I have to implement, as part of an assignment, a learning method that enables minesweepers to avoid colliding with mines. I have been given the choice to choose between a supervised/unsupervised/reinforcement learning algorithm.
I remember in one of my lectures, the lecturer mentioned ALVIN. He was teaching artificial neural networks.
Since the behaviour I'm looking for is more or less similar to ALVINN's, I want to implement an ANN. I've implemented an ANN before for solving the 3-parity xor problem, here's my solution. I've never really understood the intuition behind ANNs.
I was wondering, what could the inputs be to my ANN? In the case of the 3parity xor problem it was obvious.
When it comes to frameworks for ANN, each person will have their own preferences. I recently used Encog framework for implementing an image processing project and found it very easy to implement.
Now, coming to your problem statement, "a learning method that enables minesweepers to avoid colliding with mines" is a very wide scope. What is indeed going to be your input to the ANN? You will have to decide your input based on whether it is going to be implemented on a real robot or in a simulation environment.
It can be clearly inferred that an unsupervised learning can be ruled out if you are trying to implement something like the ALVIN.
In a simulation environment, the best option is if you can somehow form a grid map of the environment based on the simulated sensor data. Then the occupancy grid surrounding the robot can form a good input to the robot's ANN.
If you can't form a grid map (if the data is insufficient), then you should try to feed all the available and relevant sensor data to the ANN. However, they might have to be pre-processed, depending on the modelled sensor noise given by your simulation environment. If you have a camera feed (like the ALVIN model), then you may directly follow their footsteps and train your ANN likewise.
If this is a real robot, then the choices vary considerably, depending upon the robustness and accuracy requirements. I really hope you do not want to build a robust and field-ready minesweeper single-handedly. :) For a small, controlled environment, your options will be very similar to that of a simulated environment, however sensor noise would be nastier and you would have to figure in various special cases into your mission planner. Still, it would be advisable to fuse a few other sensors (LRF, ultrasound etc.) with vision sensors and use it as an input to your planner. If nothing else is available, copy paste the ALVIN system with only a front camera input.
The ANN training methodology will be similar (if using only vision). The output will be right/left/straight etc. Try with 5-7 hidden layer nodes first, since that is what ALVIN uses. Increase it up to 8-10 max. Should work. Use activation functions properly.
Given its success in the real world, ALVIN seems like a good system to base yours off of! As the page you linked to discusses, ALVIN essentially receives an image of the road ahead as its input. On a low level, this is achieved through 960 input nodes representing a 30X32 pixel image. The input value for each node is the color saturation of the pixel that that node represents (with 0 being a completely white image and 1 being a completely black image, or something along those lines) (I'm pretty sure the picture is greyscale, although maybe they're using color now, which could be achieved, for instance, by using three input nodes per pixel, one representing red saturation, one representing green, and one blue). Is there a reason that you don't think that this would be a good input for your system too?
For more low level details, see the original paper.
Related
Could a CNN tell the difference between different size range of the same organism? Like a puppy vs a adult or a child vs an adult? Or more like a large fly vs a small fly, where they look identical but one is just larger than the other?
This is a tricky question to answer but usually theoretical CNN is able to do. It is mainly dependent on the training data itself. In case of a child vs adult, you can gather a dataset that includes alot of variances in sizes and ages in order to make sure that you will have CNN model that able to find patterns and generalize at the end. At the end, the CNN will learn many other features that make the classification scale or size invariant (In dependent of Size) such as shapes,colors, clothes and face features ....etc. Such Intra-class classification problems, it is not easily tackled with traditional supervised learning and therefore some researchers are applying an approach called "Deep Metric Learning".
Metric learning is the task of learning a distance function over objects. A metric or distance function has to obey four axioms: non-negativity, identity of indiscernibles, symmetry and subadditivity (or the triangle inequality). In practice, metric learning algorithms ignore the condition of identity of indiscernibles and learn a pseudo-metric.Wiki Definition
It would be better to differentiate the metric that you mention in the question. At first, it is a different task to recognize age and size.
