Creating a constructor - methods

I've got some code I need help with. I'm an AP CS student (and it's introductory) so please don't judge me.
// name:
//
// program: CoinsTester
//
// purpose:
public class CoinsTester {
public static void main(String[] args) {
//create a new Coins object named money and pass it the amount of cents as a parameter
//***** STUDENTS NEED TO COMPLETE ******
Coins();
Coins money = new Coins();
// call the correct method in the Coins class to find your answer
//***** STUDENTS NEED TO COMPLETE ******
money.calculate();
}
}
// name:
//
// program: CoinsTester
//
// purpose: This class accepts a certain number of monetary change.
// The output is a list of the number of quarters, dimes, nickels,
// and pennies that will make that amount of change with the least
// number of coins possible. This is a skeleton that will be finished
// by the students
public class Coins {
//private variable to store the only attribute of a "Coins" object - how many cents the
// user wants to find change for.
private int myChange;
//constructor that accepts an initial value for the private data member
public Coins(int change) {
myChange = change;
}
// the method calculate will
// 1. use modular and regular division to determine the quantity of each type of coin
// 2. prints the quantity of the coins needed to make the entered amount
public void calculate(){
int quarters=25, dimes=10, nickels=5, pennies=1;
int temp1, temp2, temp3, temp4;
int remainquar1, remaindime2, remainnick3, remainpenn4;
//variable declarations to hold the values needed for different coin types
// make sure you use descriptive identifiers!
//***** STUDENTS NEED TO COMPLETE ******
// calculations for the various coin types
//***** STUDENTS NEED TO COMPLETE ******
// output statements, formatted as shown on specs
//***** STUDENTS NEED TO COMPLETE ******
}
}
So here is the thing, I do apologize for my improperly formatted code. So when I run it, it says that Coins money = new Coins() cannot find a constructor for the code. I need help in creating a proper object. The thing here is that I have to create an object for "CoinsTester" then it tells me I have no constructor linked to the object. I really can't find solutions right now. Could someone just give me tips on how to create a constructor for the CoinsTester class?

Add a "method" named CoinsTester (if you need a constructor for the class CoinsTester, it's not clear from your Q what constructor you need). Make sure the arguments correspond to the calling sequence, if you want the added explicit constructor to be used.

You have two lines that need reviewing:
Coins();
This would call a method named Coins, not a constructor. I sugggest you remove this, as you most likely will not use/need it.
Coins money = new Coins();
The reason there is no constructor linked to this is that you already have a constructor for Coins:
public Coins(int change) {
myChange = change;
}
When you created this constructor, you removed the default constructor new Coins();. If you'd like to be able to use the Coins constructor with no parameters, you can declare it again. Here's an example:
public Coins() {
myChange = 0;
}

Related

Store the enum constants in variable

This code actually works fine, the question I have with my code is how do you store the enum constant in any variable, and why do we use enum? and what does the statement mean HouseType houseType;? Thank you so much in advance.
import java.util.Scanner;
public class HomeBuying {
public enum HouseType{UNKNOWN,SINGLEFAMILY,TOWNHOUSE,CONDOMINIUM};
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
System.out.println("Enter the type of house you want to purchase"); //1.Single Family/n" " 2. Townhouse/n" " 3. Condominium/n");
int choice = input.nextInt();
HouseType houseType;
switch(choice) {
case 1:
houseType = HouseType.SINGLEFAMILY;
break;
case 2:
houseType = HouseType.TOWNHOUSE;
break;
case 3:
houseType = HouseType.CONDOMINIUM;
break;
default:
houseType = HouseType.UNKNOWN;
break;
}
System.out.println(houseType);
}
The code snippet you provided already stores an Enum value in a variable.
HouseType houseType; //declaration of variable of type HouseType (means it can store values of the HouseType enum)
houseType = HouseType.UNKNOWN; //put value into the houseType variable
We use enums whenever we need to represent values from some known and finite set. For example if you want your program to keep track of whether it is day or night, you could just make up some rule for yourself and use integers, say 1 represents day and 0 represents night. But then what the other numbers mean? Or you could just use boolean for that (again, with some arbitrary meaning attached to false and true).
enum TimePeriod{
DAY,
NIGHT
}
Enums represent a better alternative by letting you to be explicit about what values mean. This is not just a convenience - being explicit in your intentions is what makes your program readable by others.

