO option and you use the
WSASocket function to create the
socket, you must specify
WSA_FLAG_OVERLAPPED as part of
WSASocket's dwFlags parameter.
Subsequent calls to any Winsock
receive function (such as recv,
recvfrom, WSARecv, or WSARecvFrom)
block only for the amount of time
specified. If no data arrives within
that time, the call fails with the
error 10060 (WSAETIMEDOUT). If the
receiver operation does time out the
socket is in an indeterminate state
and should not be used.
For performance reasons, this option
was disabled in Windows CE 2.1. If you
attempt to set this option, it is
silently ignored and no failure
returns. Previous versions of Windows
CE do implement this option.
I'd think the crucial information in this is:
If you need to use the SO_RCVTIMEO option and you use the WSASocket
function to create the socket, you
must specify WSA_FLAG_OVERLAPPED as
part of WSASocket's dwFlags parameter
I hope this is still useful :)
I am having the same problem. Going to use
patchedTimeout = max ( unpatchedTimepit - 500, 1 )
Tested this with the unpatchedTimepit == 850
your problem is not in rcv function timeout!
if your application have a while loop to check and receive just put an if statement to check the receive buffer last index for '\0' char to check is the receiving string is ended or not.
typically if rcv function is still receiving return value is the size of received data. size can be used as last index of buffer array.
do{
result = rcv(s,buf,len,0);
if(buf[result] == '\0'){
break;
}
}
while(result > 0);