About the age, yes, it is doable. For deep learning-based approach, you will need appropriate data. For non-training based approach (old-school image processing), you would need to create some metrics for each object based on age (counting the wrinkle, white hair etc. for humans)
About the size, unfortunately, it is still under research and it is not clear to mention if it is properly doable or not. Whenever we mention object size recognition from a single image, there are more things to consider. The first thing is the perspective. If the object found in the image is large with respect to the image coordinates, is it close to the camera, even though its size is tiny, hence, it is showing as large or it is really huge but too far away from the camera? Such a problem may be overcome by knowing the object geometry in prior and by developing an algorithm based on that geometry along with deep learning. However, current deep learning technology is not accurate enough to distinguish the dimensions and location, hence object geometry precisely yet.
Another alternative would be to control the environment. For example, if you know that both objects lie on the same plane (i.e. on the table, next to each other) in the real world, the rest is a trivial problem to resolve.
I would like to know a bit more about Neural Network, I'm developing a C++ program to make a NN but I'm stuck with the BackPropagation algorithm, sorry for not offering some working code.
I know that there are so many libraries for creating a NN in many languages, but I prefer to make one from my self. The point is that I don't know how many layers and how many neurons should be necessary for achieving a particular goal such as pattern recognition, or functions approximations, or whatever.
My questions are: if I'd like to recognize some particulars patterns, like in image detection, how many layers and neurons-per-layer should be necessary? Let's say my images are all 8x8 pixels, I would start naturally with an input layer of 64 neurons, but I don't have any idea of how many neurons I have to put in hidden layers, and also in output layer. Let's say I have to distinguish from cats and dogs, or whatever you may think, how could be the output layer? I can imagine an output layer with only-one neuron outputting a value between 0 and 1 with the classical logistic function (1/(1+exp(-x)) and when it is near 0 the input was a cat and when approaches 1 it was a dog, but ... is it correct? What if I add a new pattern like a fish? and what if the input contains a dog and a cat ( ..and a fish)? This make me thinking that the logistic function in the output layer is not very suitable for pattern recognition like this, only because 1/(1+exp(-x)) has a range in (0,1). Do I have to change the activation function or maybe add some other neurons to the output layer? Are there some other activations function more accurate to do this? Do every neurons in every layers have the same activation function, or it is different from layer to layer?
Sorry for all of this questions, but this topic is not very clear to me.
I read a lot around internet, and I found libraries all-yet-implemented and hard to read from, and many explanations to what a NN can do, but not how it can do.
I read a lot from https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ and http://neuralnetworksanddeeplearning.com/chap1.html, and here I understood how to approximate a function (because every neurons in a layer can be thought as a step-function with a particular step for weights and bias) and how back-propagation algorithm works, but other tutorials and similars were more focused on preexisting libraries. I also read this question Determining the proper amount of Neurons for a Neural Network but I would like to involve also the activation functions of a NN, which is the best and for what is the best.
Thanks in advance for your answers!
Your questions are quite general, so I can only give some general recommendations:
The number of layers you need depends on the complexity of the problem you want to solve. The more calculation is required to obtain an output from a given input, the more layers you need.
Only very simple problems can be solved with a single layer network. These are called linearly separable and are usually trivial. With two layers it gets better and with three layers, at least in theory, all kinds of classification tasks can be performed if you have enough cells within the layers. In practice, however it is often better to add a 4th or 5th layer to the network while reducing the number of cells within a single layer.
Be aware that the standard backpropagation algorithm performs badly with more than 4 or 5 layers. If you need more layers, have a look at Deep Learning.
The numbers of cells within each layer mainly depends on the number of inputs and, if you solve a classification task, the number of classes you want to detect. In practice it is quite common to reduce the number of cells from layer to layer, but there are exceptions.
Concerning your question about the output function: In most cases you should stick with one type of sigmoid function. The case you describe is not really an issue because you could add another output cell for your "fish" class. The choice of a specific activation function is not that critical. Basically you use one whose values and derivative can be calculated efficiently.
#Frank Puffer has already provided some nice information, but let me add my two cents. First off, much of what you're asking is in the area of hyperparameter optimization. Although there are various "rules of thumb", the reality is that determining the optimal architecture (number/size of layers, connectivity structure, etc.) and other parameters like the learning rate typically requires extensive experimentation. The good news is that the parameterization of these hyperparameters is among the simplest aspects of the implementation of a neural network. So I would recommend focusing on building your software such that the number of layers, size of layers, learning rate, etc., are all easily configurable.
