Performance issues using Elasticsearch as a time window storage - performance

We are using elastic search almost as a cache, storing documents found in a time window. We continuously insert a lot of documents of different sizes and then we search in the ES using text queries combined with a date filter so the current thread does not get documents it has already seen. Something like this:
"((word1 AND word 2) OR (word3 AND word4)) AND insertedDate > 1389000"
We maintain the data in the elastic search for 30 minutes, using the TTL feature. Today we have at least 3 machines inserting new documents in bulk requests every minute for each machine and searching using queries like the one above pratically continuously.
We are having a lot of trouble indexing and retrieving these documents, we are not getting a good throughput volume of documents being indexed and returned by ES. We can't get even 200 documents indexed per second.
We believe the problem lies in the simultaneous queries, inserts and TTL deletes. We don't need to keep old data in elastic, we just need a small time window of documents indexed in elastic at a given time.
What should we do to improve our performance?
Thanks in advance
Machine type:
An Amazon EC2 medium instance (3.7 GB of RAM)
Additional information:
The code used to build the index is something like this:
https://gist.github.com/dggc/6523411
Our elasticsearch.json configuration file:
https://gist.github.com/dggc/6523421
EDIT
Sorry about the long delay to give you guys some feedback. Things were kind of hectic here at our company, and I chose to wait for calmer times to give a more detailed account of how we solved our issue. We still have to do some benchmarks to measure the actual improvements, but the point is that we solved the issue :)
First of all, I believe the indexing performance issues were caused by a usage error on out part. As I told before, we used Elasticsearch as a sort of a cache, to look for documents inside a 30 minutes time window. We looked for documents in elasticsearch whose content matched some query, and whose insert date was within some range. Elastic would then return us the full document json (which had a whole lot of data, besides the indexed content). Our configuration had elastic indexing the document json field by mistake (besides the content and insertDate fields), which we believe was the main cause of the indexing performance issues.
However, we also did a number of modifications, as suggested by the answers here, which we believe also improved the performance:
We now do not use the TTL feature, and instead use two "rolling indexes" under a common alias. When an index gets old, we create a new one, assign the alias to it, and delete the old one.
Our application does a huge number of queries per second. We believe this hits elastic hard, and degrades the indexing performance (since we only use one node for elastic search). We were using 10 shards for the node, which caused each query we fired to elastic to be translated into 10 queries, one for each shard. Since we can discard the data in elastic at any moment (thus making changes in the number of shards not a problem to us), we just changed the number of shards to 1, greatly reducing the number of queries in our elastic node.
We had 9 mappings in our index, and each query would be fired to a specific mapping. Of those 9 mappings, about 90% of the documents inserted went to two of those mappings. We created a separate rolling index for each of those mappings, and left the other 7 in the same index.
Not really a modification, but we installed SPM (Scalable Performance Monitoring) from Sematext, which allowed us to closely monitor elastic search and learn important metrics, such as the number of queries fired -> sematext.com/spm/index.html
Our usage numbers are relatively small. We have about 100 documents/second arriving which have to be indexed, with peaks of 400 documents/second. As for searches, we have about 1500 searches per minute (15000 before changing the number of shards). Before those modifications, we were hitting those performance issues, but not anymore.

TTL to time-series based indexes
You should consider using time-series-based indexes rather than the TTL feature. Given that you only care about the most recent 30 minute window of documents, create a new index for every 30 minutes using a date/time based naming convention: ie. docs-201309120000, docs-201309120030, docs-201309120100, docs-201309120130, etc. (Note the 30 minute increments in the naming convention.)
Using Elasticsearch's index aliasing feature (http://www.elasticsearch.org/guide/reference/api/admin-indices-aliases/), you can alias docs to the most recently created index so that when you are bulk indexing, you always use the alias docs, but they'll get written to docs-201309120130, for example.
When querying, you would filter on a datetime field to ensure only the most recent 30 mins of documents are returned, and you'd need to query against the 2 most recently created indexes to ensure you get your full 30 minutes of documents - you could create another alias here to point to the two indexes, or just query against the two index names directly.
With this model, you don't have the overhead of TTL usage, and you can just delete the old, unused indexes from over an hour in the past.
There are other ways to improve bulk indexing and querying speed as well, but I think removal of TTL is going to be the biggest win - plus, your indexes only have a limited amount of data to filter/query against, which should provide a nice speed boost.
Elasticsearch settings (eg. memory, etc.)
Here are some setting that I commonly adjust for servers running ES - http://pastebin.com/mNUGQCLY, note that it's only for a 1GB VPS, so you'll need to adjust.
Node roles
Looking into master vs data vs 'client' ES node types might help you as well - http://www.elasticsearch.org/guide/reference/modules/node/
Indexing settings
When doing bulk inserts, consider modifying the values of both index.refresh_interval index.merge.policy.merge_factor - I see that you've modified refresh_interval to 5s, but consider setting it to -1 before the bulk indexing operation, and then back to your desired interval. Or, consider just doing a manual _refresh API hit after your bulk operation is done, particularly if you're only doing bulk inserts every minute - it's a controlled environment in that case.
With index.merge.policy.merge_factor, setting it to a higher value reduces the amount of segment merging ES does in the background, then back to its default after the bulk operation restores normal behaviour. A setting of 30 is commonly recommended for bulk inserts and the default value is 10.