Law of Demeter - The pragmatic programmer [closed]

Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 10 years ago.
Improve this question
I have some questions considering the exercises in "the pragmatic programmer".
It says:
1.
public void showBalance(BankAccount acct) {
Money amt = acct. getBalance() ;
printToScreen(amt .printFormat()) ;
}
The variable acct is passed in as a parameter, so the getBalance call is allowed. Calling
amt.printFormat(), however, is not. We don't "own"amt and it wasn't passed to us.
But we do own amt right? It is declared in the method and the LOD states: When your method creates local objects, that method can call methods on the local objects.
Is this example breaking the LOD? The way I see it, it isn't?
2.
public class Colada {
private Blender myBlender;
private Vector myStuff;
public Colada() {
myBlender = new Blender();
myStuff = new Vector() ;
}
private void doSomething() {
myBlender.addlngredients(myStuff.elements());
}
}
Since Colada creates and owns both myBlender and myStuff, the calls to addIngredients and
elements are allowed .
Now I don't understand why doSomething is allowed to make calls to myBlender and myStuff since it didn't create it.
3.
void processTransaction(BankAccount acct, int) {
Person *who;
Money amt;
amt.setValue(123.45);
acct.setBalance(amt);
who = acct .getOwner() ;
markWorkflow(who->name(), SET_BALANCE);
}
In this case, processTransaction owns amt, it is created on the stack, acct is passed in, so both setValue and setBalance are allowed. But processTransaction does not own who, so the call
who->name() is in violation.
So here it does declare who but it is not allowed to make calls to it. Perhaps I misunderstand the concept of "owns".
Can someone please clarify this?
Thanks
Let's take a look at the supposed contradictions one by one.
1.
public void showBalance(BankAccount acct) {
Money amt = acct. getBalance() ;
printToScreen(amt .printFormat()) ;
}
The variable acct is passed in as a parameter,
so the getBalance call is allowed.
Calling amt.printFormat(), however, is not.
We don't "own" amt and it wasn't passed to us.
This statement is perfectly valid, since LoD states that while acct can be passed to showBalance() and showBalance() can access getBalance() due to having a direct reference to acct, it may not call any method on any instance of Money. This is because no object of type Money was passed to showBalance(), and it merely referred to it through a local accessor. This does not mean that the ownership of amt is now with showBalance().
2.
public class Colada {
private Blender myBlender;
private Vector myStuff;
public Colada() {
myBlender = new Blender();
myStuff = new Vector() ;
}
private void doSomething() {
myBlender.addlngredients(myStuff.elements());
}
}
Since Colada creates and owns both myBlender and myStuff,
the calls to addIngredients and elements are allowed .
Now, what is happening in this class constructor is the declaration and instantiation of a Blender and a Vector object. Therefore, the owner of myBlender and myStuff, is the class Colada. LoD states that a method m of object o can access all direct components of o, so in this case, method doSomething() has access to Colada's components directly, and it may call methods of Blender and Vector on myBlender and myStuff.
3.
void processTransaction(BankAccount acct, int) {
Person *who;
Money amt;
amt.setValue(123.45);
acct.setBalance(amt);
who = acct .getOwner() ;
markWorkflow(who->name(), SET_BALANCE);
}
In this case, processTransaction owns amt,
it is created on the stack, acct is passed in,
so both setValue and setBalance are allowed.
But processTransaction does not own who,
so the call who->name() is in violation.
The method processTransaction() receives the the bank account in object acct. It initializes an object of type Money, sets the value and then calls the setter method setBalance() on acct, which is in line with LoD. Since amt was created and initialized inside processTransaction, access to setValue of amt is also in line with LoD. Now comes the contradiction. *who is merely a pointer to an object of type Person, which is only visible through the accessor method getOwner. But that method is owned by acct, so calling a method on *who is invalid, as it breaks LoD.
In short, LoD states that a.getB().getC().doSomething() is invalid, and only a.getB() is valid. If I have to write LoD in plain English, it can be specified in 3 words - Chain Of Command.
Assuming a hierarchy where Object A contains an instance of Object B, and Object B contains an instance of Object C, the following hold true according to LoD.
Object A cannot access and change Object C through an instance of Object B.
Object B can, however, access and change Object C based on some criteria that it can fetch from Object A.
I hope that clears your doubts.

error CS1729: The type `UnityEngine.Random' does not contain a constructor that takes `1' arguments

