Scheme Monte-Carlo-Sampling - scheme

I am trying to determine the number of marbles that fall within a given circle (radius 1) given that they have random x and y coordinates.
My overall goal is to find an approximate value for pi by using monte carlo sampling by multiplying by 4 the (number of marbles within the circle)/(total number of marbles).
I intended for my function to count the number of marbles within the circle, but I am having trouble following why it does not work. Any help on following the function here would be appreciated.
Please comment if my above request for help is unclear.
(define(monte-carlo-sampling n)
(let ((x (- (* 2 (random)) 1))
(y (- (* 2 (random)) 1)))
(cond((= 0 n)
* 4 (/ monte-carlo-sampling(+ n 1) n)
((> 1 n)
(cond((< 1 (sqrt(+ (square x) (square y))) (+ 1 (monte-carlo-sampling(- n 1)))))
((> 1 (sqrt(+ (square x) (square y))) (monte-carlo-sampling(- n 1))))
)))))

Your parentheses are all messed up, and your argument order for < is wrong. Here's how the code should look like after it's corrected:
(define (monte-carlo-sampling n)
(let ((x (- (* 2 (random)) 1))
(y (- (* 2 (random)) 1)))
(cond ((= n 0)
0)
(else
(cond ((< (sqrt (+ (square x) (square y))) 1)
(+ 1 (monte-carlo-sampling (- n 1))))
(else
(monte-carlo-sampling (- n 1))))))))
This returns the number of hits. You'd have to convert the number of hits into a pi estimate using an outer function, such as:
(define (estimate-pi n)
(* 4 (/ (monte-carlo-sampling n) n)))
Here's how I'd write the whole thing, if it were up to me:
(define (estimate-pi n)
(let loop ((i 0)
(hits 0))
(cond ((>= i n)
(* 4 (/ hits n)))
((<= (hypot (sub1 (* 2 (random)))
(sub1 (* 2 (random)))) 1)
(loop (add1 i) (add1 hits)))
(else
(loop (add1 i) hits)))))
(Tested on Racket, using the definition of hypot I gave in my last answer. If you're not using Racket, you have to change add1 and sub1 to something appropriate.)

I wrote a solution to this problem at my blog; the inner function is called sand because I was throwing grains of sand instead of marbles:
(define (pi n)
(define (sand?) (< (+ (square (rand)) (square (rand))) 1))
(do ((i 0 (+ i 1)) (p 0 (+ p (if (sand?) 1 0))))
((= i n) (exact->inexact (* 4 p (/ n))))))
This converges very slowly; after a hundred thousand iterations I had 3.14188. The blog entry also discusses a method for estimating pi developed by Archimedes over two hundred years before Christ that converges very quickly, with 27 iterations taking us to the bound of double-precision arithmetic.

Here's a general method of doing monte-carlo it accepts as arguments the number of iterations, and a thunk (procedure with no arguments) that should return #t or #f which is the experiment to be run each iteration
(define (monte-carlo trials experiment)
(define (iter trials-remaining trials-passed)
(cond ((= trials-remaining 0)
(/ trials-passed trials))
((experiment)
(iter (- trials-remaining 1) (+ trials-passed 1)))
(else
(iter (- trials-remaining 1) trials-passed))))
(iter trials 0))
Now it's just a mater of writing the specific experiment
You could write in your experiment where experiment is invoked in monte-carlo, but abstracting here gives you a much more flexible and comprehensible function. If you make a function do too many things at once it becomes hard to reason about and debug.
(define (marble-experiment)
(let ((x ...) ;;assuming you can come up with
(y ...)) ;;a way to get a random x between 0 and 1
;;with sufficient granularity for your estimate)
(< (sqrt (+ (* x x) (* y y))) 1)))
(define pi-estimate
(* 4 (monte-carlo 1000 marble-experiment)))