Some other ways to improve Elasticsearch performance:
increase index refresh interval. Going from 1 second to 10 or 30 seconds can make a big difference in performance.
throttle merging if it's being overly aggressive. You can also reduce the number of concurrent merges by lowering index.merge.policy.max_merge_at_once and index.merge.policy.max_merge_at_once_explicit. Lowering the index.merge.scheduler.max_thread_count can help as well
It's good to see you are using SPM. Its URL in your EDIT was not hyperlink - it's at http://sematext.com/spm . "Indexing" graphs will show how changing of the merge-related settings affects performance.

I would fire up an additional ES instance and have it form a cluster with your current node. Then I would split the work between the two machines, use one for indexing and the other for querying. See how that works out for you. You might need to scale out even more for your specific usage patterns.

Related

Elasticsearch index by date search performance - to split or not to split

I am currently playing around with Elasticsearch (ES). We are ingesting sensor data and for 3 years we have approximately 1,000,000,000 documents in one index, making the index about 50GB in size. Indexing performance is not that important as new data only arrives every 15 minutes per sensor on average, therefore I want to focus on searching and aggregating performance. We are running a front-end showing basically a dashboard about average values from last week compared to one year before etc.
I am using ES on AWS and after performance on one machine was quite slow, I spun up a cluster with 3 data nodes (each 2 cores, 8 GB mem), and gave the index 3 primary shards and one replica. Throwing computing power at the data certainly improved the situation and more power would help more, but my question is:
Would splitting the index for example by month increase the performance? Or being more specific: is querying (esp. by date) a smaller index faster if I adjust the queries adequatly, or does ES already 'know' where to find specific dates in a shard?
(I know about other benefits of having smaller indices, like being able to roll over and keep only a specific time interval, etc.)
1/ Elasticsearch only knows where to find a specific date in an index if your index is sorted by your date field. You can check the documentation here.
In your use case, it can improve drastically search performance. And since all the data will be added at the "end of the index" since its date sorted, you should not see much of indexation overhead.
2/ Without index sort, smaller time-bounded indices will work better (even if you target all your indices) since it will often allow a rewrite or your range query to a match_all / match_none internal query.
For more information about this behavior you should read this blog post :
Instant Aggregations: Rewriting Queries for Fun and Profit

Increase Solr performance when querying a subset of documents

The Usecase
I have an index of potentially millions of documents. I want to make around 20'0000 searches on a subset of these documents (around 25'000 documents). These 25'000 documents could take up around 100 MB stored in Solr (consisting of stored and indexes text fields).
The Problem
As the number of indexed documents increases, the performance of the queries decreases a lot. For example running 20'000 searches that hit 25'000 documents on 100'000 document index takes around 4 minutes. Running the same searches on 200'000 document index takes around 20 minutes.
So is there any way to cache these 25'000 documents in RAM before hitting them with searches?
UPDATE
Some things that really helped:
reducing returned row count (In almost all cases I had to iterate through returned results and in almost all cases where were no more than 100 matching results, but I had set rows to a very large value. Reducing the row count improved the performance around 2x. This seemed counter intuitive. If there are only 79 matches and I set returned row count to 100 it performs better than in a case when where are 79 matches and I set the row count to 1000. In the first case Solr already returns found item count and does it fast. Why should there be a performance difference?)
reducing multithreading (I had added multiple threads for querying because on the development box there were more resources available. On the resource constrained production box it was slowing things down. Using only one or two threads got me around 2x speed improvement.)
Some things that did not really help:
splitting up field queries (I was already using field queries everywhere it was possible, but I was combining them in one fq for each query fq=name:a AND type:b. Splitting them up with fq=name:a&fq=type:b caches them separately (see Apache Solr documentation) and could improve performance. But it did not make a huge difference in this case.
changing caching settings in this case filterCache seemed to have the most potential. However, increasing it or changing its settings did not make a huge difference.
A few things that are recommended for performance:
Have enough spare RAM on the box so index files can be in OS cache
Try to play around with solr caching settings in SolrConfig
Play around with autowarming after commits
Try to develop your queries to limit the result set. Large result sets, specifically if using grouping and faceting will kill performance. Now 200,000 document index is really quite small, so you should not have any problems, but I thought I'd mention this for when you scale.
Try to use Filter query (FQ) whenever possible. They are much faster than doing field:val in q, plus they are cached.