I've done some elementary coding in the past, and I'm now learning Unity and trying some things with C#.
My problem:
I have a list of objects that have their own id number in the range of 1-50. I want my game to pick one object at random instead of going over the list in order. The first step would be to pick the initial id to be some random number, but I only get the error: "error CS1729: The type UnityEngine.Random' does not contain a constructor that takes1' arguments". I understand that I should give more argument for the constructor, but I need help in seeing how, since the code looks fine (if simple) to me.
Anyway, it goes like this at the moment:
public int id;
public int randomid;
public void RandId(int id)
{
Random randomid = new Random(Random.Range(1, 51));
id = randomid;
return id;
}
Here id is the identification number of the objects, randomid is for randomizing it, and I use Random.Range to create the wanted range (1-50). It seems I need to give more arguments to Random.Range, but it already has both min and max.
Can you give me some advice?
There are some other things wrong w/ your code, but this should be what you need.
public void SetIDToRandom(out int id)
{
id = (int)Random.Range(1, 51);
}
Addendum:
Random is a static class, you don't directly instantiate it.

Fuzzy/approximate checking of solutions from algorithms

We have people who run code for simulations, testing etc. on some supercomputers that we have. What would be nice is, if as part of a build process we can check that not only that the code compiles but that the ouput matches some pattern which will indicate we are getting meaningful results.
i.e. the researcher may know that the value of x must be within some bounds. If not, then a logical error has been made in the code (assuming it compiles and their is no compile time error).
Are there any pre-written packages for this kind of thing. The code is written in FORTRAN, C, C++ etc.
Any specific or general advice would be appreciated.
I expect most unit testing frameworks could do this; supply a toy test data set and see that the answer is sane in various different ways.
A good way to ensure that the resulting value of any computation (whether final or intermediate) meets certain constraints, is to use an object oriented programming language like C++, and define data-types that internally enforce the conditions that you are checking for. You can then use those data-types as the return value of any computation to ensure that said conditions are met for the value returned.
Let's look at a simple example. Assume that you have a member function inside of an Airplane class as a part of a flight control system that estimates the mass of the airplane instance as a function of the number passengers and the amount of fuel that plane has at that moment. One way to declare the Airplane class and an airplaneMass() member function is the following:
class Airplane {
public:
...
int airplaneMass() const; // note the plain int return type
...
private:
...
};
However, a better way to implement the above, would be to define a type AirplaneMass that can be used as the function's return type instead of int. AirplaneMass can internally ensure (in it's constructor and any overloaded operators) that the value it encapsulates meets certain constraints. An example implementation of the AirplaneMass datatype could be the following:
class AirplaneMass {
public:
// AirplaneMass constructor
AirplaneMass(int m) {
if (m < MIN || m > MAX) {
// throw exception or log constraint violation
}
// if the value of m meets the constraints,
// assign it to the internal value.
mass_ = m;
}
...
/* range checking should also be done in the implementation
of overloaded operators. For instance, you may want to
make sure that the resultant of the ++ operation for
any instance of AirplaneMass also lies within the
specified constraints. */
private:
int mass_;
};
Thereafter, you can redeclare class Airplane and its airplaneMass() member function as follows:
class Airplane {
public:
...
AirplaneMass airplaneMass() const;
// note the more specific AirplaneMass return type
...
private:
...
};
The above will ensure that the value returned by airplaneMass() is between MIN and MAX. Otherwise, an exception will be thrown, or the error condition will be logged.
I had to do that for conversions this month. I don't know if that might help you, but it appeared quite simple a solution to me.
First, I defined a tolerance level. (Java-ish example code...)
private static final double TOLERANCE = 0.000000000001D;
Then I defined a new "areEqual" method which checks if the difference between both values is lower than the tolerance level or not.
private static boolean areEqual(double a, double b) {
return (abs(a - b) < TOLERANCE);
}
If I get a false somewhere, it means the check has probably failed. I can adjust the tolerance to see if it's just a precision problem or really a bad result. Works quite well in my situation.

What's the best way to refactor a method that has too many (6+) parameters?

