CL_OUT_OF_RESOURCES - External display - macos

A possible cause of a CL_OUT_OF_RESOURCES error is that the card is being used to run a display (Ref). I have found, however, that I continue to get this error after disconnecting the display and it persists until I restart. Is there a command that will make the OpenCL resources available again?

CL_OUT_OF_RESOURCES is a common error to nVIDIA driver. And can be caused by:
Real out of resources (rare)
Reading an array that was used by a kernel that read/writed out of bounds. (typical)
Any other strange error that does not have an appropriate error code.
You are provably facing the second one, so, I would check the kernels.
EDIT: As you said that it happens until restart. Maybe you can check if you are deleting properly all the OpenCL objects. Events are very tricky and easy to leak some OpenCL memory.

How much memory are you trying to allocate, and how much does the card have on board? A video card driving a display has a certain amount of memory set aside for some operations. The driver may simply be reserving this memory and not caring if the display is gone till it is restarted.
On that note, it is possible to restart the video driver in Windows using devcon. On Linux, you could try an
lsmod | grep nvidia
and once you know the module name, perhaps an
rmmod
or
modprobe -r
I don't know if this will work on OSX.

Related

Multiple loading and unloading of PCI driver causes its /sys/bus/pci/devices/xxx directory to disappear

I have a PCI driver for a FPGA card that installs and works fine.However, we have a need to clean up our system without rebooting which includes unloading this driver.
When starting again (without rebooting) the driver is re-installed. I have found that when I do this process (install/uninstall) multiple times, on the 5th unload of the driver the directory associated with the device just disappears.
lspci command can no longer find my device because of a bad link. I have to reboot to get the device directory (/sys/bus/pci/devices/00000:04:00.0) to show up again.
With some experimentation and reducing the driver down to the bare minimum I discovered that if I do not do a call to pci_enable_device(..) function in my pci_probe_method, then I am able to install/uninstall the driver multiple times without error.
Of course, I need to call this method before I can do anything with the device but I wanted to be sure it was not some other of the more complex initialization I am doing was causing the problem.
I have verified that my call to pci_disable_device() is being called in the pci_remove_method(). I should be able to enable and disable a PCI device indefinitely, right? Any help in figuring out what is happening would be appreciated.
The actual solution to this problem was to eliminate an extraneous call I had to pci_dev_put(..). I did not notice this before when submitting the question. This was leftover from when this driver was not using the pci_probe() method to discover this device. So, executing this call in the exit routine caused the structure for this device to go away after 5 calls. So for now this problem is solved.