elasticsearch ttl vs daily dropping tables

I understand that there are two dominant patterns for keeping a rolling window of data inside elasticsearch:
creating daily indices, as suggested by logstash, and dropping old indices, and therefore all the records they contain, when they fall out of the window
using elasticsearch's TTL feature and a single index, having elasticsearch automatically remove old records individually as they fall out of the window
Instinctively I go with 2, as:
I don't have to write a cron job
a single big index is easier to communicate to my colleagues and for them to query (I think?)
any nightmare stream dynamics, that cause old log events to show up, don't lead to the creation of new indices and the old events only hang around for the 60s period that elasticsearch uses to do ttl cleanup.
But my gut tells me that dropping an index at a time is probably a lot less computationally intensive, though tbh I've no idea how much less intensive, nor how costly the ttl is.
For context, my inbound streams will rarely peak above 4K messages per second (mps) and are much more likely to hang around 1-2K mps.
Does anyone have any experience with comparing these two approaches? As you can probably tell I'm new to this world! Would appreciate any help, including even help with what the correct approach is to thinking about this sort of thing.
Cheers!
Short answer is, go with option 1 and simply delete indexes that are no longer needed.
Long answer is it somewhat depends on the volume of documents that you're adding to the index and your sharding and replication settings. If your index throughput is fairly low, TTLs can be performant but as you start to write more docs to Elasticsearch (or if you a high replication factor) you'll run into two issues.
Deleting documents with a TTL requires that Elasticsearch runs a periodic service (IndicesTTLService) to find documents that are expired across all shards and issue deletes for all those docs. Searching a large index can be a pretty taxing operation (especially if you're heavily sharded), but worse are the deletes.
Deletes are not performed instantly within Elasticsearch (Lucene, really) and instead documents are "marked for deletion". A segment merge is required to expunge the deleted documents and reclaim disk space. If you have large number of deletes in the index, it'll put much much more pressure on your segment merge operations to the point where it will severely affect other thread pools.
We originally went the TTL route and had an ES cluster that was completely unusable and began rejecting search and indexing requests due to greedy merge threads.
You can experiment with "what document throughput is too much?" but judging from your use case, I'd recommend saving some time and just going with the index deletion route which is much more performant.
I would go with option 1 - i.e. daily dropping of indices.
Daily Dropping Indices
pros:
This is the most efficient way of deleting data
If you need to restructure your index (e.g. apply a new mapping, increase number of shards) any changes are easily applied to the new index
Details of the current index (i.e. the name) is hidden from clients by using aliases
Time based searches can be directed to search only a specific small index
Index templates simplify the process of creating the daily index.
These benefits are also detailed in the Time-Based Data Guide, see also Retiring Data
cons:
Needs more work to set up (e.g. set up of cron jobs), but there is a plugin (curator) that can help with this.
If you perform updates on data then all versions of a document data will need to sit in the same index, i.e. multiple indexes won't work for you.
Use of TTL or Queries to delete data
pros:
Simple to understand and easily implemented
cons:
When you delete a document, it is only marked as deleted. It won’t be physically deleted until the segment containing it is merged away. This is very inefficient as the deleted data will consume disk space, CPU and memory.