Now you specifically asked about detecting patterns in an image. It's worth mentioning that using standard multi-layer perceptrons (MLPs) to perform classification on raw image data can be computationally expensive, especially for larger images. It's common to use architectures that are designed to extract useful, spacially-local features (i.e.: Convolutional Neural Networks or CNNs).
You could still use standard MLPs for this, but the computational complexity can make it an untenable solution. The sparse connectivity of CNNs for example dramatically reduce the number of parameters requiring optimization and simultaneously build a conceptual hierarchy of representations better suited for classification of images.
Regardless, I would recommend implementing backpropagation using stochastic gradient descent for optimization. This is still the approach typically used for training neural nets, CNNs, RNNs, etc.
Regarding the number of output neurons, this is one question that does have a simple answer: use "one-hot" encoding. For each class you want to recognize, you have an output neuron. In your example of the dog, cat, and fish classes, you have three neurons. For an input image representing a dog, you would expect a value of 1 for the "dog" neuron, and 0 for all the others. Then, during inference, you can interpret the output as a probability distribution reflecting the confidence of the NN. For example, if you get output dog:0.70, cat:0.25, fish:0.05, then you have a 70% confidence that the image is a dog, and so on.
For activation functions, the most recent research I've seen seems to indicate that Rectified Linear Units are generally a good choice since they're easy to differentiate and compute, and they avoid a problem that plagues deeper networks called the "vanishing gradient problem".
Best of luck!
I have a pairs of images (input-output) but I don't know the transformation to going from A (input) to B (output). I want to record image A and get image B. Physically I can change the setup to get A or B, but I want to do it by software.
If I understood well, a trained Artificial Neural Network is able to do that, having an input can give the corresponding output, is it right?
Is there any software/ANN that just "training" it with entering a number of input-output pairs will be able to provide the correct output if the input is a new (but similar to the others) image?
Thanks
If you have some relevant amount of image pairs (input/output pair) and you don't know transformation between input and output you could train ANN on that training set to imitate that unknown transformation. You will be able to well train your ANN only if you have sufficient amount of training image pairs, but it could be pretty impossible when that unknown transformation is complicated.
For example if that transformation simply increases intensity values of pixels at input image by given value, ANN will very fast learn to imitate that behavior, but if that unknown transformation is some complicated convolution or few serial convolutions or something more complicated it will be very hard, near impossible to train ANN to imitate that transformation. So, more complex transformation will need bigger training set and more complex ANN design.
There are plenty of free opensource ANN libraries implemented in many languages. You could start for example with that tutorial: http://www.codeproject.com/Articles/13091/Artificial-Neural-Networks-made-easy-with-the-FANN
What you are asking is possible in principle -- in theory, an ANN with sufficiently many hidden units can learn an arbitrary function to map inputs to outputs. However, as the comments and other answers have mentioned, there may be many technical issues with your particular problem that could make it impractical. I would classify these problems as (a) mapping complexity, (b) model complexity, (c) scaling complexity, and (d) implementation complexity. They are all somewhat related, but hopefully this is a useful way to break things down.
Mapping complexity
As mentioned by Springfield762, there are many possible functions that map from one image to another image. If the relationship between your input images and your output images is relatively simple -- like increasing the intensity of each pixel by a constant amount -- then an ANN would be able to learn this mapping without much difficulty. There are probably many more transformations that would be similarly easy to learn, such as skewing, flipping, rotating, or translating an image -- basically any affine transformation would be easy to learn. Other, nonlinear transformations could also be feasible, such as squaring the intensity of each pixel.
As a general rule, the more complicated the relationship between your input and output images, the more difficult it will be to get a model to learn this mapping for you.
Model complexity
The more complex the mapping from inputs to outputs, the more complex your ANN model will be to be able to capture this mapping. Models with many hidden layers have been shown in the past 10 years to perform quite well on tasks that people had previously thought impossible, but often these state-of-the-art models have millions or even billions of parameters and take weeks to train on GPU hardware. A simple model can capture many simple mappings, but if you have a complex input-output map to learn, you'll need a large, complex model.