Occasionally I come across methods with an uncomfortable number of parameters. More often than not, they seem to be constructors. It seems like there ought to be a better way, but I can't see what it is.
return new Shniz(foo, bar, baz, quux, fred, wilma, barney, dino, donkey)
I've thought of using structs to represent the list of parameters, but that just seems to shift the problem from one place to another, and create another type in the process.
ShnizArgs args = new ShnizArgs(foo, bar, baz, quux, fred, wilma, barney, dino, donkey)
return new Shniz(args);
So that doesn't seem like an improvement. So what is the best approach?
I'm going to assume you mean C#. Some of these things apply to other languages, too.
You have several options:
switch from constructor to property setters. This can make code more readable, because it's obvious to the reader which value corresponds to which parameters. Object Initializer syntax makes this look nice. It's also simple to implement, since you can just use auto-generated properties and skip writing the constructors.
class C
{
public string S { get; set; }
public int I { get; set; }
}
new C { S = "hi", I = 3 };
However, you lose immutability, and you lose the ability to ensure that the required values are set before using the object at compile time.
Builder Pattern.
Think about the relationship between string and StringBuilder. You can get this for your own classes. I like to implement it as a nested class, so class C has related class C.Builder. I also like a fluent interface on the builder. Done right, you can get syntax like this:
C c = new C.Builder()
.SetX(4) // SetX is the fluent equivalent to a property setter
.SetY("hello")
.ToC(); // ToC is the builder pattern analog to ToString()
// Modify without breaking immutability
c = c.ToBuilder().SetX(2).ToC();
// Still useful to have a traditional ctor:
c = new C(1, "...");
// And object initializer syntax is still available:
c = new C.Builder { X = 4, Y = "boing" }.ToC();
I have a PowerShell script that lets me generate the builder code to do all this, where the input looks like:
class C {
field I X
field string Y
}
So I can generate at compile time. partial classes let me extend both the main class and the builder without modifying the generated code.
"Introduce Parameter Object" refactoring. See the Refactoring Catalog. The idea is that you take some of the parameters you're passing and put them in to a new type, and then pass an instance of that type instead. If you do this without thinking, you will end up back where you started:
new C(a, b, c, d);
becomes
new C(new D(a, b, c, d));
However, this approach has the greatest potential to make a positive impact on your code. So, continue by following these steps:
Look for subsets of parameters that make sense together. Just mindlessly grouping all parameters of a function together doesn't get you much; the goal is to have groupings that make sense. You'll know you got it right when the name of the new type is obvious.
Look for other places where these values are used together, and use the new type there, too. Chances are, when you've found a good new type for a set of values that you already use all over the place, that new type will make sense in all those places, too.
Look for functionality that is in the existing code, but belongs on the new type.
For example, maybe you see some code that looks like:
bool SpeedIsAcceptable(int minSpeed, int maxSpeed, int currentSpeed)
{
return currentSpeed >= minSpeed & currentSpeed < maxSpeed;
}
You could take the minSpeed and maxSpeed parameters and put them in a new type:
class SpeedRange
{
public int Min;
public int Max;
}
bool SpeedIsAcceptable(SpeedRange sr, int currentSpeed)
{
return currentSpeed >= sr.Min & currentSpeed < sr.Max;
}
This is better, but to really take advantage of the new type, move the comparisons into the new type:
class SpeedRange
{
public int Min;
public int Max;
bool Contains(int speed)
{
return speed >= min & speed < Max;
}
}
bool SpeedIsAcceptable(SpeedRange sr, int currentSpeed)
{
return sr.Contains(currentSpeed);
}
And now we're getting somewhere: the implementation of SpeedIsAcceptable() now says what you mean, and you have a useful, reusable class. (The next obvious step is to make SpeedRange in to Range<Speed>.)
As you can see, Introduce Parameter Object was a good start, but its real value was that it helped us discover a useful type that has been missing from our model.
The best way would be to find ways to group the arguments together. This assumes, and really only works if, you would end up with multiple "groupings" of arguments.
For instance, if you are passing the specification for a rectangle, you can pass x, y, width, and height or you could just pass a rectangle object that contains x, y, width, and height.
Look for things like this when refactoring to clean it up somewhat. If the arguments really can't be combined, start looking at whether you have a violation of the Single Responsibility Principle.
If it's a constructor, particularly if there are multiple overloaded variants, you should look at the Builder pattern:
Foo foo = new Foo()
.configBar(anything)
.configBaz(something, somethingElse)
// and so on
If it's a normal method, you should think about the relationships between the values being passed, and perhaps create a Transfer Object.