how to debug a pci device and linux driver

I am programming a pci device with verilog and also writing its driver,
I have probably inserted some bug in the hardware design and when i load the driver with insmod the kernel just gets stuck and doesnt respond. Now Im trying to figure out what's the last driver code line that makes my computer stuck. I have inserted printk in all relevant functions like probe and init but non of them get printed.
What other code is running when i use insmod before it gets to my init function? (I guess the kernel gets stuck over there)
printks are often not useful debugging such a problem. They are buffered sufficiently that you won't see them in time if the system hangs shortly after printk is called.
It is far more productive to selectively comment out sections of your driver and by process of elimination determine which line is the (first) problem.
Begin by commenting out the entire module's init section leaving only return 0;. Build it and load it. Does it hang? Reboot system, reenable the next few lines (class_create()?) and repeat.
From what you are telling, it is looks like that Linux scheduler is deadlocking by your driver. That's mean that interrupts from the system timer doesn't arrive or have a chance to be handled by kernel. There are two possible reasons:
You hang somewhere in your driver interrupt handler (handler starts its work but never finish it).
Your device creates interrupts storm (Device generates interrupts too frequently as a result your system do the only job -- handling of your device interrupts).
You explicitly disable all interrupts in your driver but doesn't reenable them.
In all other cases system will either crash, either oops or panic with all appropriate outputs or tolerate potential misbehavior of your device.
I guess that printk won't work for such extreme scenario as hang in kernel mode. It is quite heavy weight and due to this unreliable diagnostic tool for scenarios like your.
This trick works only in simpler environments like bootloaders or more simple kernels where system runs in default low-end video mode and there is no need to sync access to the video memory. In such systems tracing via debugging output to the display via direct writing to the video memory can be great and in many times the only tool that can be used for debugging purposes. Linux is not the case.
What techniques can be recommended from the software debugging point of view:
Try to review you driver code devoting special attention to interrupt handler and places where you disable/enable interrupts for synchronization.
Commenting out of all driver logic with gradual uncommenting can help a lot with localization of the issue.
You can try to use remote kernel debugging of your driver. I advice to try to use virtual machine for that purposes, but I'm not aware about do they allow to pass the PCI device in the virtual machine.
You can try the trick with in-memory tracing. The idea is to preallocate the memory chunk with well known virtual and physical addresses and zeroes it. Then modify your driver to write the trace data in this chunk using its virtual address. (For example, assign an unique integer value to each event that you want to trace and write '1' into the appropriate index of bytes array in the preallocated memory cell). Then when your system will hang you can simply force full memory dump generation and then analyze the memory layout packed in the dump using physical address of the memory chunk with traces. I had used this technique with VmWare Workstation VM on Windows. When the system had hanged I just pause a VM instance and looked to the appropriate .vmem file that contains raw memory latout of the physical memory of the VM instance. Not sure that this trick will work easy or even will work at all on Linux, but I would try it.
Finally, you can try to trace the messages on the PCI bus, but I'm not an expert in this field and not sure do it can help in your case or not.
In general kernel debugging is a quite tricky task, where a lot of tricks in use and all they works only for a specific set of cases. :(
I would put a logic analyzer on the bus lines (on FPGA you could use chipscope or similar). You'll then be able to tell which access is in cause (and fix the hardware). It will be useful anyway in order to debug or analyze future issues.
Another way would be to use the kernel crash dump utility which saved me some headaches in the past. But depending your Linux distribution requires installing (available by default in RH). See http://people.redhat.com/anderson/crash_whitepaper/
There isn't really anything that is run before your init. Bus enumeration is done at boot, if that goes by without a hitch the earliest cause for freezing should be something in your driver init AFAIK.
You should be able to see printks as they are printed, they aren't buffered and should not get lost. That's applicable only in situations where you can directly see kernel output, such as on the text console or over a serial line. If there is some other application in the way, like displaying the kernel logs in a terminal in X11 or over ssh, it may not have a chance to read and display the logs before the computer freezes.
If for some other reasons the printks still do not work for you, you can instead have your init function return early. Just test and move the return to later in the init until you find the point where it crashes.
It's hard to say what is causing your freezes, but interrupts is one of those things I would look at first. Make sure the device really doesn't signal interrupts until the driver enables them (that includes clearing interrupt enables on system reset) and enable them in the driver only after all handlers are registered (also, clear interrupt status before enabling interrupts).
Second thing to look at would be bus master transfers, same thing applies: Make sure the device doesn't do anything until it's asked to and let the driver make sure that no busmaster transfers are active before enabling busmastering at the device level.
The fact that the kernel gets stuck as soon as you install your driver module makes me wonder if any other driver (built in to kernel?) is already driving the device. I made this mistake once which is why i am asking. I'd look for the string "kernel driver in use" in the output of 'lspci' before installing the module. In any case, your printk's should be visible in dmesg output.
in addition to Claudio's suggestion, couple more debug ideas:
1. try kgdb (https://www.kernel.org/doc/htmldocs/kgdb/EnableKGDB.html)
2. use JTAG interfaces to connect to debug tools (these i think vary between devices, vendors so you'll have to figure out which debug tools you need to the particular hardware)

CUDA/PyCUDA: Diagnosing launch failure that disappears under cuda-gdb

Anyone know likely avenues of investigation for kernel launch failures that disappear when run under cuda-gdb? Memory assignments are within spec, launches fail on the same run of the same kernel every time, and (so far) it hasn't failed within the debugger.
Oh Great SO Gurus, What now?
cuda-gdb spills all shared memory and registers to local memory. So when something runs ok built for debugging and fails otherwise, it usually means out of bounds shared memory access. cuda-memcheck might help, depending on what sort of card you are using. Fermi is better than older cards in that respect.
EDIT:
Casting my mind back to the bad old days, I remember having an ornery GT9500 which used to throw similar NV13 errors and have random code failures when running very memory intensive kernels with a lot of shared memory activity. Never when debugging. I put it down to bad hardware and moved on to a GT200, never to see a similar error since. One possibility might be bad hardware. Is this a G92 (9800GT or similar)?
CUDA GDB can make some of the cuda operations synchronous.
Are you reading from a memory after has been initialized ?
are you using Streams?
Are you launching more than one kernel?
Where and how does it fail ?