Scaling complexity
Yves mentioned in the comments that it can be difficult to scale models up to typical image sizes. If your images are relatively small (currently the state of the art is to model images on the order of 100x100 pixels), then you can probably just throw a bunch of raw pixel data at an ANN model and see what happens. But if you're using 6000x4000 images from your shiny Nikon DSLR, it's going to be quite difficult to process those in a reasonable amount of time. You'd be better off compressing your image data somehow (PCA is a common technique) and then trying to learn the mapping in the compressed space.
In addition, larger images will have a larger space of possible mappings between them, so you'll need more of your larger images as training data than you would if you had small images.
Springfield762 also mentioned this: If the mapping between your input and output images is simple, then you'll only need a few examples to learn the mapping successfully. But if you have a complicated mapping, then you'll need much more training data to have a chance at learning the mapping properly.
Implementation complexity
It's unlikely that a tool already exists that would let you just throw image data into an ANN model and have a mapping appear. Most likely you'll need, at a minimum, to implement some code that will pre-process your image data. In addition, if you have lots of large images you'll probably need to write code to handle loading data from disk, etc. (There are a lot of "big data" tools for things like this, but they all require some amount of work to get set up.)
There are many, many open source ANN toolkits out there nowadays. FANN (already mentioned) is a popular one in C++ with bindings in other languages. Caffe is quite popular, and is also implemented in C++ with bindings. There seem to be many toolkits that use Python and Theano or some other GPU acceleration library -- Keras, Lasagne, Hebel, Pylearn2, neon, and Theanets (I wrote this one). Many people use Torch, written in Lua. Matlab has at least one neural network toolbox. I'm less familiar with other ecosystems, but Java seems to have Deeplearning4j, C# has Accord, and even R has darch.
But with any of these neural network toolkits, you're going to have to write some code to load the data, process it into the appropriate input format, construct (or load) a network model, train the model, etc.
The problem you're trying to solve is a canonical classification problem that neural networks can help you solve. You treat the B images as a set of labels that you match to A, and once trained, the neural network will be able to match the B images to new input based on where the network locates new input in a high-dimensional vector space. I assume you'd use some combination of convolutional networks to create your features, and softmax for multinomial classification on the output layer. More here: http://deeplearning4j.org/convolutionalnets.html
Since this has been written there has been a lot of work in the realm of cgans ( conditional generative adversarial networks ) please refer to:
https://arxiv.org/pdf/1611.07004.pdf
My problem is the following: I need to classify a data stream coming from an sensor. I have managed to get a baseline using the
median of a window and I subtract the values from that baseline (I want to avoid negative peaks, so I only use the absolute value of the difference).
Now I need to distinguish an event (= something triggered the sensor) from the noise near the baseline:
The problem is that I don't know which method to use.
There are several approaches of which I thought of:
sum up the values in a window, if the sum is above a threshold the class should be EVENT ('Integrate and dump')
sum up the differences of the values in a window and get the mean value (which gives something like the first derivative), if the value is positive and above a threshold set class EVENT, set class NO-EVENT otherwise
combination of both
(unfortunately these approaches have the drawback that I need to guess the threshold values and set the window size)
using SVM that learns from manually classified data (but I don't know how to set up this algorithm properly: which features should I look at, like median/mean of a window?, integral?, first derivative?...)
What would you suggest? Are there better/simpler methods to get this task done?
I know there exist a lot of sophisticated algorithms but I'm confused about what could be the best way - please have a litte patience with a newbie who has no machine learning/DSP background :)
Thank you a lot and best regards.
The key to evaluating your heuristic is to develop a model of the behaviour of the system.
For example, what is the model of the physical process you are monitoring? Do you expect your samples, for example, to be correlated in time?
What is the model for the sensor output? Can it be modelled as, for example, a discretized linear function of the voltage? Is there a noise component? Is the magnitude of the noise known or unknown but constant?
Once you've listed your knowledge of the system that you're monitoring, you can then use that to evaluate and decide upon a good classification system. You may then also get an estimate of its accuracy, which is useful for consumers of the output of your classifier.
Edit:
Given the more detailed description, I'd suggest trying some simple models of behaviour that can be tackled using classical techniques before moving to a generic supervised learning heuristic.
For example, suppose:
The baseline, event threshold and noise magnitude are all known a priori.
The underlying process can be modelled as a Markov chain: it has two states (off and on) and the transition times between them are exponentially distributed.