Related

Geometric Series function in Scheme language

Im trying to learn scheme and Im having trouble with the arithmetic in the Scheme syntax.
Would anyone be able to write out a function in Scheme that represents the Geometric Series?
You have expt, which is Scheme power procedure. (expt 2 8) ; ==> 256 and you have * that does multiplication. eg. (* 2 3) ; ==> 6. From that you should be able to make a procedure that takes a n and produce the nth number in a specific geometric series.
You can also produce a list with the n first if you instead of using expt just muliply in a named let, basically doing the expt one step at a time and accumulate the values in a list. Here is an example of a procedure that makes a list of numbers:
(define (range from to)
(let loop ((n to) (acc '())
(if (< n from)
acc
(loop (- 1 n) (cons n acc)))))
(range 3 10) ; ==> (3 4 5 6 7 8 9 10)
Notice I'm doing them in reverse. If I cannot do it in reverse I would in the base case do (reverse acc) to get the right order as lists are always made from end to beginning. Good luck with your series.
range behaves exactly like Python's range.
(define (range from (below '()) (step 1) (acc '()))
(cond ((null? below) (range 0 from step))
((> (+ from step) below) (reverse acc))
(else (range (+ from step) below step (cons from acc)))))
Python's range can take only one argument (the upper limit).
If you take from and below as required arguments, the definition is shorter:
(define (range from below (step 1) (acc '()))
(cond ((> (+ from step) below) (reverse acc))
(else (range (+ from step) below step (cons from acc)))))
Here is an answer, in Racket, that you probably cannot submit as homework.
(define/contract (geometric-series x n)
;; Return a list of x^k for k from 0 to n (inclusive).
;; This will be questionable if x is not exact.
(-> number? natural-number/c (listof number?))
(let gsl ((m n)
(c (expt x n))
(a '()))
(if (zero? m)
(cons 1 a)
(gsl (- m 1)
(/ c x)
(cons c a)))))

How to using scheme with recursion to insert a number to a sorted number, and the merged numbers are still sorted?((insert 1245 3)->12345)

How to using scheme with recursion to insert a number to a sorted number? I did an iteration as below when the number needs to insert is larger than the rest digit stop and (rest * 10^(count+1))+(insert-n * 10^count)+ result-so-far. Otherwise, (iter (quotient rest 10) (+ count 1) insert-n (+ (* (modulo rest 10) (expt 10 count)) result-so-far))))). I try many times in recursion but not work. Looks like a dynamic problem is using recursion. Did anyone have any idea about it?
(define (insert-number sorted-num insert-n)
(define (iter rest count insert-n result-so-far)
(cond ((>= insert-n (modulo rest 10))
(+ (* rest (expt 10 (+ count 1)))
(* insert-n (expt 10 count))
result-so-far))
(else (iter (quotient rest 10)
(+ count 1)
insert-n
(+ (* (modulo rest 10) (expt 10 count)) result-so-far)))))
(iter sorted-num 0 insert-n 0)
)
I think it's possible a more clever way, but this is what I could write down in 2 minutes:
(define (insert-digit sorted-num digit)
(let loop ((snl sorted-num) (snr 0) (place 1))
(let ((r (remainder snl 10)))
(if (> r digit)
(loop (quotient snl 10)
(+ snr (* place r))
(* place 10))
(+ (* snl place 10)
(* digit place)
snr)))))
How it works is that if you call it (insert-digit 123456 3) it will divide the number in left hand side and right hand side and when it has come to 123 and 456 then r will not be greater than d and thus it uses multiplications to put snl, d, and snr to one number 123456.

How to write a power function in Lisp(scheme)? What's wrong with my program here?

(define (pow b n)
"YOUR-DOC-HERE"
(cond ((= n 0) 1)
((even? n) (pow (pow b (/ n 2)) 2))
((odd? n) (* b (pow (pow b (/ (- n 1) 2)) 2)))))
(define (pow b n)
"YOUR-DOC-HERE"
(cond ((= n 0) 1)
((even? n) (* (pow b (/ n 2)) (pow b (/ n 2))))
((odd? n) (* b (pow b (/ (- n 1) 2)) (pow b (/ (- n 1) 2))))))
Here are two versions of my code for a power function with logarithmic efficiency. However, the first function would have a maximum recursion depth exceeded error and the second, though works, doesn't seem to function at a required efficiency. I am new to Scheme and I wonder what's wrong with these implementations?
Your 1st version uses itself to square every value, which creates an infinite loop in the even? clause.
Your 2nd version calls pow twice in each clause which reverses any gain from the logarithmic algorithm.
Your can fix it using let like this:
(define (pow b n)
"Recursive power in logarithmic depth."
(let ((square (lambda (x) (* x x))))
(cond ((= n 0) 1)
((even? n) (square (pow b (/ n 2))))
((odd? n) (* b (square (pow b (/ (- n 1) 2))))))))
or like this:
(define (pow b n)
"Recursive power in logarithmic depth."
(cond ((= n 0) 1)
((even? n)
(let ((x (pow b (/ n 2))))
(* x x)))
((odd? n)
(let ((x (square (pow b (/ (- n 1) 2)))))
(* b x x)))))

Why does this Miller-Rabin Procedure in Scheme works when the code seems to be wrong?