Debugging kernel hang

I am trying to run an app which is using a kernel mode driver. System locks up every hour and the only way to recover it is a hard reset. Sysrq stops responding, telnet sessions hang and there are no error messages of any kind. Unfortunately the board does not have ejtag support. I have been trying to isolate it functionally, but this is like looking for a needle in a hay stack. Any suggestions?
PS: This is a mips linux system (2.6.31).
Here are some options, depending on the specifics on your situation. If you can provide more detail about the platform and nature of the kernel mode driver it would be helpful.
Assuming you have reason to be confident in the hardware, your likely sources of lockups are locking problems in the kernel, uninitialized variables, and infinite loops with preemption disabled.
Can you configure a timer interrupt to run periodically and blink a LED? You might find it useful to see if interrupts continue to be handled while in a lockup.
Enable soft lockup detection in the Linux kernel hacking menu, and any other relevant kernel hacking features. It may take Linux a minute or two detect and report a soft lockup. Have you waited long enough to check for this?
Enable lock dependency checking in kernel hacking, and fix any reported locking errors in your driver.
Try changing the kernel preemption mode. This changes the behaviour of some system locks, in some cases turning deadlocks into less harmful locks. If it's relevant/possible, disable SMP.
Unfortunately without sysreq operating, or some way of poking the underlying system, you are out of luck.
If you can get some behavior out of the system (perhaps a hardware watchdog?), I would recommend kdump.
Furthermore, if this is a more recent problem, start by bisecting the code of the driver to determine where the crash is occurring.
If the kernel isn't totally hung and you are still getting interrupts, you might be able to use KGDB.
If you can't do that, you could add more logging code to your driver to track down the source of the problem. I'd put a printk() on every function's entry at a minimum and probably on every exit of each function as well. That should at least help you find out where the problem is happening.

Can a simple program be responsible for a BSOD?

I've got a customer who told me that my program (simple user-land program, not a driver) is crashing his system with a Blue Screen Of Death (BSOD). He says he has never encountered that with other program and that he can reproduce it easily with mine.
The BSOD is of type CRITICAL_OBJECT_TERMINATION (0x000000F4) with object type 0x3 (process): A process or thread crucial to system operation has unexpectedly exited or been terminate.
Can a simple program be responsible for a BSOD (even on Vista...) or should he check the hardware or OS installation?
Just because your program isn't a driver doesn't mean it won't use a driver.
In theory, your code shouldn't be able to BSOD the computer. It's up to the OS to make sure that doesn't happen. By definition, that means there's a problem somewhere either in hardware or in code other than your program. That doesn't preclude there being a bug in your code as well though.
The easiest way to cause a BSOD with a user-space program is (afaik) to kill the Windows subsystem process (csrss.exe). This doesn't need faulty hardware nor a bug in the kernel or a driver, it only needs administrator privileges1.
What is your code exactly doing? The error message ("A process or thread crucial to system operation has unexpectedly exited or been terminate.") sounds like one of the essential system processes terminated. Maybe you are killing a process and unintentionally got the wrong process?
If somehow possible you could try to get a memory dump from that customer. Using the Debugging Tools for Windows you can then further analyze that dump as described here.
1Windows doesn't prevent you from doing so because it "keeps administrators in control of their computer". So this is by design and not a bug. Read Raymond's articles and you will see why.
Short answer is yes. Long answer depends on what is you program is suppose to do and how it does it?
Normally, it shouldn't. If it does, there must be either
A bug in the Windows kernel (possible but very unlikely)
A bug in a device driver (not necessarily in a device your program uses, this could get quite complicated)
A fault in the hardware
I would bet on option number two (device driver) but it would be interesting if you could get us a more detailed dump.
Well, yes it can - but for many different reasons.
That's why we test on different machines, operating systems, hardware etc..
Have you set some requirements for your program and is your user following them?
If you can't duplicate it yourself, and your program doesn't need admin to run, I'd be a bit suspicous about
The stability of that system's hardware
The virus/malware status of that system.
If you can get physical access to the client box, it might be worth running a full virus scan with an up-to-date scanner, and running a full memtest on it.
I had a system once that seemed stable, except that a certian few programs wouldn't run on it (and would sometimes crash the box). Memtest showed my RAM had some bad bits, but they were in higer sims, so they only got accessed if a program tried to use a lot of RAM.
No, and that is pretty much by definition. The worst thing that you can say is that a user-land application may have "triggered" a Windows bug or a driver bug. But a modern desktop Operating System is fully responsible for its own integrity; a BSOD is a failure of that integrity. Therefore the OS is responsible, and only the OS.
(Example of a BSOD bug that your application alone could expose: a virus scanner implemented as a driver, that crashes when executing a file from sector 0xFFFFFFFF, a sector that on this one machine just happens to contain one DLL of your application)
I had problems when exit my app without stopping all the processes and BD connections when the program ends (I crashed the entire IDE). I place the "stopping and disconnecting" code in the "Terminate" of "Form_Closed" event of my main form and the problem wa solved, I don't know it this is your situation.
Another problem can be if the user is trying to access the same resources your app is using (databases, hardware, sockets, etc). Ask him/her about what apps he/she is using when the BSOD happens.
A virus can't be discarded.

Resources