The classic answer to this is to use a class to encapsulate some, or all, of the parameters. In theory that sounds great, but I'm the kind of guy who creates classes for concepts that have meaning in the domain, so it's not always easy to apply this advice.
E.g. instead of:
driver.connect(host, user, pass)
You could use
config = new Configuration()
config.setHost(host)
config.setUser(user)
config.setPass(pass)
driver.connect(config)
YMMV
When I see long parameter lists, my first question is whether this function or object is doing too much. Consider:
EverythingInTheWorld earth=new EverythingInTheWorld(firstCustomerId,
lastCustomerId,
orderNumber, productCode, lastFileUpdateDate,
employeeOfTheMonthWinnerForLastMarch,
yearMyHometownWasIncorporated, greatGrandmothersBloodType,
planetName, planetSize, percentWater, ... etc ...);
Of course this example is deliberately ridiculous, but I've seen plenty of real programs with examples only slightly less ridiculous, where one class is used to hold many barely related or unrelated things, apparently just because the same calling program needs both or because the programmer happened to think of both at the same time. Sometimes the easy solution is to just break the class into multiple pieces each of which does its own thing.
Just slightly more complicated is when a class really does need to deal with multiple logical things, like both a customer order and general information about the customer. In these cases, crate a class for customer and a class for order, and let them talk to each other as necessary. So instead of:
Order order=new Order(customerName, customerAddress, customerCity,
customerState, customerZip,
orderNumber, orderType, orderDate, deliveryDate);
We could have:
Customer customer=new Customer(customerName, customerAddress,
customerCity, customerState, customerZip);
Order order=new Order(customer, orderNumber, orderType, orderDate, deliveryDate);
While of course I prefer functions that take just 1 or 2 or 3 parameters, sometimes we have to accept that, realistically, this function takes a bunch, and that the number of itself does not really create complexity. For example:
Employee employee=new Employee(employeeId, firstName, lastName,
socialSecurityNumber,
address, city, state, zip);
Yeah, it's a bunch of fields, but probably all we're going to do with them is save them to a database record or throw them on a screen or some such. There's not really a lot of processing here.
When my parameter lists do get long, I much prefer if I can give the fields different data types. Like when I see a function like:
void updateCustomer(String type, String status,
int lastOrderNumber, int pastDue, int deliveryCode, int birthYear,
int addressCode,
boolean newCustomer, boolean taxExempt, boolean creditWatch,
boolean foo, boolean bar);
And then I see it called with:
updateCustomer("A", "M", 42, 3, 1492, 1969, -7, true, false, false, true, false);
I get concerned. Looking at the call, it's not at all clear what all these cryptic numbers, codes, and flags mean. This is just asking for errors. A programmer might easily get confused about the order of the parameters and accidentally switch two, and if they're the same data type, the compiler would just accept it. I'd much rather have a signature where all these things are enums, so a call passes in things like Type.ACTIVE instead of "A" and CreditWatch.NO instead of "false", etc.
This is quoted from Fowler and Beck book: "Refactoring"
Long Parameter List
In our early programming days we were taught to pass in as parameters everything needed by
a routine. This was understandable because the alternative was global data, and global data is
evil and usually painful. Objects change this situation because if you don't have something
you need, you can always ask another object to get it for you. Thus with objects you don't
pass in everything the method needs; instead you pass enough so that the method can get to
everything it needs. A lot of what a method needs is available on the method's host class. In
object-oriented programs parameter lists tend to be much smaller than in traditional
programs.
This is good because long parameter lists are hard to understand, because they become
inconsistent and difficult to use, and because you are forever changing them as you need
more data. Most changes are removed by passing objects because you are much more likely
to need to make only a couple of requests to get at a new piece of data.
Use Replace Parameter with Method when you can get the data in one parameter by making
a request of an object you already know about. This object might be a field or it might be
another parameter. Use Preserve Whole Object to take a bunch of data gleaned from an
object and replace it with the object itself. If you have several data items with no logical
object, use Introduce Parameter Object.
There is one important exception to making these changes. This is when you explicitly do
not want to create a dependency from the called object to the larger object. In those cases
unpacking data and sending it along as parameters is reasonable, but pay attention to the pain
involved. If the parameter list is too long or changes too often, you need to rethink your
dependency structure.