I am working through SICP. In exercise 1.28 about the Miller-Rabin test. I had this code, that I know is wrong because it does not follow the instrcuccions of the exercise.
(define (fast-prime? n times)
(define (even? x)
(= (remainder x 2) 0))
(define (miller-rabin-test n)
(try-it (+ 1 (random (- n 1)))))
(define (try-it a)
(= (expmod a (- n 1) n) 1))
(define (expmod base exp m)
(cond ((= exp 0) 1)
((even? exp)
(if (and (not (= exp (- m 1))) (= (remainder (square exp) m) 1))
0
(remainder (square (expmod base (/ exp 2) m)) m)))
(else
(remainder (* base (expmod base (- exp 1) m)) m))))
(cond ((= times 0) true)
((miller-rabin-test n) (fast-prime? n (- times 1)))
(else false)))
In it I test if the square of the exponent is congruent to 1 mod n. Which according
to what I have read, and other correct implementations I have seen is wrong. I should test
the entire number as in:
...
(square
(trivial-test (expmod base (/ exp 2) m) m))
...
The thing is that I have tested this, with many prime numbers and large Carmicheal numbers,
and it seems to give the correct answer, though a bit slower. I don't understand why this
seems to work.
Your version of the function "works" only because you are lucky. Try this experiment: evaluate (fast-prime? 561 3) a hundred times. Depending on the random witnesses that your function chooses, sometimes it will return true and sometimes it will return false. When I did that I got 12 true and 88 false, but you may get different results, depending on your random number generator.
> (let loop ((k 0) (t 0) (f 0))
(if (= k 100) (values t f)
(if (fast-prime? 561 3)
(loop (+ k 1) (+ t 1) f)
(loop (+ k 1) t (+ f 1)))))
12
88
I don't have SICP in front of me -- my copy is at home -- but I can tell you the right way to perform a Miller-Rabin primality test.
Your expmod function is incorrect; there is no reason to square the exponent. Here is a proper function to perform modular exponentiation:
(define (expm b e m) ; modular exponentiation
(let loop ((b b) (e e) (x 1))
(if (zero? e) x
(loop (modulo (* b b) m) (quotient e 2)
(if (odd? e) (modulo (* b x) m) x)))))
Then Gary Miller's strong pseudoprime test, which is a strong version of your try-it test for which there is a witness a that proves the compositeness of every composite n, looks like this:
(define (strong-pseudoprime? n a) ; strong pseudoprime base a
(let loop ((r 0) (s (- n 1)))
(if (even? s) (loop (+ r 1) (/ s 2))
(if (= (expm a s n) 1) #t
(let loop ((r r) (s s))
(cond ((zero? r) #f)
((= (expm a s n) (- n 1)) #t)
(else (loop (- r 1) (* s 2)))))))))
Assuming the Extended Riemann Hypothesis, testing every a from 2 to n-1 will prove (an actual, deterministic proof, not just a probabilistic estimate of primality) the primality of a prime n, or identify at least one a that is a witness to the compositeness of a composite n. Michael Rabin proved that if n is composite, at least three-quarters of the a from 2 to n-1 are witnesses to that compositeness, so testing k random bases demonstrates, but does not prove, the primality of a prime n to a probability of 4−k. Thus, this implementation of the Miller-Rabin primality test:
(define (prime? n k)
(let loop ((k k))
(cond ((zero? k) #t)
((not (strong-pseudoprime? n (random (+ 2 (- n 3))))) #f)
(else (loop (- k 1))))))
That always works properly:
> (let loop ((k 0) (t 0) (f 0))
(if (= k 100) (values t f)
(if (prime? 561 3)
(loop (+ k 1) (+ t 1) f)
(loop (+ k 1) t (+ f 1)))))
0
100
I know your purpose is to study SICP rather than to program primality tests, but if you're interested in programming with prime numbers, I modestly recommend this essay at my blog, which discusses the Miller-Rabin test, among other topics. You should also know there are better (faster, less likely to report erroneous result) primality tests available than randomized Miller-Rabin.
It seems to me, you still got correct answer, because in each iteration of expmod you check conditions for previous iteration. You could try to debug exp value using display function inside expmod. Really, your code is not very different from this one.