Ways to improve first time indexing in ElasticSearch

In my application, I have a need to re-index all of the data from time to time. I have noticed that the time it takes to index data the first time (via bulk index) is significantly slower than subsequent re-indexing. In one scenario, it takes about 2 hours to perform the indexing the first time, and about 15 minutes (indexing the same data) with subsequent indexing.
While the 2 hours to index the first time is reasonable, I am curious why subsequent iterations to re-index are significantly faster. And more so, I am wondering if there's anything I can do to improve the performance for when indexing the first time, e.g. perhaps by indicating how large the index will be, etc.
Thanks,
Eric
Have you defined a mapping for your types? If not, everytime ES find a new field, the mapping must be updated (and this impact the whole index).
On subsequent indexing, the mapping is already complete. So what you could do is explicitly mapping your types.
Also, you can improve speed of re-indexing by setting the refresh_interval to an higher value, look at this benchmark.
Edited to strike out references to merge_factor as it has been removed in ES 2.0: https://www.elastic.co/guide/en/elasticsearch/reference/current/breaking_20_setting_changes.html#_merge_and_merge_throttling_settings
As Damien indicates, you can indeed influence (bulk) indexing settings - refresh_interval can be set to -1 temporarily and set back to the default value of 1s after you complete your bulk indexing. Another setting to modify is the merge.policy.merge_factor; set it to a higher value such as 30 and then back to the default of 10 once done.
There are a number of tutorials and mailing list discussions about optimizing bulk indexing, but here's some official doc links to start with:
http://www.elasticsearch.org/guide/reference/index-modules/merge/
http://www.elasticsearch.org/guide/reference/api/admin-indices-update-settings/
If you haven't already tuned the memory settings for your JVM, you should. Although specific to a 512mb VPS running Ubuntu 10.04 server, these settings (http://pastebin.com/mNUGQCLY) should point you in the right direction. Basically, allocating the desired amount of RAM to Elasticsearch upon startup can improve JVM memory allocation/GC timing.

What are the performance considerations when adding a large number of documents to a large Solr core?

If I have a Solr core with a half-dozen small fields that's loaded with 100 million documents, will adding a batch of 1 million documents run in a reasonable amount of time? How about 10 million? By reasonable, I'm thinking hours, rather than days. I've been told that this will take a long time to run. Is this really an issue? What are known strategies to improve performance? The fields are typically small, that is, 5-50 characters.
two suggestions on top of already mentioned in other answers for improving the performance (first tried, second to be tried):
1) decrease logging while updating: on INFO level SOLR appends one entry per document. See here on how we did it: http://dmitrykan.blogspot.fi/2011/01/solr-speed-up-batch-posting.html Some people reported "x3 speed increase".
2) set the amount of segments in solrconfig.xml to something very large for indexing, like 10000. Once the batch indexing is complete, change the parameter value back to something reasonably low, like 10.
This is a very "tricky" question whose answer differs from schema to schema.
Your solr installation has a half-dozen fields. But, how many are actually indexed? If only one field is indexed, then adding 1 million documents will be faster than adding 1 million docs when 6 fields are indexed.
I think the type of fields that are indexed also matters. A field that is of the type "text_general" is broken down into tokens while indexing whereas a field that is of the type "string" is not. "String" type is not analyzed and is stored as one complete token.
I have got some very long fields which are indexed and adding 2 million docs take a few minutes (although my installation does not contain 100 million documents). So, I do not think that it will take days to add 10 million records to your installation.
I am not sure about this but maybe the configuration of your cpu which is running the solr instance also matters. So, you might need to see if you cpu and memory can handle this much load.
It's upto you to decide if a long running data post is an issue or not. If your application is user intensive, then I suggest that you follow some kind of master-slave configuration so that the user is not impacted by the high cpu usage when you post the data. Some strategies which I know about improving performance is "sharding".
http://carsabi.com/car-news/2012/03/23/step-by-step-solr-sharding/
or if it is possible to demarcate the records by some field and put those different documents onto different servers.
100 million records is a fairly large index for Solr. But adding 10 million records on a good machine should be hours not days. You may find the following email thread interesting as it includes both in-depth questions and some final advice on tuning for 10M records index process.
Also, you did not say if you 'store' the fields as well as index them. If you do, you may also look forward to Solr 4.1 field compression.
An important parameter which impacts the indexing performance(in terms of Time) is the way in which you have defined your data-config.xml file.
If your fields come from multiple tables in a Database, you can configure it in 2 ways:
Entities within entities
A single entity with a join query
The second method is comparatively faster than the first one by a large degree because the number of queries fired against the database is decreased.

Resources