I don't want to sound like a wise-crack, but you should also check to make sure the data you are passing around really should be passed around: Passing stuff to a constructor (or method for that matter) smells a bit like to little emphasis on the behavior of an object.
Don't get me wrong: Methods and constructors will have a lot of parameters sometimes. But when encountered, do try to consider encapsulating data with behavior instead.
This kind of smell (since we are talking about refactoring, this horrible word seems appropriate...) might also be detected for objects that have a lot (read: any) properties or getters/setters.
If some of the constructor parameters are optional it makes sense to use a builder, which would get the required parameters in the constructor, and have methods for the optional ones, returning the builder, to be used like this:
return new Shniz.Builder(foo, bar).baz(baz).quux(quux).build();
The details of this are described in Effective Java, 2nd Ed., p. 11. For method arguments, the same book (p. 189) describes three approaches for shortening parameter lists:
Break the method into multiple methods that take fewer arguments
Create static helper member classes to represent groups of parameters, i.e. pass a DinoDonkey instead of dino and donkey
If parameters are optional, the builder above can be adopted for methods, defining an object for all parameters, setting the required ones and then calling some execute method on it
You can try to group your parameter into multiples meaningful struct/class (if possible).
I would generally lean towards the structs approach - presumably the majority of these parameters are related in some way and represent the state of some element that is relevant to your method.
If the set of parameters can't be made into a meaningful object, that's probably a sign that Shniz is doing too much, and the refactoring should involve breaking the method down into separate concerns.
I would use the default constructor and property settors. C# 3.0 has some nice syntax to do this automagically.
return new Shniz { Foo = foo,
Bar = bar,
Baz = baz,
Quuz = quux,
Fred = fred,
Wilma = wilma,
Barney = barney,
Dino = dino,
Donkey = donkey
};
The code improvement comes in simplifying the constructor and not having to support multiple methods to support various combinations. The "calling" syntax is still a little "wordy", but not really any worse than calling the property settors manually.
You haven't provided enough information to warrant a good answer. A long parameter list isn't inherently bad.
Shniz(foo, bar, baz, quux, fred, wilma, barney, dino, donkey)
could be interpreted as:
void Shniz(int foo, int bar, int baz, int quux, int fred,
int wilma, int barney, int dino, int donkey) { ...
In this case you're far better off to create a class to encapsulate the parameters because you give meaning to the different parameters in a way that the compiler can check as well as visually making the code easier to read. It also makes it easier to read and refactor later.
// old way
Shniz(1,2,3,2,3,2,1,2);
Shniz(1,2,2,3,3,2,1,2);
//versus
ShnizParam p = new ShnizParam { Foo = 1, Bar = 2, Baz = 3 };
Shniz(p);
Alternatively if you had:
void Shniz(Foo foo, Bar bar, Baz baz, Quux quux, Fred fred,
Wilma wilma, Barney barney, Dino dino, Donkey donkey) { ...
This is a far different case because all the objects are different (and aren't likely to be muddled up). Agreed that if all objects are necessary, and they're all different, it makes little sense to create a parameter class.
Additionally, are some parameters optional? Are there method override's (same method name, but different method signatures?) These sorts of details all matter as to what the best answer is.
* A property bag can be useful as well, but not specifically better given that there is no background given.
As you can see, there is more than 1 correct answer to this question. Take your pick.
If you have that many parameters, chances are that the method is doing too much, so address this first by splitting the method into several smaller methods. If you still have too many parameters after this try grouping the arguments or turning some of the parameters into instance members.
Prefer small classes/methods over large. Remember the single responsibility principle.
You can trade complexity for source code lines. If the method itself does too much (Swiss knife) try to halve its tasks by creating another method. If the method is simple only it needs too many parameters then the so called parameter objects are the way to go.
If your language supports it, use named parameters and make as many optional (with reasonable defaults) as possible.
I think the method you described is the way to go. When I find a method with a lot of parameters and/or one that is likely to need more in the future, I usually create a ShnizParams object to pass through, like you describe.
How about not setting it in all at once at the constructors but doing it via properties/setters? I have seen some .NET classes that utilize this approach such as Process class:
Process p = new Process();
p.StartInfo.UseShellExecute = false;
p.StartInfo.CreateNoWindow = true;
p.StartInfo.RedirectStandardOutput = true;
p.StartInfo.RedirectStandardError = true;
p.StartInfo.FileName = "cmd";
p.StartInfo.Arguments = "/c dir";
p.Start();