Scheme prime numbers

this is possibly much of an elementary question, but I'm having trouble with a procedure I have to write in Scheme. The procedure should return all the prime numbers less or equal to N (N is from input).
(define (isPrimeHelper x k)
(if (= x k) #t
(if (= (remainder x k) 0) #f
(isPrimeHelper x (+ k 1)))))
(define ( isPrime x )
(cond
(( = x 1 ) #t)
(( = x 2 ) #t)
( else (isPrimeHelper x 2 ) )))
(define (printPrimesUpTo n)
(define result '())
(define (helper x)
(if (= x (+ 1 n)) result
(if (isPrime x) (cons x result) ))
( helper (+ x 1)))
( helper 1 ))
My check for prime works, however the function printPrimesUpTo seem to loop forever. Basically the idea is to check whether a number is prime and put it in a result list.
Thanks :)
You have several things wrong, and your code is very non-idiomatic. First, the number 1 is not prime; in fact, is it neither prime nor composite. Second, the result variable isn't doing what you think it is. Third, your use of if is incorrect everywhere it appears; if is an expression, not a statement as in some other programming languages. And, as a matter of style, closing parentheses are stacked at the end of the line, and don't occupy a line of their own. You need to talk with your professor or teaching assistant to clear up some basic misconceptions about Scheme.
The best algorithm to find the primes less than n is the Sieve of Eratosthenes, invented about twenty-two centuries ago by a Greek mathematician who invented the leap day and a system of latitude and longitude, accurately measured the circumference of the Earth and the distance from Earth to Sun, and was chief librarian of Ptolemy's library at Alexandria. Here is a simple version of his algorithm:
(define (primes n)
(let ((bits (make-vector (+ n 1) #t)))
(let loop ((p 2) (ps '()))
(cond ((< n p) (reverse ps))
((vector-ref bits p)
(do ((i (+ p p) (+ i p))) ((< n i))
(vector-set! bits i #f))
(loop (+ p 1) (cons p ps)))
(else (loop (+ p 1) ps))))))
Called as (primes 50), that returns the list (2 3 5 7 11 13 17 19 23 29 31 37 41 43 47). It is much faster than testing numbers for primality by trial division, as you are attempting to do. If you must, here is a proper primality checker:
(define (prime? n)
(let loop ((d 2))
(cond ((< n (* d d)) #t)
((zero? (modulo n d)) #f)
(else (loop (+ d 1))))))
Improvements are possible for both algorithms. If you are interested, I modestly recommend this essay on my blog.
First, it is good style to express nested structure by indentation, so it is visually apparent; and also to put each of if's clauses, the consequent and the alternative, on its own line:
(define (isPrimeHelper x k)
(if (= x k)
#t ; consequent
(if (= (remainder x k) 0) ; alternative
;; ^^ indentation
#f ; consequent
(isPrimeHelper x (+ k 1))))) ; alternative
(define (printPrimesUpTo n)
(define result '())
(define (helper x)
(if (= x (+ 1 n))
result ; consequent
(if (isPrime x) ; alternative
(cons x result) )) ; no alternative!
;; ^^ indentation
( helper (+ x 1)))
( helper 1 ))
Now it is plainly seen that the last thing that your helper function does is to call itself with an incremented x value, always. There's no stopping conditions, i.e. this is an infinite loop.
Another thing is, calling (cons x result) does not alter result's value in any way. For that, you need to set it, like so: (set! result (cons x result)). You also need to put this expression in a begin group, as it is evaluated not for its value, but for its side-effect:
(define (helper x)
(if (= x (+ 1 n))
result
(begin
(if (isPrime x)
(set! result (cons x result)) ) ; no alternative!
(helper (+ x 1)) )))
Usually, the explicit use of set! is considered bad style. One standard way to express loops is as tail-recursive code using named let, usually with the canonical name "loop" (but it can be any name whatever):
(define (primesUpTo n)
(let loop ((x n)
(result '()))
(cond
((<= x 1) result) ; return the result
((isPrime x)
(loop (- x 1) (cons x result))) ; alter the result being built
(else (loop (- x 1) result))))) ; go on with the same result
which, in presence of tail-call optimization, is actually equivalent to the previous version.
The (if) expression in your (helper) function is not the tail expression of the function, and so is not returned, but control will always continue to (helper (+ x 1)) and recurse.
The more efficient prime?(from Sedgewick's "Algorithms"):
(define (prime? n)
(define (F n i) "helper"
(cond ((< n (* i i)) #t)
((zero? (remainder n i)) #f)
(else
(F n (+ i 1)))))
"primality test"
(cond ((< n 2) #f)
(else
(F n 2))))
You can do this much more nicely. I reformated your code:
(define (prime? x)
(define (prime-helper x k)
(cond ((= x k) #t)
((= (remainder x k) 0) #f)
(else
(prime-helper x (+ k 1)))))
(cond ((= x 1) #f)
((= x 2) #t)
(else
(prime-helper x 2))))
(define (primes-up-to n)
(define (helper x)
(cond ((= x 0) '())
((prime? x)
(cons x (helper (- x 1))))
(else
(helper (- x 1)))))
(reverse
(helper n)))
scheme#(guile-user)> (primes-up-to 20)
$1 = (2 3 5 7 11 13 17 19)
Please don’t write Scheme like C or Java – and have a look at these style rules for languages of the lisp-family for the sake of readability: Do not use camel-case, do not put parentheses on own lines, mark predicates with ?, take care of correct indentation, do not put additional whitespace within parentheses.

Resources