You could then use a hidden Markov Model approach to determine the most likely underlying state at any given time. Even when the noise parameters and thresholds are unknown, you can use the HMM forward-backward training method to train the parameters (e.g. mean, variance of a Gaussian) associated with the output for each state.
If you know even more about the events, you can get by with simpler approaches: for example, if you knew that the event signal always reached a level above the baseline + noise, and that events were always separated in time by an interval larger than the width of the event itself, you could just do a simple threshold test.
Edit:
The classic intro to HMMs is Rabiner's tutorial (a copy can be found here). Relevant also are these errata.
from your description a correctly parameterized moving average might be sufficient
Try to understand the Sensor and its output. Make a model and do a Simulator that provides mock-data that covers expected data with noise and all that stuff
Get lots of real sensor data recorded
visualize the data and verify your assuptions and model
annotate your sensor data i. e. generate ground truth (your simulator shall do that for the mock data)
from what you learned till now propose one or more algorithms
make a test system that can verify your algorithms against ground truth and do regression against previous runs
implement your proposed algorithms and run them against ground truth
try to understand the false positives and false negatives from the recorded data (and try to adapt your simulator to reproduce them)
adapt your algotithm(s)
some other tips
you may implement hysteresis on thresholds to avoid bouncing
you may implement delays to avoid bouncing
beware of delays if implementing debouncers or low pass filters
you may implement multiple algorithms and voting
for testing relative improvements you may do regression tests on large amounts data not annotated. then you check the flipping detections only to find performance increase/decrease
If I have a large set of data that describes physical 'things', how could I go about measuring how well that data fits the 'things' that it is supposed to represent?
An example would be if I have a crate holding 12 widgets, and I know each widget weighs 1 lb, there should be some data quality 'check' making sure the case weighs 13 lbs maybe.
Another example would be that if I have a lamp and an image representing that lamp, it should look like a lamp. Perhaps the image dimensions should have the same ratio of the lamp dimensions.
With the exception of images, my data is 99% text (which includes height, width, color...).
I've studied AI in school, but have done very little outside of that.
Are standard AI techniques the way to go? If so, how do I map a problem to an algorithm?
Are some languages easier at this than others? Do they have better libraries?
thanks.
Your question is somewhat open-ended, but it sounds like you want is what is known as a "classifier" in the field of machine learning.
In general, a classifier takes a piece of input and "classifies" it, ie: determines a category for the object. Many classifiers provide a probability with this determination, and some may even return multiple categories with probabilities on each.
Some examples of classifiers are bayes nets, neural nets, decision lists, and decision trees. Bayes nets are often used for spam classification. Emails are classified as either "spam" or "not spam" with a probability.
For you question you'd want to classify your objects as "high quality" or "not high quality".
The first thing you'll need is a bunch of training data. That is, a set of objects where you already know the correct classification. One way to obtain this could be to get a bunch of objects and classify them by hand. If there are too many objects for one person to classify you could feed them to Mechanical Turk.
Once you have your training data you'd then build your classifier. You'll need to figure out what attributes are important to your classification. You'll probably need to do some experimentation to see what works well. You then have your classifier learn from your training data.
One approach that's often used for testing is to split your training data into two sets. Train your classifier using one of the subsets, and then see how well it classifies the other (usually smaller) subset.
AI is one path, natural intelligence is another.
Your challenge is a perfect match to Amazon's Mechanical Turk. Divvy your data space up into extremely small verifiable atoms and assign them as HITs on Mechanical Turk. Have some overlap to give yourself a sense of HIT answer consistency.
There was a shop with a boatload of component CAD drawings that needed to be grouped by similarity. They broke it up and set it loose on Mechanical Turk to very satisfying results. I could google for hours and not find that link again.
See here for a related forum post.
This is a tough answer. For example, what defines a lamp? I could google images a picture of some crazy looking lamps. Or even, look up the definition of a lamp (http://dictionary.reference.com/dic?q=lamp). Theres no physical requirements of what a lamp must look like. Thats the crux of the AI problem.
As for data, you could setup Unit testing on the project to ensure that 12 widget() weighs less than 13 lbs in the widetBox(). Regardless, you need to have the data at hand to be able to test things like that.
I hope i was able to answer your question somewhat. Its a bit vauge, and my answers are broad, but hopefully it'll at least send you in a good direction.