I concur with the approach of moving the parameters into a parameter object (struct). Rather than just sticking them all in one object though, review if other functions use similar groups of parameters. A paramater object is more valuable if its used with multiple functions where you expect that set of parameters to change consistently across those functions. It may be that you only put some of the parameters into the new parameter object.
Named arguments are a good option (presuming a language which supports them) for disambiguating long (or even short!) parameter lists while also allowing (in the case of constructors) the class's properties to be immutable without imposing a requirement for allowing it to exist in a partially-constructed state.
The other option I would look for in doing this sort of refactor would be groups of related parameters which might be better handled as an independent object. Using the Rectangle class from an earlier answer as an example, the constructor which takes parameters for x, y, height, and width could factor x and y out into a Point object, allowing you to pass three parameters to the Rectangle's constructor. Or go a little further and make it two parameters (UpperLeftPoint, LowerRightPoint), but that would be a more radical refactoring.
It depends on what kind of arguments you have, but if they are a lot of boolean values/options maybe you could use a Flag Enum?
I think that problem is deeply tied to the domain of the problem you're trying to solve with the class.
In some cases, a 7-parameter constructor may indicate a bad class hierarchy: in that case, the helper struct/class suggested above is usually a good approach, but then you also tend to end up with loads of structs which are just property bags and don't do anything useful.
The 8-argument constructor might also indicate that your class is too generic / too all-purpose so it needs a lot of options to be really useful. In that case you can either refactor the class or implement static constructors that hide the real complex constructors: eg. Shniz.NewBaz (foo, bar) could actually call the real constructor passing the right parameters.
One consideration is which of the values would be read-only once the object is created?
Publicly writable properties could perhaps be assigned after construction.
Where ultimately do the values come from? Perhaps some values are truely external where as others are really from some configuration or global data that is maintained by the library.
In this case you could conceal the constructor from external use and provide a Create function for it. The create function takes the truely external values and constructs the object, then uses accessors only avaiable to the library to complete the creation of the object.
It would be really strange to have an object that requires 7 or more parameters to give the object a complete state and all truely being external in nature.
When a clas has a constructor that takes too many arguments, it is usually a sign that it has too many responsibilities. It can probably be broken into separate classes that cooperate to give the same functionalities.
In case you really need that many arguments to a constructor, the Builder pattern can help you. The goal is to still pass all the arguments to the constructor, so its state is initialized from the start and you can still make the class immutable if needed.
See below :
public class Toto {
private final String state0;
private final String state1;
private final String state2;
private final String state3;
public Toto(String arg0, String arg1, String arg2, String arg3) {
this.state0 = arg0;
this.state1 = arg1;
this.state2 = arg2;
this.state3 = arg3;
}
public static class TotoBuilder {
private String arg0;
private String arg1;
private String arg2;
private String arg3;
public TotoBuilder addArg0(String arg) {
this.arg0 = arg;
return this;
}
public TotoBuilder addArg1(String arg) {
this.arg1 = arg;
return this;
}
public TotoBuilder addArg2(String arg) {
this.arg2 = arg;
return this;
}
public TotoBuilder addArg3(String arg) {
this.arg3 = arg;
return this;
}
public Toto newInstance() {
// maybe add some validation ...
return new Toto(this.arg0, this.arg1, this.arg2, this.arg3);
}
}
public static void main(String[] args) {
Toto toto = new TotoBuilder()
.addArg0("0")
.addArg1("1")
.addArg2("2")
.addArg3("3")
.newInstance();
}
}
The short answer is that:
You need to group the related parameters or redesigning our model
Below example, the constructor takes 8 parameters
public Rectangle(
int point1X,
int point1Y,
int point2X,
int point2Y,
int point3X,
int point3Y,
int point4X,
int point4Y) {
this.point1X = point1X;
this.point1Y = point1Y;
this.point2X = point2X;
this.point2Y = point2Y;
this.point3X = point3X;
this.point3Y = point3Y;
this.point4X = point4X;
this.point4Y = point4Y;
}
After grouping the related parameters,
Then, the constructor will take ONLY 4 parameters
public Rectangle(
Point point1,
Point point2,
Point point3,
Point point4) {
this.point1 = point1;
this.point2 = point2;
this.point3 = point3;
this.point4 = point4;
}
public Point(int x, int y) {
this.x = x;
this.y= y;
}
Or even make the constructor smarter,
After redesigning our model
Then, the constructor will take ONLY 2 parameters
public Rectangle(
Point leftLowerPoint,
Point rightUpperPoint) {
this.leftLowerPoint = leftLowerPoint;
this.rightUpperPoint = rightUpperPoint;
}

Resources